Аминокислоты, белки. Строение белков. Уровни организации белковой молекулы

Белки и пептиды.

Белки – природные высокомолекулярные азотосодержащие органические соединения. Они играют первостепенную роль во всех жизненных процессах, являются носителями жизни. Белки содержатся во всех тканях организмов, в крови, в костях.


Белок , также как углеводы и жиры, - важнейшая составляющая часть пищи человека.

Химическое строение белков

Молекулы белков состоят из остатков аминокислот, соединённых в цепочку пептидной связью.



Пептидная связь возникает при образовании белков в результате взаимодействия аминогруппы (-NH2 ) одной аминокислоты с карбоксильной группой (-СООН ) другой аминокислоты.


Из двух аминокислот образуется дипептид (цепочка из двух аминокислот) и молекула воды.


Десятки, сотни и тысячи молекул аминокислот, соединяясь друг с другом, образуют гигантские молекулы белков.


В молекулах белков многократно повторяются группы атомов -СО-NH- ; их называют амидными , или в химии белков пептидными группами . Соответственно белки относят к природным высокомолекулярным полиамидам или полипептидам.


Общее число встречающихся в природе аминокислот достигает 300, однако некоторые из них достаточно редки.


Среди аминокислот выделяется группа из 20 наиболее важных. Они встречаются во всех белках и получили название альфа-аминокислот .


Всё многообразие белков в большинстве случаев образовано этими двадцатью альфа-аминокислотами. При этом для каждого белка строго специфичной является последовательность, в которой остатки входящих в его состав аминокислот соединяются друг с другом. Аминокислотный состав белков определяется генетическим кодом организма.

Белки и пептиды

И белки , и пептиды – это соединения, построенные из остатков аминокислот. Различия между ними колличественные.


Условно считают, что:

  • пептиды содержат в молекуле до 100 аминокислотных остатков
    (что соответствует молекулярной массе до 10 000), а
  • белки – свыше 100 аминокислотных остатков
    (молекулярная масса от 10 000 до нескольких миллионов).

В свою очередь в группе пептидов принято различать:

  • олигопептиды (низкомолекулярные пептиды),
    содержащие в цепи не более 10 аминокислотных остатков, и
  • полипептиды , в состав цепи которых входит до 100 аминокислотных остатков.

Для макромолекул с числом аминокислотных остатков, приближающимся или немного превышающим 100, понятия полипептидов и белков практически не разграничиваются и часто являются синонимами.

Структура белков. Уровни организации.


Молекула белка это чрезвычайно сложное образование. Свойства белка зависят не только от химического состава его молекул, но и от других факторов. Например, от пространственной структуры молекулы, от связей между атомами, входящих в молекулу.


Выделяют четыре уровня структурной организации молекулы белка.


1. Первичная структура


Первичная структура представляет собой последовательность расположения остатков аминокислот в полипептидных цепях .


Последовательность остатков аминокислот в цепи является наиболее важной характеристикой белка. Именно она определяет основные его свойства.


Белок каждого человека имеет свою уникальную первичную структуру, связанную с генетическим кодом.


2. Вторичная структура.


Вторичная структура связана с пространственной ориентацией полипептидных цепей .


Её основные виды:

  • альфа-спираль,
  • бетта-структура (имеет вид складчатого листа).

Вторичная структура закрепляется, как правило, водородными связями между атомами водорода и кислорода пептидных групп, отстоящих друг от друга на 4 звена.


Водородные связи как бы сшивают спираль, удерживая полипептидную цепь в закрученном состоянии.



3. Третичная структура


Третичная структура отражает пространственную форму вторичной структуры .


Например, вторичная структура в форме спирали, в свою очередь, может иметь шаровидную или яйцевидную форму.


Третичная структура стабилизируется не только водородными связями, но и другими видами взаимодействия, например ионным, гидрофобным, а также дисульфидными связями.


4. Четвертичная структура


Первые три уровня характерны для структурной организации всех белковых молекул.


Четвёртый уровень встречается при образовании белковых комплексов, состоящих из нескольких полипептидных цепей.


Это сложное надмолекулярное образование, состоящее из нескольких белков, имеющих свою собственную первичную, вторичную и третичную структуры.


В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки.


Ассоциация полипептидных цепей в четвертичную структуру может приводить к возникновению новых биологических свойств, отсутствующих у исходных белков, образующих эту структуру.


В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной.

Классификация белков

Ввиду многообразия пептидов и белков существует несколько подходов к их классификации. Их можно классифицировать по биологическим функциям, составу, пространственному строению .


По составу белки подразделяются на:

  • Простые,
  • Сложные.

Простые белки.


При гидролизе простых белков в качестве продуктов расщепления получаются только альфа-аминокислоты.


Сложные белки.


Сложные белки наряду с собственно белковой частью, состоящей из альфа-аминокислот, содержит органическую или неорганическую части непептидной природы, называемые простетическими группами .


