§217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний. Уравнения шредингера

Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Ψ(х, у, z, t), так как именно она, или, точнее, величина |Ψ| 2 , определяет вероятность пребывания частицы в момент времени t в объеме ΔV, т. е. в области с координатами х и х + dх, у и у + dу, z и z + dz .

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером . Уравнение Шрёдингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы.

Общее уравнение Шредингера имеет вид:

где ? = h / (), m - масса частицы, Δ - оператор Лапласа , i - мнимая единица, U (x, y, z, t ) - потенциальная функция частицы в силовом поле, в котором она движется, Ψ(x, y, z, t ) - искомая волновая функция частицы.

Уравнение (1) справедливо для любой частицы (со спином, равным 0), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью υ «с.

Оно дополняется условиями , накладываемыми на волновую функцию:

1) волновая функция должна быть конечной, однозначной и непрерывной;

2) производные должны быть непрерывны;

3) функция |Ψ| 2 должна быть интегрируема (это условие в простейших случаях сводится к условию нормировки вероятностей).

Уравнение (1) называют уравнением Шредингера, зависящим от времени.

Дли многих физических явлений, происходящих в микромире, уравнение (1) можно упростить, исключив зависимость Ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U = U (х, у , z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде

. (2)

Уравнение (2) называется уравнением Шредингера для стационарных состояний.

В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций : вол новые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными.


Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями Ψ. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения, которые соответствуют собственным значениям энергии, называются собственнымифункциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»

Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)

где l — ширина «ямы», а энергия отсчитывается от ее дна (рис. 2).

Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

. (1)

По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х = 0 и х = 1) непрерывная волновая функция также должна обращаться в нуль.

Следовательно, граничные условия в данном случае имеют вид:

Ψ (0) = Ψ (l ) = 0. (2)

В пределах «ямы» (0 ≤ х ≤ 0) уравнение Шредингера (1) сведется к уравнению:

или . (3)

где k 2 = 2mE / ? 2 . (4)

Общее решение дифференциального уравнения (3):

Ψ (x ) = A sin kx + B cos kx .

Так как по (2) Ψ (0) = 0, то В = 0. Тогда

Ψ (x ) = A sin kx . (5)

Условие Ψ (l ) = A sin kl = 0 (2) выполняется только при kl = nπ , где n - целые числа, т.е. необходимо, чтобы

k = nπ / l . (6)

Из выражений (4) и (6) следует, что:

(n = 1, 2, 3,…), (7)

т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях Е п, зависящих от целого числа п. Следовательно, энергия Е п частицы в «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т. е. квантуется.

Квантованные значения энергии Е п называются уровнями энергии, а число п, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне Е п, или, как говорят, частица находится в квантовом состоянии п.

Подставив в (5) значение k из (6), найдем собственные функции:

.

Постоянную интегрирования А найдем из условия нормировки, которое для данного случая запишется в виде:

.

В результате интегрирования получим , а собственные функции будут иметь вид:

(n = 1, 2, 3,…). (8)

Графики собственных функций (8), соответствующие уровням энергии (7) при n = 1,2,3, приведены на рис. 3, а. На рис. 3, б изображена плотность вероятности обнаружения частицы на различных расстояниях от «стенок» ямы, равная ‌‌‌‌‌‌ Ψ n (x )‌ 2 = Ψ n (x )·Ψ n * (x ) для п = 1, 2 и 3. Из рисунка следует, что, например, в квантовом состоянии с п= 2 частица не может находиться в середине «ямы», в то время как одинаково часто может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны.

Из выражения (7) вытекает, что энергетический интервал между двумя соседними уровнями равен:

Например, для электрона при размерах ямы l = 10 -1 м (свободные электроны в металле), ΔЕ n ≈ 10 -35 ·n Дж ≈ 10 -1 6 n эВ, т.е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерывным. Если же размеры ямы соизмеримы с атомными (l ≈ 10 -10 м), то для электрона ΔЕ n ≈ 10 -17 n Дж 10 2 n эВ, т.е. получаются явно дискретные значения энергии (линейчатый спектр).

