Активный центр ферментов

1. Активный центр — это относительно небольшой участок, расположенный в узком гидрофобном углублении (щели) поверхности молекулы фермента, непосредственно участвующий в катализе.

2. Активные центры ферментов образуются на уровне третичной структуры.

3. Ферментативный катализ требует точной про-странственной организации больших ансамблей, построенных из аминокислотных остатков и их бо-ковых групп. Такие ансамбли формируют как ак-тивные, так и регуляторные (аллостерические) центры ферментов.

4. Активный центр, кроме каталитического участка, включает субстратсвязывающий участок, который от-вечает за специфическое комплементарное связыва-ние субстрата и образование фермент-субстратного комплекса (ES); в активный центр фермента часто входит участок или домен для связывания кофактора.

Пример 1. Активные центры ферментов форми-руются на уровне третичной структуры.

На рис. 2.2 показана пространственная структура протеолитического фермента трипсина, в цент-ральной полости молекулы находится каталитиче-ский центр с остатками Асп 102 , Гис 57 и Сер 19 5- Трипсин относится к группе сериновых протеаз, ко-торые названы так по аминокислотному остатку серина, характерному для их активных центров.

Сериновые протеазы широко распространены в природе и вместе с протеолитическими фермента-ми других классов (аспартильными, цистеиновыми и металлопротеиназами) обеспечивают расщепле-ние белков (катаболизм) и целый ряд реакций ог-раниченного протеолиза, имеющих регуляторное значение для жизни клетки.

Сериновые протеазы (к ним относятся трипсин, химотрипсин, эластаза, тромбин и др.) имеют од-нотипное строение каталитического центра, в ко-торый входит триада аминокислот: Асп, Гис и Сер.

В разных сериновых протеазах эти аминокисло-ты могут занимать разные места в пептидной цепи фермента, но они сближаются при свертывании полипептидной цепи и их относительное располо-жение в пространстве строго сохраняется (рис. 2.3).


5. Активный центр не может быть очерчен строго определенными границами, поскольку каждый его компонент так или иначе взаимодействует с други-ми участками молекулы фермента. Влияние мик-роокружения может быть весьма существенным: — компоненты активного центра, в том числе и ко-факторы, взаимодействуют с соседними группами фермента, что видоизменяет химические характерис-тики функциональных групп, участвующих в катализе;



- в клетке образуют структурные комплек-сы и ансамбли как друг с другом, так и с участками клеточных и внутриклеточных мембран, с элемен-тами цитоскелета и/или другими молекулами, что влияет на реакционную способность функциональных групп в активном центре фермента.

6. Структура активного центра определяет специ-фичность действия ферментов. Большинство фер-ментов высокоспецифично как к природе, так и к пути превращения субстрата.

7. Специфичность к субстрату обусловлена комплементарностью структуры субстратсвязывающего центра фермента структуре субстрата (рис. 2.4).

Как показывает рис. 2.4, субстратсвязывающий участок по форме соответствует субстрату (геометри-ческое соответствие), более того, между аминокис-лотными остатками активного центра фермента и субстратом образуются специфические связи (гид-рофобные, ионные и водородные), т.е. устанавлива-ется электронное или химическое соответствие.

Обратите внимание на то, что нековалентные свя-зи между субстратом и ферментом похожи по харак-теру на межрадикальные взаимодействия в белках.

Связывание субстрата с активным центром фер-мента происходит многоточечно, с участием не-скольких функциональных групп, которые далее мо-гут участвовать в катализе.

8. Ферменты могут различаться по субстратной специфичности и обладать абсолютной специфич-ностью, т.е. иметь только один субстрат и не взаи-модействовать даже с очень близкими по строению молекулами (например, уреаза ускоряет гидролиз мочевины, но не действует на тиомочевину), или даже стереоспецифичностью (когда фермент взаи-модействует с определенным оптическим и геомет-рическим изомером).

9. Некоторые ферменты проявляют более ши-рокую специфичность (групповая или относитель-ная специфичность) и взаимодействуют со многи-ми веществами, имеющими похожую структуру (протеазы ускоряют гидролиз пептидных связей в белках, липазы ускоряют рас-щепление эфирных связей в жирах).

Пример 2. Сери новые протеазы проявляют групповую специ-фичность к субстратам.

Все они ускоряют гидролиз пеп- тидных связей в белках, но, имея похожую структуру и каталитиче-ский механизм, различаются по субстратной специфичности.

На рис. 2.5 показаны субстрат-связывающие участки активных центров панкреатических фер-ментов, относящихся к группе сериновых протеаз: химотрипси на, трипсина и эластазы.


В химотрипсине субстратсвязывающий участок представляет гидрофобный карман, который связывает радикалы ароматических аминокис-лот, таких, как фенил ал анин. Этот фермент уско-ряет гидролиз пептидных связей, образованных карбоксильной группой ароматических амино-кислот.