Примерами сложных белков могут служить транспортные белки миоглобин и гемоглобин , в которых белковая часть – глобин – соединена с простетической группой – гемом . По типу простетической группы их относят к гемопротеинам .


Фосфопротеины содержат остаток фосфорной кислоты, металлопротеины – ионы метала.


Смешанные биополимеры представляют собой также сложные белки. В зависимости от природы простетической группы их подразделяют на:

  • Гликопротеины (содержат углеводную часть),
  • Липопротеины (содержат липидную часть),
  • Нуклеопротеины (содержат нуклеиновые кислоты).

В организме белки редко встречаются в «чистом» виде. В основном они входят в состав сложных образований с высоким уровнем организации, включающих в качестве субъединиц другие биополимеры и различные органические и неорганические группировки.


По пространственной структуре белки делятся на два больших класса:

  • Глобулярные и
  • Фибриллярные.

Глобулярные белки.


Для глобулярных белков более характерна альфа-спиральная структура, а цепи их изогнуты в пространстве так, что макромолекула приобретает форму сферы.


Глобулярные белки растворяются в воде и солевых растворах с образованием коллоидных систем.


Примеры глобулярных белков – альбумин (яичные белок), глобин (белковая часть гемоглобина), миоглобин , почти все ферменты.


Фибриллярные белки.


Для фибриллярных белков более характерна бетта-структура . Как правило, они имеют волокнистое строение, не растворяются в воде и солевых растворах.


К ним относятся многие широко распространённые белки - бетта-кератин (волосы, роговая ткань), бетта-фиброин (шёлк), миоинозин (мускульная ткань), коллаген (соединительная ткань).

Функции белков в организме.

Классификация белков по их функциям является достаточно условной, так как один и тот же белок может выполнять несколько функций.


Ниже перечислим основные функции белков в организме:


1. Каталитическая функция.


Белки этой группы называются ферментами . Ферменты катализируют различные химические реакции. Например, реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм).


Примеры каталитических белков: каталаза, алкогольдегидрогеназа, пепсин, трипсин, амилаза и пр.


2. Структурная функция


Придают форму клетке и её органоидам . Например, мономеры актина и тубулина формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форму. Коллаген и эластин - основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.


3. Защитная функция


Существует несколько видов защитных функций белков:

  • Физическая защита
    Физическую защиту организма обеспечивают коллаген - белок, образующий основу
    межклеточного вещества соединительных тканей (в том числе костей, хряща,
    сухожилий и глубоких слоёв кожи (дермы)); кератин , составляющий основу роговых
    щитков, волос, перьев, рогов и др. производных эпидермиса. Обычно такие белки
    рассматривают как белки со структурной функцией. Примерами белков этой группы
    служат фибриногены и тромбины , участвующие в свёртывании крови.

  • Химическая защита
    Связывание токсинов белковыми молекулами может обеспечивать их детоксикацию.
    Особенно важную роль в детоксикации у человека играют ферменты печени ,
    расщепляющие яды или переводящие их в растворимую форму, что способствует их
    быстрому выведению из организма.

  • Иммунная защита
    Белки, входящие в состав крови и других биологических жидкостей, участвуют в
    защитном ответе организма как на повреждение, так и на атаку патогенов. Они
    нейтрализуют бактерии, вирусы или чужеродные белки.

4. Регуляторная функция


Белки этой группы регулируют различные процессы, протекающие в клетках или в организме. К белкам этой группы относятся: белки-гормоны , белки-рецепторы и пр.


Гормоны переносятся кровью. Большинство гормонов животных - это белки или пептиды. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин, который регулирует концентрацию глюкозы в крови.


5. Сигнальная функция


Сигнальная функция белков - способность белков служить сигнальными веществами, передавая сигналы между клетками, тканями, о́рганами и организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.


Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др. Связывание гормона с его рецептором является сигналом, запускающим ответную реакцию клетки.


Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.


6. Транспортная функция


Участие белков в переносе веществ в клетки и из клеток, в их перемещениях внутри клеток, а также в их транспорте кровью и другими жидкостями по организму.


Примером транспортных белков можно назвать гемоглобин , который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов.


Некоторые мембранные белки участвуют в транспорте малых молекул через мембрану клетки, изменяя её проницаемость.

7. Запасная (резервная) функция


К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений (например, глобулины 7S и 11S ) и яйцеклетках животных. Ряд других белков используется в организме в качестве источника аминокислот. Примерами резервных белков являются казеин , яичный альбумин .


8. Рецепторная функция


Белковые рецепторы могут находиться как в цитоплазме, так и встраиваться в клеточную мембрану.


Рецепторы реагирует изменением своей пространственной конфигурации на присоединение к ней молекулы определенного химического вещества, передающего внешний регуляторный сигнал и, в свою очередь, передает этот сигнал внутрь клетки или клеточной органеллы.