Таким образом, применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими «стенками» приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.

Кроме того, квантово-механическое рассмотрение данной задачи приводит к выводу, что частица «в потенциальной яме» с бесконечно высокими «стенками» не может иметь энергию меньшую, чем минимальная энергия, равная π 2 ? 2 /(2т1 2 ). Наличие отличной от нуля минимальной энергии не случайно и вытекает из соотношения неопределенностей. Неопределенность координаты Δх частицы в «яме» шириной l равна Δх = l .

Тогда, согласно соотношению неопределенностей, импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса Δр h / l . Такому разбросу значений импульса соответствует кинетическая энергия Е min ≈ p ) 2 / (2m ) = ? 2 / (2ml 2 ). Все остальные уровни (п > 1) имеют энергию, превышающую это минимальное значение.

Из формул (9) и (7) следует, что при больших квантовых числах (n »1) ΔЕ n / E п ≈ 2/п «1, т. е. соседние уровни расположены тесно: тем теснее, чем больше п. Если п очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов — дискретность - сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.

Уравнение Шрёдингера - уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.

В квантовой физике вводится комплекснозначная функция , описывающая чистое состояние объекта, которая называется волновой функцией. Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции. Пусть волновая функция задана в N-мерном пространстве, тогда в каждой точке с координатами , в определенный момент времени t она будет иметь вид . В таком случае уравнение Шрёдингера запишется в виде: , где - внешняя по отношению к частице потенциальная энергия в точке .

Соотношение неопределенностей Гейзенберга. Описание движения в квантовой механике.

Принцип неопределённости Гейзенберга - фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (ср. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей задает нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых.

Измеряя величину среднеквадратического отклонения Δx координаты и среднеквадратического отклонения Δp импульса, мы найдем что: , где -приведённая постоянная Планка.

Свойства волновой функции. Квантование.

Волновая функция (функция состояния, пси-функция) - комплекснозначная функция, используемая в квантовой механике для описания чистого состояния квантовомеханической системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному): , где - координатный базисный вектор, а - волновая функция в координатном представлении.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния.

В физике квантование - построение квантового варианта некоторой неквантовой (классической) теории или физической модели в соответствии с аксиомами квантовой физики.

В соответствии с современной научной парадигмой фундаментальные физические теории должны быть квантовыми. Возможно как построение изначально квантовых теорий, так и квантование классических моделей. Существует несколько математических методов квантования. Наиболее распространены: каноническое квантование, квантование методом функционального интеграла (фейнмановское квантование), BRST-квантование, геометрическое квантование, вторичное квантование.

Эти методы не являются универсальными. Непосредственное применение тех или иных методов может оказаться невозможным. Например, в настоящий момент неизвестен метод построения квантовой теории гравитации. При квантовании модели могут возникать различные ограничения и физические эффекты. Например, различные квантовые теории струн могут быть сформулированы только для пространств определенной размерности (10, 11, 26 и т. д.). В квантованной теории также могут возникать новые объекты - квазичастицы.

Квантовые числа. Спин.

Квантовое число - численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицы, ядра, атома и т. д.), характеризующее состояние частицы. Задание квантовых чисел полностью характеризует состояние частицы.

Некоторые квантовые числа связаны с движением в пространстве и характеризуют пространственное распределение волновой функции частицы. Это, например, радиальное (главное) (nr), орбитальное (l) и магнитное (m) квантовые числа электрона в атоме, которые определяются как число узлов радиальной волновой функции, значение орбитального углового момента и его проекция на заданную ось, соответственно.

Адроны- класс элементарных частиц, подверженных сильному взаимодействию.

Спин - собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы. Спин измеряется в единицах .

Классическая механика в силу наличия волновых свойств у микрочастиц не может дать правильного описания их поведения. Это возможно сделать с помощью квантовой механики, созданной Шредингером, Гейзенбергом, Дираком и др.