В трипсине отрицательный заряд остатка аспа-рагиновой кислоты в активном центре участвует как в связывании аминогруппы лизина (или гуа-нидиновой группы аргинина), так и непосредст-венно в катализе, при котором разрывается пеп-тидная связь, в образовании которой участвует карбоксильная группа положительно заряженных остатков Лиз и Apr.

В эластазе остатки валина и треонина, входящие в состав субстратсвязывающего центра, допуска-ют связывание остатков аминокислот только с не-большими боковыми цепями, например, как у глицина. Поэтому эластаза ускоряет гидролиз пептидных связей, образованных карбоксильны-ми группами глицина и аланина.
Биологическая химия Лелевич Владимир Валерьянович

Активный центр фермента

Активный центр фермента

Участок молекулы фермента, который специфически взаимодействует с субстратом, называется активным центром. Активный центр – это уникальная комбинация аминокислотных остатков в молекуле фермента, обеспечивающая непосредственное взаимодействие её с молекулой субстрата и принимающая прямое участие в акте катализа. У сложных ферментов в состав активного центра входит также кофактор. В активном центре условно различают каталитический участок, непосредственно вступающий в химическое взаимодействие с субстратом и участок связывания, который обеспечивает специфическое сродство к субстрату и формирование его комплекса с ферментом.

Свойства активных центров ферментов:

1. На активный центр приходится относительно малая часть общего объема фермента.

2. Активный центр имеет форму узкого углубления или щели в глобуле фермента.

3. Активный центр – это трехмерное образование, в формировании которого участвуют функциональные группы линейно удаленных друг от друга аминокислот.

4. Субстраты относительно слабо связываются с активным центром.

5. Специфичность связывания субстрата зависит от строго определенного расположения атомов и функциональных групп в активном центре.

У некоторых регуляторных ферментов имеется еще один центр, называемый аллостерическим или регуляторным. Он пространственно разделен с активным центром.

Аллостерический центр – это участок молекулы фермента, с которым связываются определенные обычно низкомолекулярные вещества (аллостерические регуляторы), молекулы которых не сходны по строению с субстратом. Присоединение регулятора к аллостерическому центру приводит к изменению третичной и четвертичной структуры молекулы фермента и, соответственно, конформации активного центра, вызывая снижение или повышение ферментативной активности.

Из книги Расширенный фенотип [Дальнее влияние гена] автора Докинз Клинтон Ричард

Глава 5. Активный репликатор зародышевой линии В 1957 году Бизер доказал, что «ген» более не может рассматриваться как единственная, унитарная концепция. Он разложил его на три ипостаси: мутон – минимальная единица мутационных изменений; рекон – минимальная единица

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Фармацевтическая и продовольственная мафия автора Броуэр Луи

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Центр фармакологического надзора «Париж, 4 февраля 1977 г. НЦФН, созданный в январе 1974 г., 2 февраля собрался на Генеральную ассамблею вместе с делегатами Национальных хартий врачей и фармацевтов, к которым присоединилась группа центров по борьбе с интоксикацией и

Из книги Читая между строк ДНК [Второй код нашей жизни, или Книга, которую нужно прочитать всем] автора Шпорк Петер

Где находится центр масс системы Земля – Луна? Центр масс системы Земля – Луна, так называемый барицентр, находится на расстоянии 4672 километра от центра Земли по направлению к Луне, то есть на глубине приблизительно 1700 километров под поверхностью Земли. Строго говоря, по

Из книги Тайна Бога и наука о мозге [Нейробиология веры и религиозного опыта] автора Ньюберг Эндрю

Что такое центр удовольствия и где он расположен в организме? Одной из частей головного мозга является гипоталамус, являющийся отделом промежуточного мозга и расположенный под зрительными буграми (таламусом). Гипоталамус, в котором расположены центры вегетативной

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Из Берлина в центр будущей революции Он не обижается, когда его принимают за студента или докторанта. А это происходит с 32-летним генетиком постоянно. Александр Майсснер - серо-голубые глаза, темно-русые небрежно причесанные волосы, трехдневная щетина - не только молод,

Из книги В поисках памяти [Возникновение новой науки о человеческой психике] автора Кандель Эрик Ричард

Активный подход Медитация активного типа начинается не с намерения очистить ум от мыслей, но со стремления направить предельно сфокусированное внимание на какую-то мысль или какой-то предмет. Так, скажем, буддист может петь мантру или смотреть на сияние свечи либо на

Из книги Что, если Ламарк прав? Иммуногенетика и эволюция автора Стил Эдвард

§ 37. Ассоциативный центр мозга рептилий Рассмотрев общий план строения нервной системы, следует отдельно остановиться на новых принципах организации и работы мозга, впервые реализованных у рептилий. Нервная система архаичных амниот стала логическим развитием строения

Из книги Психопаты. Достоверный рассказ о людях без жалости, без совести, без раскаяния автора Кил Кент А.