9. Моторная (двигательная) функция


Двигательный белок, моторный белок - класс молекулярных моторов, способных перемещаться. Они транформируют химическую энергию, содержащуюся в АТФ , в механическую энергию движения.


Двигательные белки обеспечивают движения организма, например, сокращение мышц.


К двигательным белкам относят белки цитоскелета - динеины , кинезины , а также белки, участвующие в мышечных сокращениях - актин , миозин .

Аминокислотами называются органические карбоновые кислоты, у которых как минимум один из атомов водорода углеводородной цепи замещен на аминогруппу. В зависимости от положения группы -NН 2 различают α, β, γ и т. д. L-аминокислоты. К настоящему времени в различных объектах живого мира найдено до 200 различных аминокислот. В организме человека содержится около 60 различных аминокислот и их производных, но не все они входят в состав белков.

Аминокислоты делятся на две группы:

  1. протеиногенные (входящие в состав белков)

    Среди них выделяют главные (их всего 20) и редкие. Редкие белковые аминокислоты (например, гидроксипролин, гидроксилизин, аминолимонная кислота и др.) на самом деле являются производными тех же 20 аминокислот.

    Остальные аминокислоты не участвуют в построении белков; они находятся в клетке либо в свободном виде (как продукты обмена), либо входят в состав других небелковых соединений. Например, аминокислоты орнитин и цитруллин являются промежуточными продуктами в образовании протеиногенной аминокислоты аргинина и участвуют в цикле синтеза мочевины; γ-амино-масляная кислота тоже находится в свободном виде и играет роль медиатора в передаче нервных импульсов; β-аланин входит в состав витамина - пантотеновой кислоты.

  2. непротеиногенные (не участвующие в образовании белков)

    Непротеиногенные аминокислоты в отличие от протеиногенных более разнообразны, особенно те, которые содержатся в грибах, высших растениях. Протеиногенные аминокислоты участвуют в построении множества разных белков независимо от вида организма, а непротеиногенные аминокислоты могут быть даже токсичны для организма другого вида, т. е. ведут себя как обычные чужеродные вещества. Например, канаванин, дьенколевая кислота и β-циано-аланин, выделенные из растений, ядовиты для человека.

Строение и классификация протеиногенных аминокислот

Радикал R в простейшем случае представлен атомом водорода (глицин), а может иметь и сложное строение. Поэтому α-аминокислоты отличаются друг от друга прежде всего строением бокового радикала, а следовательно, и физико-химическими свойствами, присущими этим радикалам. Приняты три классификации аминокислот:

Приведенная физиологическая классификация аминокислот не универсальна в отличие от первых двух классификаций и до некоторой степени условна, поскольку действительна только для организмов данного вида. Однако абсолютная незаменимость восьми аминокислот универсальна для всех видов организмов (в табл. 2 приведены данные для некоторых представителей позвоночных и насекомых [показать] ).

Таблица 2. Незаменимые (+), заменимые (-) и полузаменимые (±) аминокислоты для некоторых позвоночных и насекомых (по Любке и др., 1975)
Аминокислоты Человек Крыса Мышь Курица Лосось Москит Пчела
Глицин - - - + - + -
Алании - - - - - - -
Валин + + + + + + +
Лейцин + + + + + + +
Изолейцин + + + + + + +
Цистеин - - - - - - -
Метионин + + + + + + +
Серин - - - - - - -
Треонин + + + + + + +
Аспарагиновая кислота - - - - - - -
Глутаминовая кислота - - - - - - -
Лизин + + + + + + +
Аргинин ± ± + + + + +
Фенилаланин + + + + + + +
Тирозин ± ± + + - - -
Гистидин ± + + + + + +
Триптофан + + + + + + +
Пролин - - - - - - -

Для крыс и мышей незаменимых аминокислот уже девять (к восьми известным добавляется гистидин). Нормальный рост и развитие курицы возможны только при наличии одиннадцати незаменимых аминокислот (добавляются гистидин, аргинин, тирозин), т. е. полузаменимые для человека аминокислоты абсолютно незаменимы для курицы. Для москитов глицин является абсолютно незаменимой, а тирозин, наоборот, заменимой аминокислотой.

Значит, для разных видов организмов возможны существенные отклонения в потребности в отдельных аминокислотах, что определяется особенностями их обмена.

Сложившийся для каждого вида организма состав незаменимых аминокислот, или так называемая ауксотрофность организма в отношении аминокислот, отражает скорее всего стремление его к минимальным энергетическим затратам на синтез аминокислот. Действительно, выгоднее получать готовый продукт, чем производить его самому. Поэтому организмы, потребляющие незаменимые аминокислоты, тратят примерно на 20% энергии меньше, чем те, которые синтезируют все аминокислоты. С другой стороны, в ходе эволюции не сохранилось таких форм жизни, которые бы полностью зависели от поступления всех аминокислот извне. Им трудно было бы приспосабливаться к изменениям внешней среды, учитывая, что аминокислоты являются материалом для синтеза такого вещества, как белок, без которого жизнь невозможна.