Основным уравнением квантовой механики является уравнение Шредингера. Состояние микрочастиц в квантовой механике описывается волновой функцией или Ψ (пси)-функцией. Эта функция является функцией координат и времени и может быть найдена путем решения уравнения


(уравнение Шредингера),

где m - масса частицы; h = h/2π – постоянная Планка; Ψ – волновая функция или пси-функция, являющаяся функцией координат и времени
- оператор Лапласа;U=U(x,y,z, t) – потенциальная энергия частицы в силовом поле, в котором она движется; i =
- мнимая единица.

Уравнение Шредингера, как и уравнение Ньютона в классической механике, не может быть получено теоретически, а представляет собой обобщение большого числа опытных фактов. Справедливость этого соотношения доказывается тем, что все вытекающие из него следствия самым точным образом согласуются с опытными фактами.

Из уравнения Шредингера следует, что вид волновой функции Ψ определяется потенциальной энергией U, т.е. характером тех сил, которые действуют на частицу. В общем виде потенциальная энергия U есть функция координат и времени. Для стационарного (не меняющегося во времени) силового поля потенциальная энергия U явно от времени не зависит. В этом случае волновая функция Ψ распадается на два множителя, один из которых зависит только от времени, второй – только от координат.

,

где Е – полная энергия частицы.

Подставляя эту функцию в уравнение Шредингера, получим

;
или

Это уравнение Шредингера для стационарных состояний. Оба уравнения справедливы для любой частицы, движущейся с малой (v«c) скоростью. Кроме того, на волновую функцию накладываются дополнительные условия:


В последнее уравнение в качестве параметра входит полная энергия Е частицы. Из теории дифференциальных уравнений подобные уравнения имеют решения (из бесчисленного их множества), отражающие физический смысл, не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Решения, имеющие физический смысл, получают лишь при наложении вышеперечисленных условий. Значения энергии Е, при которых решения уравнения Шредингера имеют физический смысл, называются собственными . Решения, т.е. волновые функции, которые соответствуют собственным значениям энергии, называются собственными функциями.

Волновая функция и ее статистический смысл

Положение частицы в пространстве в данный момент времени в квантовой механике определяется знанием волновой функции Ψ. Вероятность dw того, что частица находится в элементе объема dV, пропорциональна квадрату модуля волновой функции |Ψ| 2 и объему элемента dV

Величина |Ψ| 2 = (квадрат модуля Ψ-функции) имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами x, y, z.

Таким образом, физический смысл имеет не сама Ψ-функция, а квадрат ее модуля |Ψ| 2 . Вероятность найти частицу в момент времени t в конечном объеме V согласно теореме сложения вероятностей, равна

.

Волновую функцию необходимо нормировать таким образом, чтобы вероятность достоверного события обращалась в единицу. Это будет выполняться, если за объем интегрирования V принять бесконечный объем всего пространства. Условия нормировки вероятностей

,

где интеграл вычисляется по всему бесконечному пространству, т.е. по координатам x, y, z от -∞ до +∞.

При этом волновая функция должна удовлетворять трем раннее перечисленным условиям:

1. Должна быть конечной (вероятность не может быть больше 1).

2. Должна быть однозначной (вероятность не может быть неоднозначной величиной).

    Должна быть непрерывной (вероятность не может изменяться скачком).

Введение

Известно, что курс квантовой механики является одним из сложных для восприятия. Это связано не столько с новым и "необычным" математическим аппаратом, сколько прежде всего с трудностью осознания революционных, с позиции классической физики, идей, лежащих в основе квантовой механики и сложностью интерпретации результатов.

В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.

Уравнение Шредингера и физический смысл его решений

Волновое уравнение Шредингера

Одним из основных уравнений квантовой механики является уравнение Шредингера, определяющее изменение состояний квантовых систем с течением времени. Оно записывается в виде

где Н -- оператор Гамильтона системы, совпадающий с оператором энергии, если он не зависит от времени. Вид оператора определяется свойствами системы. Для нерелятивистского движения частицы массы в потенциальном поле U(r) оператор действителен и представляется суммой операторов кинетической и потенциальной энергии частицы

Если частица движется в электромагнитном поле, то оператор Гамильтона будет комплексным.