Из книги автора

Из книги автора

Центр размножения: соматическое гипермутирование перестроенных V(D)J-генов Все имеющиеся данные говорят о том, что в В-лимфоцитах мутируют только перестроенные V(D)J-гены, кодирующие белок антитела. Другими словами, вариабельные гены, остающиеся в конфигурации зародышевой

Из книги автора

Мендотский реабилитационный центр для несовершеннолетних В начале 1990-х США захлестнула настоящая эпидемия подросткового насилия. Число преступлений, совершаемых несовершеннолетними, почти удвоилось между 1980 и 1993 годами. Казалось, ничто не может остановить этот

Активный центр ферментов

Наименование параметра Значение
Тема статьи: Активный центр ферментов
Рубрика (тематическая категория) Дом

Свойства и механизм действия ферментов. Кофакторы ферментов

Ферменты , или энзимы - обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества - продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу).

Ферментативная активность может регулироваться активаторами и ингибиторами (активаторы - повышают, ингибиторы - понижают).

Белковые ферменты синтезируются на рибосомах, а РНК - в ядре.

Термины ʼʼферментʼʼ и ʼʼэнзимʼʼ давно используют как синонимы (первый в основном в русской и немецкой научной литературе, второй - в англо- и франкоязычной).

Наука о ферментах принято называть энзимологией, а не ферментологией (чтобы не смешивать корни слов латинского и греческого языков).

Активность ферментов определяется их трёхмерной структурой.

Как и всœе белки, ферменты синтезируются в виде линœейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Изучение механизма химической реакции, катализируемой ферментом наряду с определœением промежуточных и конечных продуктов на разных стадиях реакции подразумевает точное знание геометрии третичной структуры фермента͵ природы функциональных групп его молекулы, обеспечивающих специфичность действия и высокую каталитическую активность на данный субстрат, а также химической природы участка (участков) молекулы фермента͵ который обеспечивает высокую скорость каталитической реакции. Обычно молекулы субстрата͵ участвующие в ферментативных реакциях, по сравнению с молекулами ферментов имеют относительно небольшие размеры. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, при образовании фермент-субстратных комплексов в непосредственное химическое взаимодействие вступают лишь ограниченные фрагменты аминокислотной последовательности полипептидной цепи - ʼʼактивный центрʼʼ - уникальная комбинация остатков аминокислот в молекуле фермента͵ обеспечивающая непосредственное взаимодействие с молекулой субстрата и прямое участие в акте катализа

В активном центре условно выделяют

  • каталитический центр - непосредственно химически взаимодействующий с субстратом;
  • связывающий центр (контактная или ʼʼякорнаяʼʼ площадка) - обеспечивающий специфическое сродство к субстрату и формирование комплекса фермент-субстрат.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область принято называть сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторов или ионов металлов.

Фермент, соединяясь с субстратом:

  • очищает субстрат от водяной ʼʼшубыʼʼ
  • располагает реагирующие молекулы субстратов в пространстве нужным для протекания реакции образом
  • подготавливает к реакции (к примеру, поляризует) молекулы субстратов.

Обычно присоединœение фермента к субстрату происходит за счёт ионных или водородных связей, редко - за счёт ковалентных. В конце реакции её продукт (или продукты) отделяются от фермента.

В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (фактически происходит другая реакция), к примеру:

В отсутствие фермента:

  • А+В = АВ

В присутствии фермента:

  • А+Ф = АФ
  • АФ+В = АВФ
  • АВФ = АВ+Ф

где А, В - субстраты, АВ - продукт реакции, Ф - фермент.

Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции (для протекания которых требуется энергия). По этой причине ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделœением большего количества энергии. К примеру, реакции синтеза биополимеров часто сопрягаются с реакцией гидролиза АТФ.

Для активных центров некоторых ферментов характерно явление кооперативности.

Активный центр ферментов - понятие и виды. Классификация и особенности категории "Активный центр ферментов" 2017, 2018.

Любая ферментативная реакция начинается с взаимодействия субстрата, в большинстве случаев, небольшой по размерам молекулы, с активным центром фермента. Под активным центром фермента понимают совокупность аминокислотных остатков, осуществляющих связывание (сорбцию) субстрата, его химическую активацию и превращение. Активный центр белковой молекулы фермента имеет сложную конфигурацию; он включает как полярные (гидрофильные), так и неполярные (гидрофобные) группы.

Структура активного центра фермента складывается из двух составляющих:

1) сорбционного участка (подцентра, сайта), ответственного за связывание, фиксацию и ориентацию субстратов; свойства этого центра определяют специфичность действия фермента;

2) каталитического участка (подцентра, сайта), осуществляющего химическое превращение молекул субстрата и использующего для этих целей, как правило, общий кислотно-основной катализ.

Аминокислотные остатки, образующие каталитический центр однокомпонентного фермента, расположены в различных точках единой полипептидной цепи. Поэтому активный центр, представляющий собой уникальное сочетание нескольких аминокислотных остатков, возникает в тот момент, когда белковая молекула приобретает присущую ей третичную структуру. Чаще всего в активных центрах однокомпонентных ферментов встречаются остатки Ser , His , три, Arg , Cys , Asp , Glu и Tyr . Изменение третичной структуры фермента под влиянием тех или иных факторов может привести к деформации активного центра и изменению ферментативной активности.