Физико-химические свойства аминокислот

Кислотно-основные свойства аминокислот . По химическим свойствам аминокислоты - амфотерные электролиты, т. е. сочетают свойства и кислот, и оснований.

Кислотные группы аминокислот: карбоксильная (-СООН -> -СОО - + Н +), протонированная α-аминогруппа (-NH + 3 -> -NН 2 + Н +).

Основные группы аминокислот: диссоциированная карбоксильная (-СОО - + Н + -> -СООН) и α-аминогруппа (-NН 2 + Н + -> NН + 3).

Для каждой аминокислоты имеется как минимум две константы кислотной диссоциации рК а - одна для группы -СООН, а вторая для α-аминогруппы.

В водном растворе возможно существование трех форм аминокислот (рис. 1.)

Доказано, что в водных растворах аминокислоты находятся в виде диполя; или цвиттер-иона.

Влияние рН среды на ионизацию аминокислот . Изменение рН среды от кислой до щелочной влияет на заряд растворенных аминокислот. В кислой среде (рН<7) все аминокислоты несут положительный заряд (существуют в виде катиона), так как избыток протонов в среде подавляет диссоциацию карбоксильной группы:

В кислой среде аминокислоты в электрическом поле движутся к катоду.

В щелочной среде (рН>7), где имеется избыток ионов ОН - , аминокислоты находятся в виде отрицательно заряженных ионов (анионов), так как диссоциирует NН + 3 -группа:

В этом случае аминокислоты перемещаются в электрическом поле к аноду.

Следовательно, в зависимости от рН среды аминокислоты имеют суммарный нулевой, положительный или отрицательный заряд.

Состояние, в котором заряд аминокислоты равен нулю, называется изоэлектрическим. Значение рН, при котором наступает такое состояние и аминокислота не перемещается в электрическом поле ни к аноду, ни к катоду, называется изоэлектрической точкой и обозначается рН I . Изоэлектрическая точка очень точно отражает кислотно-основные свойства разных групп в аминокислотах и является одной из важных констант, характеризующих аминокислоту.

Изоэлектрическая точка неполярных (гидрофобных) аминокислот приближается к нейтральному значению рН (от 5,5 для фенилаланина до 6,3 для пролина), у кислых она имеет низкие значения (для глутаминовой кислоты 3,2, для аспарагиновой 2,8). Изоэлектрическая точка для цистеина и цистина равна 5,0, что указывает на слабые кислотные свойства этих аминокислот. У основных аминокислот - гистидина и особенно лизина и аргинина - изоэлектрическая точка значительно выше 7.

В клетках и межклеточной жидкости организма человека и животных рН среды близка к нейтральной, поэтому основные аминокислоты (лизин, аргинин) несут суммарный положительный заряд (катионы), кислые аминокислоты (аспарагиновая и глутаминовая) имеют отрицательный заряд (анионы), а остальные существуют в виде диполя. Кислые и основные аминокислоты больше гидратированы, чем все остальные аминокислоты.

Стереоизомерия аминокислот

Все протеиногенные аминокислоты, за исключением глицина, имеют как минимум один асимметрический атом углерода (С*) и обладают оптической активностью, причем большая часть их относится к левовращающим. Они существуют в виде пространственных изомеров, или стереоизомеров. По расположению заместителей вокруг асимметрического атома углерода стерео-изомеры относят к L- или D-ряду.

L- и D-изомеры относятся друг к другу как предмет и его зеркальное изображение, поэтому их называют также зеркальными изомерами или энантиомерами. Аминокислоты треонин и изолейцин имеют по два асимметрических атома углерода, поэтому у них по четыре стереоизомера. Например, у треонина, помимо L- и D-треонина, имеется еще два, которые называют диастереомерами или аллоформами: L-аллотреонин и D-аллотреонин.

Все аминокислоты, входящие в состав белков, относятся к L-ряду. Считалось, что D-аминокислоты не встречаются в живой природе. Однако были найдены полипептиды в виде полимеров D-глутаминовой кислоты в капсулах спороносных бактерий (палочке сибирской язвы, картофельной и сенной палочке); D-глутаминовая кислота и D-аланин входят в состав мукопептидов клеточной стенки некоторых бактерий. D-Аминокислоты обнаружены также в антибиотиках, продуцируемых микроорганизмами (см. табл. 3).

Возможно, D-аминокислоты оказались более пригодными для защитных функций организмов (именно этой цели служат и капсула бактерий, и антибиотики), в то время как L-аминокислоты нужны организму для построения белков.