Хотя уравнение (1.1) является уравнением первого порядка по времени, вследствие наличия мнимой единицы оно имеет и периодические решения. Поэтому уравнение Шредингера (1.1) часто называют волновым уравнением Шредингера, а его решение называют волновой функцией, зависящей от времени. Уравнение (1.1) при известном виде оператора Н позволяет определить значение волновой функции в любой последующий момент времени, если известно это значение в начальный момент времени. Таким образом, волновое уравнение Шредингера выражает принцип причинности в квантовой механике.

Волновое уравнение Шредингера может быть получено на основании следующих формальных соображений. В классической механике известно, что если энергия задана как функция координат и импульсов

то переход к классическому уравнению Гамильтона--Якоби для функции действия S

можно получить из (1.3) формальным преобразованием

Таким же образом уравнение (1.1) получается из (1.3) при переходе от (1.3) к операторному уравнению путем формального преобразования

если (1.3) не содержит произведений координат и импульсов, либо содержит такие их произведения, которые после перехода к операторам (1.4) коммутируют между собой. Приравнивая после этого преобразования результаты действия на функцию операторов правой и левой частей полученного операторного равенства, приходим к волновому уравнению (1.1). Не следует, однако, принимать эти формальные преобразования как вывод уравнения Шредингера. Уравнение Шредингера является обобщением опытных данных. Оно не выводится в квантовой механике, так же как не выводятся уравнения Максвелла в электродинамике, принцип наименьшего действия (или уравнения Ньютона) в классической механике.

Легко убедиться, что уравнение (1.1) удовлетворяется при волновой функцией

описывающей свободное движение частицы с определенным значением импульса. В общем случае справедливость уравнения (1.1) доказывается согласием с опытом всех выводов, полученных с помощью этого уравнения.

Покажем, что из уравнения (1.1) следует важное равенство

указывающее на сохранение нормировки волновой функции с течением времени. Умножим слева (1.1) на функцию *, a уравнение, комплексно сопряженное к (1.1), на функцию и вычтем из первого полученного уравнения второе; тогда находим

Интегрируя это соотношение по всем значениям переменных и учитывая самосопряженность оператора, получаем (1.5).

Если в соотношение (1.6) подставить явное выражение оператора Гамильтона (1.2) для движения частицы в потенциальном поле, то приходим к дифференциальному уравнению (уравнение непрерывности)

где является плотностью вероятности, а вектор

можно назвать вектором плотности тока вероятности.

Комплексную волновую функцию всегда можно представить в виде

где и -- действительные функции времени и координат. Таким образом, плотность вероятности

а плотность тока вероятности

Из (1.9) следует, что j = 0 для всех функций, у которых функция Ф не зависит от координат. В частности, j= 0 для всех действительных функций.

Решения уравнения Шредингера (1.1) в общем случае изображаются комплексными функциями. Использование комплексных функций весьма удобно, хотя и не необходимо. Вместо одной комплексной функции состояние системы можно описать двумя вещественными функциями и, удовлетворяющими двум связанным уравнениям. Например, если оператор Н -- вещественный, то, подставив в (1.1) функцию и отделив вещественную и мнимую части, получим систему двух уравнений

при этом плотность вероятности и плотность тока вероятности примут вид

Волновые функции в импульсном представлении.

Фурье-образ волновой функции характеризует распределение импульсов в квантовом состоянии. Требуется вывести интегральное уравнение для с Фурье-образом потенциала в качестве ядра.

Решение. Между функциями и имеются два взаимно обратных соотношения.

Если соотношение (2.1) использовать в качестве определения и применить к нему операцию, то с учетом определения 3-мерной -функции,

в результате, как нетрудно убедиться, получится обратное соотношение (2.2). Аналогичные соображения использованы ниже при выводе соотношения (2.8).