Активный центр двухкомпонентных ферментов представлен небелковым компонентом – коферментом (простетической группой) и несколькими выше приведенными минокислотными остатками.

Характерной особенностью cложных или двухкомпонентных ферментов является то, что ни белковая часть, ни добавочная группа в отдельности не обладают заметной каталитической активностью. Только их комплекс проявляет ферментативные свойства. При этом белок резко повышает каталитическую активность добавочной группы, присущую ей в свободном состоянии в очень малой степени; добавочная же группа стабилизирует белковую часть и делает ее менее уязвимой к денатурирующим агентам. Таким образом, хотя непосредственным исполнителем каталитической функции является простетическая группа, образующая каталитический центр, ее действие немыслимо без участия полипептидных фрагментов белковой части фермента.

В апоферменте есть участок, характеризующийся специфической структурой, избирательно связывающий кофермент. Это так называемый кофермент связывающий домен ; его структура у различных апоферментов, соединяющихся с одним и тем же коферментом, очень сходна. Таковы, например, пространственные структуры нуклеотидсвязывающих доменов ряда дегидрогеназ (рис. 1.5.1).

Рис. 1.5.1. Активный центр глюкозо-6-фосфатдегидрогеназы

Методы изучения активных центров ферментов

Представление об активном центре сформировалось в результате анализа данных по ингибированию реакций и химической модификации белковой молекулы. Необратимые ингибиторы блокируют каталитическую активность фермента, осуществляя химическую модификацию одной из групп, участвующих в каталитическом превращении субстрата. Обратимые ингибиторы, образуя комплекс с функциональной группой белка, вызывают либо существенное изменение свойств данной группы (неконкурентные ингибиторы), либо конкурентно блокируют сорбцию (комплексообразование) субстрата в области каталитического центра.

Рассмотрим некоторые примеры.

Сериновые протеазы и эстеразы. Каталитически активной группой многих ферментов является гидроксильная группа серина. В активном центре эта спиртовая группа играет роль нуклеофильного реагента в реакциях нуклеофильного замещения при гидролизе сложных эфиров, амидов, пептидов. Представителем семейства сериновых протеаз является простагландин-Н-синтаза, участвующая в метаболизме арахидоновой кислоты.

Простагландин-Н-синтаза. Аспирин (ацетилсалициловая кислота) представляет собой нестероидный противовоспалительный лекарственный препарат. Физиологическое действие препарата связано с его способностью ацетилировать Ser-514, входящий в центр сорбции арахидоновой кислоты - субстрата ПНС.

Рис. 1.5.2. Блокирование гидроксильной группы серина в активном центре простагландин-Н-синтазы

Аспирин выступает необратимым ингибитором лимитирующего фермента синтеза простагландинов. Последующий гидролиз модифицированного белка и анализ продуктов гидролиза позволили идентифицировать центр модификации фермента.

Несмотря на то, что метод химической модификации позволяет получить весьма важную информацию о природе активных центров ферментов, он имеет и определенные недостатки.

Функциональные группы белка, составляющие активный центр, могут быть замаскированы полипептидной цепью или остатками других аминокислот, что делает группы активного центра недоступными для реагента-модификатора. Химическая модификация, как правило, не является избирательной, химической реакции подвергаются сразу несколько аминокислотных остатков в белке. Это ведет к существенному изменению структуры белка, развитию инактивационных и денатурационных процессов, что может привести к потере ферментом каталитической активности даже в том случае, если химически модифицировались остатки, не входящие в каталитический центр. Выводы об участии тех или иных функциональных групп аминокислот в каталитическом процессе на основе данных по химической модификации белка могут быть сделаны с известной осторожностью и оговорками.

Таким образом, метод химической модификации не позволяет получить исчерпывающую информацию об участниках каталитического акта.

Как правило, для такого рода выводов требуются независимые структурные исследования.

Ситуация становится более однозначной, если химический модификатор встраивается в структуру специфического субстрата или ингибитора фермента. В этом случае модификатор адресно направляется в активный центр, что существенно увеличивает вероятность химической реакции с функциональной группой активного центра.

Новые возможности идентификации групп, входящих в активные центры ферментов, появились с развитием техники сайт-специфического мутагенеза. Для ферментов, экспрессию генов которых можно организовать с помощью генно-инженерных конструкций типа плазмид, оказалась возможной замена отдельных аминокислот на уровне ДНК с последующей экспрессией и изучением каталитических свойств получаемых белков. Это позволяет получить важную информацию об участии той или иной аминокислоты данного фрагмента полипептидной цепи в каталитическом акте. Однако и в этом случае при интерпретации результатов необходима известная осторожность, поскольку в белках имеется большое число аминокислот, формирующих структуру активного центра, но не принимающих непосредственное участие в акте катализа.