Распространение отдельных аминокислот в разных белках

К настоящему времени расшифрован аминокислотный состав многих белков микробного, растительного и животного происхождения. Наиболее часто в белках находят аланин, глицин, лейцин, серии. Однако каждый белок имеет свой аминокислотный состав. Например, протамины (простые белки, находящиеся в молоках рыб) содержат до 85% аргинина, но в них отсутствуют циклические, кислые и серусодержащие аминокислоты, треонин и лизин. Фиброин - белок натурального шелка, содержит до 50% глицина; в состав коллагена - белка сухожилий - входят редкие аминокислоты (гидроксилизин, гидроксипролин), которые отсутствуют в остальных белках.

Аминокислотный состав белков определяется не доступностью или незаменимостью той или иной аминокислоты, а назначением белка, его функцией. Последовательность расположения аминокислот в белке обусловлена генетическим кодом.

Страница 2 всего страниц: 7

ОПРЕДЕЛЕНИЕ

Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильная группа –СООН и аминогруппа – NH 2 .

В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:

CH 3 -CH(NH 2)-COOH (α-аминопропионованя кислота)

CH 2 (NH 2)-CH 2 -COOH (β – аминопропионованя кислота)

Наиболее важными представителями аминокислот являются: глицин (H 2 N-CH 2 -COOH), аланин (CH 3 -CH(NH 2)-COOH), фенилаланин (C 6 H 5 -CH 2 -CH(NH 2)-COOH), глутаминовая кислота (HOOC-(CH 2) 2 -CH(NH 2)-COOH), лизин (H 2 N-(CH 2) 4 -CH(NH 2)-COOH), серин (HO-CH 2 -CH(NH 2)-COOH) и цистеин (HS-CH 2 -CH(NH 2)-COOH).

Изомерия

Для аминокислот характерны следующие виды изомерии: углеродного скелета, положения функциональных групп и оптическая изомерия.

Физические свойства аминокислот

Аминокислоты – твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.

Получение

Аминокислоты получают путем замещения галогена на аминогруппу в галогензамещенных карбоновых кислотах. В общем виде уравнение реакции будет выглядеть так:

R-CH(Cl)-COOH + NH 3 = R-CH(NH 3 + Cl —) = NH 2 –CH(R)-COOH

Химические свойства аминокислот

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

NH 2 –CH 2 -COOH + HCl = Cl

NH 2 –CH 2 -COOH + NaOH= NH 2 –CH 2 -COONa + H 2 O

При растворении аминокислот в воде аминогруппа и карбоксильная группа взаимодействуют друг с другом с образованием соединений, называемых внутренними солями:

H 2 N –CH 2 -COOH ↔ + H 3 N-CH 2 COO —

Молекулу внутренней соли называют биполярным ионом.

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

α-Аминокислоты играют особую роль в природе, поскольку при их совместной поликонденсации в природных условиях образуются важнейшие для жизни вещества – белки.

Также для аминокислот характерны все химические свойства карбоновых кислот (по карбоксильной группе) и аминов (по аминогруппе).

Белки

ОПРЕДЕЛЕНИЕ

Белки (протеины, полипептиды) - высокомолекулярные органические вещества, состоящие из альфа- аминокислот, соединённых в цепочку пептидной связью.

В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства. В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппализина и амидиновый остаток CNH(NH 2)аргинина, в несколько меньшей степени -имидазольный остаток гистидина).

Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора.

Аминокислоты - (аминокарбоновые кислоты; амк) — органические соединения , в молекуле которых одновременно содержатся карбоксильные и аминные группы (аминогруппы). Т.е. а минокислоты могут рассматриваться , как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.

  • Карбоксильная группа (карбоксил) -СООН — функциональная одновалентная группа, входящая в состав карбоновых кислот и определяющая их кислотные свойства.
  • Аминогруппа — функциональная химическая одновалентная группа -NH 2 , органический радикал, содержащий один атом азота и два атома водорода.

Известно более 200 природных аминокислот , которые можно классифицировать по-разному. Структурная классификация исходит из положения функциональных групп на альфа-, бета-, гамма- или дельта- положении аминокислоты.

Кроме этой классификации, существуют еще и другие, например, классификация по полярности, рН уровню, а также типу группы боковой цепи (алифатические, ациклические, ароматические аминокислоты, аминокислоты, содержащие гидроксил или серу, и т.д.).

В виде белков аминокислоты являются вторым (после воды) компонентом мышц, клеток и других тканей человеческого организма. Аминокислоты играют решающую роль в таких процессах, как транспорт нейротрансмиттеров и биосинтезе.

Общая структура аминокислот

Аминокислоты - биологически важные органические соединения, состоящие из аминогруппы (-NH 2) и карбоновой кислоты (-СООН), и имеющие боковую цепь, специфичную для каждой аминокислоты. Ключевые элементы аминокислот - углерод, водород, кислород и азот. Прочие элементы находятся в боковой цепи определенных аминокислот.

Рис. 1 - Общая структура α-аминокислот, составляющих белки (кроме пролина). Составные части молекулы аминокислоты — аминогруппа NH 2 , карбоксильная группа COOH, радикал (различается у всех α-аминокислот), α-атом углерода (в центре).