тогда для Фурье-образа потенциала будем иметь

Предполагая, что волновая функция удовлетворяет уравнению Шредингера

Подставляя сюда вместо и соответственно выражения (2.1) и (2.3), получаем

В двойном интеграле перейдем от интегрирования по переменной к интегрированию по переменной, а затем эту новую переменную вновь обозначим посредством. Интеграл по обращается в нуль при любом значении лишь в том случае, когда само подынтегральное выражение равно нулю, но тогда

Это и есть искомое интегральное уравнение с Фурье-образом потенциала в качестве ядра. Конечно, интегральное уравнение (2.6) можно получить только при условии, что Фурье-образ потенциала (2.4) существует; для этого, например, потенциал должен убывать на больших расстояниях по меньшей мере как, где.

Необходимо отметить, что из условия нормировки

следует равенство

Это можно показать, подставив в (2.7) выражение (2.1) для функции:

Если здесь сначала выполнить интегрирование по, то мы без труда получим соотношение (2.8).

Двойственная природа света и вещества. Уравнение де Броиля.

Сосуществование двух серьезных научных теорий, каждая из которых объясняла одни свойства света, но не могла объяснить другие. Вместе же эти две теории полностью дополняли друг друга.

Свет одновременно обладает свойствами непрерывных электромагнитных волн и дискретных фотонов.

Взаимосвязь между корпускулярными и волновыми свойствами света находит простое толкование при статистическом подходе к распространению света.

Взаимодействие фотонов с веществом (например, при прохождении света через дифракционную решетку) приводит к перераспределению фотонов в пространстве и возникновению дифракционной картины на экране. Очевидно, что освещенность в различных точках экрана прямо пропорциональна вероятности попадания фотонов в эти точки экрана. Но, с другой стороны, из волновых представлений видно, что освещенность пропорциональна интенсивности света J, а та, в свою очередь, пропорциональна квадрату амплитуды А 2 . Отсюда вывод: квадрат амплитуды световой волны в какой-либо точке есть мера вероятности попадания фотонов в эту точку .

Уравнение де Броиля.

Физический смысл соотношения де Бройля: одна из физических характеристик любой частицы - ее скорость. Волна описывается длиной или частотой. Соотношение, связывающее импульс квантовой частицы р с длиной волны λ, которая ее описывает: λ = h/p где h - постоянная Планка.Иными словами, волновые и корпускулярные свойства квантовой частицы фундаментальным образом взаимосвязаны.

14)Вероятностная трактовка волн де Броиля. Если считать электрон частицей, то, чтобы электрон оставался на своей орбите, у него должна быть одна и та же скорость (или, вернее, импульс) на любом расстоянии от ядра. Если же считать электрон волной, то, чтобы он вписался в орбиту заданного радиуса, надо, чтобы длина окружности этой орбиты была равна целому числу длины его волны. Главный же физический смысл соотношения де Бройля в том, что мы всегда можем определить разрешенные импульсы или длины волн электронов на орбитах. Однако, соотношение де Бройля показывает, для большинства орбит с конкретным радиусом либо волновое, либо корпускулярное описание покажет, что электрон не может находиться на этом расстоянии от ядра.

Волны де Бройля не являются Э.М. или механическими волнами, а являются волнами вероятности. Модуль волны характеризует вероятность нахождения частицы в пространстве.

Соотношение неопределенностей Гейзенберга.

Δx*Δp x > h/2

где Δx - неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δp - неопределенность импульса частицы на ось х, а h - постоянная Планка, равняется примерно 6,626 x 10 –34 Дж·с.

Чем меньше неопределенность в отношении одной переменной (например, Δx), тем более неопределенной становится другая переменная (Δv) На самом деле, если нам удастся абсолютно точно определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности. Т.е. если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представлении.

Уравнение Шредингера и его смысл.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции. Уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой ψ («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное - примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):

где x - координата, h - постоянная Планка, а m, E и U - соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.