Окончательная информация о структуре активного центра активного центра может быть получена методом рентгеноструктурного анализа (РСА) и спектроскопии ядерного магнитного резонанса (ЯМР) высокого разрешения. В первом случае исследование проводят на кристаллах фермента, во втором ‒ исследуют растворы фермента. Для идентификации групп, принимающих участие в катализе, обычно используют образование комплекса ферментов с ингибиторами или мало реакционноспособными аналогами субстратов (т.н. квазисубстратами).

Метод РСА впервые был использован Липскомбом с сотрудниками при анализе активного центра карбоксипептидазы А. На рис. 1.5.3. показана структура карбоангидразы по данным рентгеноструктурного анализа.

Рис. 1.5.3. Третичная структура карбоангидразы по данным рентгеноструктурного анализа: а) общий вид ферментной глобулы; б) пространственное расположение аминокислотных остатков

Структуру и свойства каждого белка определяет последовательность аминокислот. В настоящее время становится очевидным, что при большой вариабельности белков некоторые элементы структуры являются консервативными, и эти элементы в значительной степени определяют функцию белковой молекулы. Это особенно характерно для белков, выполняющих каталитическую функцию. Например, для гидролаз, составляющих около трети всех известных ферментов (приблизительно 1100 из 3700), типов структур каталитических центров всего четыре.

Чтобы ответить на вопросы, какие химические структуры образуют каталитический центр, каким образом аминокислоты, расположенные на разных, зачастую удаленных друг от друга участках полипептидной цепи, находят друг друга и формируют уникальную структуру, ‒ используют методы биоинформатики.

По мнению энзимологов в рамках одного суперсемейства ферментов сорбционный сайт, отвечающий за специфичность, может быть представлен многими вариантами аминокислотных остатков, соответствующими вариантам структуры субстратов. В то же время каталитические сайты, число типов которых весьма ограничено, являются консервативными (незаменимыми) элементами структуры. Для подтверждения этого положения был использован биоинформационный подход, основанный на сравнении последовательностей аминокислот в белках, объединенных в одно крупное семейство.

Был проведен анализ нескольких больших семейств ферментов, представленных в базе данных HSSP (www.sander.embl-heidelberg.de/ ). Выбор семейств ферментов был сделан на основании следующих критериев:

1) число анализируемых представителей семейства должно быть более 100; это необходимо для обеспечения статистической достоверности результатов;

2) для анализа следует выбирать семейства ферментов различных классов (оксидоредуктазы, гидролазы, изомеразы и т.д.);

3) по возможности следует выбирать ферменты, для которых установлена структура активных центров и с высокой степенью достоверности изучен механизм катализа.

Проведенный анализ показал, что в полипептидной цепи большая часть позиций аминокислот высоко вариабельна, это означает, что функционирование фермента не зависит от того, какую позицию занимает та или иная аминокислота. В то же время имеются позиции аминокислот, которых относительно немного. Эти позиции и соответствующие им аминокислоты называют консервативными. Именно они играют особую роль в функционировании фермента. Что же это за аминокислоты, и какова их роль?

Биоинформационный анализ ферментов всех классов показал, что наиболее часто консервативной аминокислотой является глицин. По рейтингу консервативности аминокислоты располагаются в следующем ряду: глицин > аспарагиновая кислота > цистеин > пролин > гистидин > аргинин > глутаминовая кислота. Это наиболее важные аминокислоты в ферментативном катализе. В сумме глицин и аспарагиновая кислота составляют примерно 50% всех консервативных аминокислот. Из наиболее часто встречающихся консервативных элементов структуры ферментов можно отметить глицин, аспарагиновую кислоту, цистеин, пролин и гистидин. Эти аминокислоты составляют примерно 70% всех консервативных элементов. Метионин и изолейцин практически никогда не бывают консервативными.

В свою очередь наиболее консервативные аминокислоты можно разделить на две принципиально разные группы:

1) аминокислоты, участвующие в активации молекул субстрата в качестве кислот и оснований (аспарагиновая кислота и гистидин);

2) аминокислоты, формирующие геометрию активного центра (глицин, цистеин, пролин).

Таким образом, статистический анализ показал, что каталитическую функцию фермента и архитектуру активного центра формирует небольшая, но определенная часть аминокислот, занимающих строго фиксированные позиции в полипептидной цепи. Консервативные аминокислоты являются либо кислотами или основаниями (электрофильные и нуклеофильные агенты), формирующими каталитический сайт, либо важными структурообразующими аминокислотами, формирующими структуру белка в целом.

Каталитическую функцию выполняют аспарагиновая кислота, гистидин, аргинин, и глутаминовая кислота. Структурообразующими аминокислотами являются глицин, цистеин, и пролин. Глицин и пролин, обеспечивающие возможность поворота цепи, необходимы для того, чтобы активный центр был образован аминокислотами, расположенными на разных участках полипептидной цепи. А цистеин необходим для фиксации необходимой конформации полипептидной цепи.