В структуре аминокислот боковая цепь, специфичная для каждой аминокислоты, обозначается буквой R. Атом углерода, находящийся рядом с карбоксильной группой, называется альфа-углерод, и аминокислоты, боковая цепь которых связана с этим атомом, называются альфа-аминокислотами. Они представляют собой наиболее распространенную в природе форму аминокислот.

У альфа-аминокислот, за исключением глицина , альфа-углерод является хиральным атомом углерода. У аминокислот, углеродные цепи которых присоединяются к альфа-углероду (как, например, Лизин (L-лизин)), углероды обозначаются как альфа, бета, гамма, дельта, и так далее. У некоторых аминокислот аминогруппа прикреплена к бета или гамма-углероду, и поэтому они называются бета- или гамма- аминокислоты.

По свойствам боковых цепей аминокислоты подразделяются на четыре группы. Боковая цепь может делать аминокислоту слабой кислотой, слабым основанием, или эмульсоидом (если боковая цепь является полярной), или гидрофобным, плохо впитывающим воду, веществом (если боковая цепь неполярна).

Термин «аминокислота с разветвленной цепью» относится к аминокислотам, имеющим алифатические нелинейные боковые цепи, это Лейцин , Изолейцин и Валин .

Пролин - единственная протеиногенная аминокислота, боковая группа которой прикреплена к альфа-аминогруппе и, таким образом, также является единственной протеиногенной аминокислотой, содержащей на этом положении вторичный амин. С химической точки зрения, пролин, таким образом, является иминокислотой , поскольку в нем отсутствует первичная аминогруппа, хотя в текущей биохимической номенклатуре он все еще классифицируется как аминокислота, а также «N-алкилированная альфа-аминокислота» (Иминокислоты — карбоновые кислоты, содержащие иминогруппу (NH). Входят в состав белков, их обмен тесно связан с обменом аминокислот. По своим свойствам иминокислоты близки к аминокислотам, и в результате каталитического гидрирования иминокислоты превращаются в аминокислоты. Иминогруппа — молекулярная группа NH. Двухвалентна. Содержится во вторичных аминах и пептидах. В свободном виде двухвалентный радикал аммиака не существует).

АЛЬФА-АМИНОКИСЛОТЫ

Аминокислоты, имеющие как амин-, так и карбоксильную группу, прикрепляются к первому (альфа-) атому углерода имеют особое значение в биохимии. Они известны как 2-, альфа или альфа-аминокислоты (общая формула в большинстве случаев H 2 NCHRCOOH, где R представляет собой органический заместитель, известный как «боковая цепь»); часто термин «аминокислота» относится именно к ним.

Это 22 протеиногенных (то есть «служащих для строительства белка») аминокислоты, которые сочетаются в пептидные цепи («полипептиды»), обеспечивая построение широкого спектра белков. Они являются L-стереоизомерами («левыми» изомерами), хотя у некоторых бактерий и в некоторых антибиотиках встречаются некоторые из D-аминокислот («правых» изомеров).

Рис. 2. Пептидная связь — вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (—NH 2) одной аминокислоты с α-карбоксильной группой (—СООН) другой аминокислоты.

Из двух аминокислот (1) и (2) образуется дипептид (цепочка из двух аминокислот) и молекула воды. По этой же схеме рибосома генерирует и более длинные цепочки из аминокислот: полипептиды и белки. Разные аминокислоты, которые являются «строительными блоками» для белка, отличаются радикалом R.

ОПТИЧЕСКАЯ ИЗОМЕРИЯ АМИНОКИСЛОТ


Рис. 3. Оптические изомеры аминокислоты аланина

В зависимости от положения аминогруппы относительно 2-го атома углерода выделяют α-, β-, γ- и другие аминокислоты. Для организма млекопитающих наиболее характерны α-аминокислоты. Все входящие в состав живых организмов α-аминокислоты, кроме глицина , содержат асимметрический атом углерода (треонин и изолейцин содержат два асимметрических атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-конфигурацию, и лишь L-аминокислоты включаются в состав белков, синтезируемых на рибосомах .

Все стандартные альфа-аминокислоты, кроме глицина, могут существовать в форме одной из двух энантиомеров , называемых L или D аминокислоты, представляющих собой зеркальные отображения друг друга.

D, L -Система обозначения стереоизомеров.

По этой системе L -конфигурация приписывается стереозомеру, у которого в проекций Фишера реперная группа находится слева от вертикальной линии (от лат. "laevus" -левый). Надо помнить, что в проекции Фишера вверху располагают наиболее окисленный атом углерода (как правило, этот атом входит в состав карбоксильной СОOН или карбонильной СН=О групп.). Кроме того, в проекции Фишера все горизонтальные связи направлены в сторону наблюдателя, а вертикальные — удалены от наблюдателя. Соответственно, если реперная группа расположена в проекции Фишера справа, стереоизомер имеет D - конфигурацию (от лат. "dexter" - правый). В α-аминокислотах реперными группами служат группы NH 2.

Энантиомеры — пара стереоизомеров , представляющих собой зеркальные отражения друг друга, не совмещаемые в пространстве. Классической иллюстрацией двух энантиомеров могут служить правая и левая ладони: они имеют одинаковое строение, но различную пространственную ориентацию. Существование энантиомерных форм связано с наличием у молекулы хиральности — свойства не совмещаться в пространстве со своим зеркальным отражением. .

Энантиомеры идентичны по физическим свойствам. Они могут быть различены лишь при взаимодействии с хиральной средой, например, световым излучением. Энантиомеры одинаково ведут себя в химических реакциях с ахиральными реагентами в ахиральной среде. Однако, если реагент, катализатор либо растворитель хиральны, реакционная способность энантиомеров, как правило, различается. Большинство хиральных природных соединений (аминокислоты , моносахариды ) существует в виде 1 энантиомера. Понятие энантиомерии важно в фармацевтике , т.к. различные энантиомеры лекарств , имеют различную биологическую активность.

СТАНДАРТНЫЕ АМИНОКИСЛОТЫ

(протеиногенные)

См.: Строение протеиногенных аминокислот

В процессе биосинтеза белка в полипептидную цепь включаются 20 α-аминокислот , кодируемых генетическим кодом (см. рис. 4). Помимо этих аминокислот, называемых протеиногенными, или стандартными, в некоторых белках присутствуют специфические нестандартные аминокислоты, возникающие из стандартных в процессе посттрансляционных модификаций.

Прим.: В последнее время к протеиногенным аминокислотам иногда причисляют трансляционно включаемые селеноцистеин и пирролизин. Это так называемые 21-я и 22-я аминокислоты.

Аминокислоты являются структурными соединениями (мономерами), из которых состоят белки. Они объединяются между собой, формируя короткие полимерные цепи, называемые пептидами длинной цепи, полипептидами или белками. Эти полимеры являются линейными и неразветвленными, каждая аминокислота в цепи присоединяется к двум соседним аминокислотам.

Рис. 5. Рибосома в процессе трансляции (синтеза белка)

Процесс построения белка называется трансляцией и включает в себя пошаговое добавление аминокислот к растущей цепи белка через рибозимы, осуществляемый рибосомой. Порядок, в котором добавляются аминокислоты, считывается в генетическом коде с помощью шаблона мРНК , который представляет собой копию РНК одного из генов организма.

Трансляция - биосинтез белка на рибосоме

Рис. 6 Стадии элонгации полипептида.

Двадцать две аминокислоты естественно включены в полипептиды и называются протеиногенными, или природными, аминокислотами. Из них 20 кодируются с помощью универсального генетического кода.

Оставшиеся 2, селеноцистеин и пирролизин , включаются в белки при помощи уникального синтетического механизма. Селеноцистеин образуется, когда транслируемый мРНК включает SECIS элемент, вызывающий кодон UGA вместо стоп-кодона. Пирролизин используется некоторыми метаногенными археями в составе ферментов, необходимых для производства метана. Он кодируется с кодоном UAG, который в других организмах обычно играет роль стоп-кодона. За кодоном UAG следует PYLIS последовательность.


Рис. 7. Полипептидная цепь - первичная структура белка.

Белки имеют 4 уровня своей структурной организации: первичная, вторичная, третичная и четвертичная. Первичная структура — последовательность аминокислотных остатков в полипептидной цепи. Первичную структуру белка, как правило, описывают, используя однобуквенные или трёхбуквенные обозначения для аминокислотных остатков.Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями.Третичная структура — пространственное строение полипептидной цепи. Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. Четвертичная структура (или субъединичная, доменная) — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса.


Рис. 8. Структурная организация белков

НЕСТАНДАРТНЫЕ АМИНОКИСЛОТЫ

(Не-протеиногенные)

Помимо стандартных аминокислот существует множество других аминокислот, которые называются не-протеиногенными или нестандартными. Такие аминокислоты либо не встречаются в белках (например, L-карнитин , ГАМК ), либо не производятся непосредственно в изоляции при помощи стандартных клеточных механизмов (например, оксипролин и селенометионин).

Нестандартные аминокислоты, находящиеся в белках, образуются путем пост-трансляционной модификации, то есть модификацией после трансляции в процессе синтеза белка. Эти модификации часто необходимы для функционирования или регуляции белка; например, карбоксилирование глутамата позволяет улучшить связывание ионов кальция, а гидроксилирование пролина важно для поддержания соединительной ткани. Другой пример - формирование гипузина в фактор инициации трансляции EIF5A посредством модификации остатка лизина . Такие модификации могут также определять локализацию белка, например, добавление длинных гидрофобных групп может вызвать связывание белка с фосфолипидной мембраной.