Природа сформировала активные центры ферментов из ограниченного числа компонентов. Большая часть активных центров ферментов всех классов сформирована из аспарагиновой и глутаминовой кислот, из гистидина и аргинина, из ионов нескольких металлов. Как следствие, число типов каталитических центров невелико. Например, для гидролаз, составляющих около трети всех известных ферментов, можно идентифицировать всего четыре основных типа структуры. Эффективные комбинации каталитических групп, характерные для одних реакций, природа активно использует для организации каталитических центров других типов реакций.

Полипептидная цепь обеспечивает организацию каталитических групп в активные центры. Как известно, в растворе практически исключены трехмолекулярные реакции и реакции более высоких порядков. В ферментативных процессах в реакции участвуют четыре (или пять) остатков различных аминокислот, организованных в полипептидную цепь. Ферментативный катализ не использует сильных химических агентов; компоненты, составляющие активные центры, ‒ это относительно слабые кислоты и основания. Однако они хорошо организованы в пространстве и, как следствие, весьма эффективны.

Примеры активных центров некоторых ферментов

Остановимся на ферментах класса гидролаз, для большинства которых идентифицированы группы, составляющие каталитически активные центры, и созданы обоснованные представления о взаимодействии этих групп в механизме каталитического цикла.

По структуре активных центров и механизму действия гидролазы условно можно разделить на 4 основных типа.

1. Гидролазы, содержащие в активном центре аспарагиновую или глутаминовую кислоту (лизоцим-пепсиновый тип).

2. Гидролазы, содержащие в активном центре гидроксильную группу серина, треонина или цистеина и цепь переноса протонов, активирующую эту группу (тип химотрипсина); гидролазы, использующие имидазольную группу гистидина непосредственно для активации воды (тип панкреатической рибонуклеазы).

3. Гидролазы, использующие комплексы Zn 2+ или Со 2+ для активации воды и субстрата (тип щелочной фосфатазы, карбоксипептидазы А).

4. Гидролазы, использующие ионы Мg 2+ или Мn 2+ для активации воды и субстрата (тип пирофосфатазы).

Химотрипсин. В активный центр входят Ser-195, His-57, Asp-102.

Рис. 1.5.4. Структура химотрипсина

Лактатдегидрогеназа. Это NAD + -зависимая дегидрогеназа. Осуществляет обратимое окисление-восстановление органических молекул, при этом в качестве донора (акцептора) гидрид-иона выступает кофермент. Каталитически активные группы фермента представлены Arg-165, His-194, Arg-105. Все эти аминокислоты являются консервативными. Молочная или пировиноградная кислоты фиксируются в активном центре с помощью положительного заряда Arg-168. Участниками каталитического процесса являются протон-транспортная цепь His-194-Asp-165 и Arg-105.

Рис. 1.5.5. Структура лактатдегидрогеназы

(а) Схематическое изображение тетрамера и (b) - отдельной субъединицы; (с) Модель NAD + -связывающего региона. Никотинамидное кольцо NAD + связывается между цепями d и е, а адениновое кольцо – между а и b.

На рис. 1.5.6. приведены возможные типы связей, участвующих в присоединении NAD + в активном центре ЛДГ.

Рис. 1.5.6. Связывание NAD + лактатдегидрогеназой

Линии, показанные точками – водородные связи, перекрестные линии – электростатические взаимодействия, аминокислотные остатки в рамках – гидрофобные взаимодействия

Триозофосфатизомераза. Каталитически важные группировки активного центра фермента представлены Glu-165 и His-95.

Рис. 1.5.7. Структура субъединицы триозофосфатизомеразы дрожжей

Глицин, цистеин и пролин как структурообразующие аминокислоты

Глицин в силу особенностей его строения не участвует в химических актах активации молекул в каталитическом цикле. Не обладая заместителем у α-углеродного атома, глицин лишен выраженной химической функции. Тем не менее наличие глицина в структуре белка очень важно. Так, сайт-специфическая замена глицина в консервативных позициях на любую из аминокислот приводит, как правило, к полной потере (или существенному снижению) активности фермента.

По-видимому, глицин в консервативных позициях важен по следующим причинам.

1. Являясь уникальной аминокислотой с наиболее энергетически облегченным вращением вокруг связей С-N и С-С полипептидной цепи, глицин может играть роль узловой точки, обеспечивающей возможность изменения направления полипептидной цепи при «сборке» аминокислотных остатков в активный центр. Таким образом, наличие консервативных глицинов позволяет объяснить структурный парадокс ферментативного катализа, когда одинаковые активные центры «собираются» из абсолютно разных полипептидных цепей. Общим для этих цепей являются наличие глицина в консервативных позициях и возможность стабилизации собранной структуры, например, за счет дисульфидных связей (цистеин также проявляет высокую степень консервативности, занимая третью позицию в рейтинге консервативности).

2. Глицин в консервативных позициях может играть роль конформационных «шарниров», обеспечивая возможность «сборки» активного центра и известную конформационную подвижность. Подтверждением этому служит то, что во многих случаях вблизи каталитически активных групп можно обнаружить глицин в консервативных позициях. Например, для гидролаз различных семейств консервативными являются следующие мотивы: Asp-215-X-Gly-217 (пепсин); Asp-170-Xаа-Xаа-Gly-173 (термолизнн); Gly-173-Xаа-Ser-177 (трипсин); His-76-Gly-77, Ser-153-Xаа-Gly-155, Gly-175-Xаа-Asp-177 (липазы). Здесь Хаа ‒ произвольная аминокислота. Аминокислоты Asp, His, Ser в указанных ферментах входят в структуру активных центров.

Превращение исходного субстрата в конечные продукты в ферментативном катализе сопряжено с участием большого числа интермедиатов с отличной от исходного субстрата структурой. Глицины активного центра могут играть роль «релаксирующих» элементов, конформационно подстраивая активный центр для следующего элементарного акта.

Существенную роль в формировании архитектуры активного центра играют цистеин и пролин (соответственно 3-я и 4-я позиции в рейтинге консервативных аминокислот). Пролин, как известно, является уникальной аминокислотой, разворачивающей полипептидную цепь. Роль цистеина заключается в том, что необходимая конформация активного центра, складывающаяся из различных участков полипептидной цепи, фиксируется химической связью в виде дисульфидного мостика. Для многих ферментов это завершает формирование архитектуры активного центра.

Таким образом, активный центр состоит из ряда функциональных групп, определенным образом ориентированных в пространстве. Среди них различают группы, входящие в состав каталитического сайта активного центра, и группы, образующие сайт, обеспечивающий специфическое сродство, т.е. связывание субстрата ферментом – так называемый контактный или «якорный» участок. Это деление достаточно условно, поскольку взаимодействия в контактном участке фермента при образовании фермент-субстратного комплекса, оказывает существенное влияние на скорость и направление превращений в каталитическом участке.

8.7.1. В клеточном содержимом ферменты распределены не хаотически, а строго упорядоченно. При помощи внутриклеточных мембран клетка разделена на отсеки или компартменты (рисунок 8.18). В каждом из них осуществляются строго определенные биохимические процессы и сосредоточены соответствующие ферменты или полиферментные комплексы. Вот несколько характерных примеров.

Рисунок 8.18. Внутриклеточное распределение ферментов различных метаболических путей.

В лизосомах сосредоточены преимущественно разнообразные гидролитические ферменты. Здесь протекают процессы расщепления сложных органических соединений на их структурные компоненты.

В митохондриях находятся сложные системы окислительно-восстановительных ферментов.

Ферменты активирования аминокислот распределены в гиалоплазме, но они же есть и в ядре. В гиалоплазме присутствуют многочисленные метаболоны гликолиза, структурно объединенные с таковыми пентозофосфатного цикла, что обеспечивает взаимосвязь дихотомического и апотомического путей распада углеводов.

В то же время ферменты, ускоряющие перенос аминокислотных остатков на растущий конец полипептидной цепи и катализирующие некоторые другие реакции в процессе биосинтеза белка, сосредоточены в рибосомальном аппарате клетки.

В клеточном ядре локализованы в основном нуклеотидилтрансферазы, ускоряющие реакцию переноса нуклеотидных остатков при новообразовании нуклеиновых кислот.

8.7.2. Распределение ферментов по субклеточным органеллам изучают после предварительного фракционирования клеточных гомогенатов путем высокоскоростного центрифугирования, определяя содержание ферментов в каждой фракции.

Локализацию данного фермента в ткани или клетке часто удается установить in situ гистохимическими методами («гистоэнзимология»). Для этого тонкие (от 2 до 10 мкм) срезы замороженной ткани обрабатывают раствором субстрата, к которому специфичен данный фермент. В тех местах, где находится фермент, образуется продукт катализируемой этим ферментом реакции. Если продукт окрашен и нерастворим, он остается на месте образования и позволяет локализовать фермент. Гистоэнзимология дает наглядную и в известной мере физиологичную картину распределения ферментов.

Ферментные системы ферментов, сосредоточенные во внутриклеточных структурах, тонко координированы друг с другом. Взаимосвязь катализируемых ими реакций обеспечивает жизнедеятельность клеток, органов, тканей и организма в целом.

При исследовании активности различных ферментов в тканях здорового организма можно получить картину их распространения. Оказывается, что некоторые ферменты широко распространены во многих тканях, но в разных концентрациях, а другие очень активны в экстрактах, полученных из одной или нескольких тканей, и практически отсутствуют в остальных тканях организма.

Рисунок 8.19. Относительная активность некоторых ферментов в тканях человека, выраженная в процентах от активности в ткани с максимальной концентрацией данного фермента (Мосс, Баттерворт, 1978).

8.7.3. Понятие об энзимопатиях. В 1908 году английский врач Арчибальд Гаррод высказал предположение, что причиной ряда заболеваний может являться отсутствие какого-либо из ключевых ферментов, участвующих в обмене веществ. Он ввёл понятие "inborn errors of metabolism" (врождённый дефект обмена веществ). В дальнейшем эта теория была подтверждена новыми данными, полученными в области молекулярной биологии и патологической биохимии.

Информация о последовательности аминокислот в полипептидной цепи белка записана в соответствующем участке молекулы ДНК в виде последовательности тринуклеотидных фрагментов - триплетов или кодонов. Каждый триплет кодирует определённую аминокислоту. Такое соответствие называется генетическим кодом. Причём некоторые аминокислоты могут быть закодированы при помощи нескольких кодонов. Существуют также специальные кодоны, являющиеся сигналами для начала синтеза полипептидной цепи и его прекращения. К настоящему времени генетический код полностью расшифрован. Он является универсальным для всех видов живых организмов.

Реализация информации, заложенной в молекуле ДНК, включает несколько этапов. Сначала в клеточном ядре в процессе транскрипции синтезируется матричная РНК (мРНК), поступающая в цитоплазму. В свою очередь, мРНК служит матрицей для трансляции - синтеза полипептидных цепей на рибосомах. Таким образом, природа молекулярных болезней определяется нарушением структуры и функции нуклеиновых кислот и контролируемых ими белков.

8.7.4. Поскольку информация о структуре всех белков клетки содержится в последовательности нуклеотидов ДНК, а каждая аминокислота определяется триплетом нуклеотидов, изменение первичной структуры ДНК может в конечном счёте оказать глубокое влияние на синтезируемый белок. Подобные изменения происходят за счёт ошибок репликации ДНК, когда одно азотистое основание заменяется другим, либо в результате действия радиации или при химической модификации. Все возникшие таким образом наследуемые дефекты называются мутациями . Они могут приводить к неправильному считыванию кода и делеции (выпадению) ключевой аминокислоты, замене одной аминокислоты другой, преждевременной остановке белкового синтеза или добавлению аминокислотных последовательностей. Учитывая зависимость пространственной упаковки белка от линейной последовательности в нём аминокислот, можно полагать, что подобные дефекты способны изменить структуру белка, а значит, и его функцию. Тем не менее, многие мутации обнаруживаются только в лабораторных условиях и не оказывают вредного воздействия на функции белка. Таким образом, ключевым моментом является локализация изменений в первичной структуре. Если положение замененной аминокислоты окажется критическим для формирования третичной структуры и образования каталитического центра фермента, то мутация является серьёзной и может проявиться как заболевание.

Последствия недостаточности одного фермента в цепи реакций обмена веществ могут проявляться по-разному. Предположим, что превращение соединения A в соединение B катализирует фермент Е и что соединение C встречается на альтернативном пути превращений (рисунок 8.20):

Рисунок 8.20. Схема альтернативных путей биохимических превращений.

Последствиями недостаточности фермента могут быть следующие явления:

  1. недостаточность продукта ферментативной реакции (B ). В качестве примера можно указать на снижение содержания глюкозы в крови при некоторых формах гликогенозов;
  2. накопление вещества (A ), превращение которого катализирует фермент (например, гомогентизиновая кислота при алкаптонурии). При многих лизосомных болезнях накопления, вещества, в норме подвергающиеся гидролизу в лизосомах, накапливаются в них в связи с недостаточностью одного из ферментов;
  3. отклонение на альтернативный путь с образованием некоторых биологически активных соединений (C ). К этой группе явлений относится экскреция с мочой фенилпировиноградной и фенилмолочной кислот, образующихся в организме больных фенилкетонурией в результате активации вспомогательных путей распада фенилаланина.

Если метаболическое превращение в целом регулируется по принципу обратной связи конечным продуктом, то эффекты двух последних типов аномалий будут более значительными. Так, например, при порфириях (врождённых нарушениях синтеза гема) устраняется подавляющего эффекта гема на начальные реакции синтеза, что приводит к образованию избыточных количеств промежуточных продуктов метаболического пути, которые обладают токсическим действием на клетки кожи и нервной системы.

Факторы внешней среды могут усиливать или даже полностью определять клинические проявления некоторых врождённых нарушений обмена веществ. Например, у многих пациентов с недостаточностью глюкозо-6-фосфатдегидрогеназы заболевание начинается только после приёма таких лекарственных средств, как примахин. В отсутствие контактов с лекарственными средствами такие люди производят впечатление здоровых.

8.7.5. О недостаточности фермента обычно судят косвенно по повышению концентрации исходного вещества, которое в норме подвергается превращениям под действием данного фермента (например, фенилаланин при фенилкетонурии). Прямое определение активности таких ферментов проводят только в специализированных центрах, но по возможности диагноз следует подтверждать этим методом. Пренатальная (дородовая) диагностика некоторых врождённых нарушений метаболизма возможна путём иследования клеток амниотической жидкости, полученных на ранних стадиях беременности и культивируемых in vitro.

Некоторые врождённые нарушения метаболизма поддаются лечению путём доставки в организм недостающего метаболита или путём ограничения поступления в желудочно-кишечный тракт предшественников нарушенных процессов обмена веществ. Иногда могут быть удалены накапливающиеся продукты (например, железо при гемохроматозе).