Некоторые нестандартные аминокислоты не встречаются в белках. Это лантионин, 2-аминоизомасляная кислота, дегидроаланин и гамма-аминомасляная кислота. Нестандартные аминокислоты часто встречаются в качестве промежуточных метаболических путей для стандартных аминокислот - например, орнитин и цитруллин встречаются в орнитиновом цикле как часть катаболизма кислоты.

Редкое исключение доминированию альфа-аминокислоты в биологии - бета-аминокислота Бета-аланин (3-аминопропановая кислота), которая используется для синтеза пантотеновой кислоты (витамина B5), компонента коэнзима А у растений и микроорганизмов. Ее, в частности, продуцируют пропионовокислые бактериии .

Функции аминокислот

БЕЛКОВЫЕ И НЕ БЕЛКОВЫЕ ФУНКЦИИ

Многие протеиногенные и непротеиногенные аминокислоты также играют важную, не связанную с образованием белка, роль в организме. Например, в головном мозге человека глутамат (стандартная глутаминовая кислота) и гамма-аминомасляная кислота (ГАМК , нестандартная гамма-аминокислота), являются основными возбуждающими и тормозящими нейромедиаторами. Гидроксипролин (основной компонент соединительной ткани коллагена) синтезируют из п ролина ; стандартная аминокислота глицин используется для синтеза порфиринов , используемых в эритроцитах. Нестандартный карнитин используется для транспорта липидов.

Из-за своей биологической значимости аминокислоты играют важную роль в питании и обычно используются в пищевых добавках, удобрениях и пищевых технологиях. В промышленности аминокислоты используются при производстве лекарств, биоразлагаемого пластика и хиральных катализаторов.

1. Аминокислоты, белки и питание

О биологической роли и последствиях дефицита аминокислот в организме человека см. информацию в таблицах незаменимых и заменимых аминокислот.

При введении в организм человека с пищей, 20 стандартных аминокислот либо используются для синтеза белков и других биомолекул, либо окисляются в мочевину и углекислый газ в качестве источника энергии. Окисление начинается с удаления аминогруппы через трансаминазу, а затем аминогруппа включается в цикл мочевины. Другой продукт трансамидирования - кетокислота, которая входит в цикл лимонной кислоты. Глюкогенные аминокислоты также могут быть преобразованы в глюкозу посредством глюконеогенеза.

Из 20 стандартных аминокислот , 8 (валин , изолейцин , лейцин , лизин , метионин , треонин , триптофан и фенилаланин ) называют незаменимыми потому, что человеческий организм не может синтезировать их самостоятельно из других соединений в необходимых для нормального роста количествах, их можно получить только с пищей. Однако по современным представлениям Гистидин и Аргинин также являются незаменимыми аминокислотами для детей. Другие могут быть условно незаменимы для людей определенного возраста или людей, имеющих какие-либо заболевания.

Кроме того, Цистеин , Таурин , считаются полузаменимыми аминокислотами у детей (хотя таурин технически не является аминокислотой), потому что метаболические пути, которые синтезируют эти аминокислоты, у детей еще не полностью развиты. Необходимые количества аминокислот также зависят от возраста и здоровья человека, поэтому довольно сложно давать здесь общие диетические рекомендации.

БЕЛКИ

Белки́ (протеины, полипептиды) — высокомолекулярные органические вещества , состоящие из альфа- аминокислот , соединённых в цепочку пептидной связью . В живых организмах аминокислотный состав белков определяется генетическим кодом , при синтезе в большинстве случаев используются 20 стандартных аминокислот .

Рис. 9. Белки не только пища... Типы белковых соединений.

Каждый живой организм состоит из белков . Различные формы белков принимают участие во всех процессах, происходящих в живых организмах. В теле человека из белков формируются мышцы, связки, сухожилия, все органы и железы, волосы, ногти; белки входят в состав жидкостей и костей. Ферменты и гормоны, катализирующие и регулирующие все процессы в организме, также являются белками. Дефицит белков в организме опасен для здоровья. Каждый белок уникален и существует для специальных целей.


Белки — важная часть питания животных и человека (основные источники: мясо, птица, рыба, молоко, орехи, бобовые, зерновые; в меньшей степени: овощи, фрукты, ягоды и грибы), поскольку в их организмах не могут синтезироваться все необходимые аминокислоты и часть должна поступать с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются для биосинтеза собственных белков организма или подвергаются дальнейшему распаду для получения энергии.

Стоит подчеркнть, что современная наука о питании утверждает, что белок должен удовлетворять потребности организма в аминокислотах не только по количеству. Данные вещества должны поступать в организм человека в определенных соотношениях между собой.

Процесс синтеза белков идет в организме постоянно. Если хоть одна незаменимая аминокислота отсутствует, образование белков приостанавливается. Это может привести к самым различным серьезным нарушениям здоровья - от расстройств пищеварения до депрессии и замедления роста у детей. Разумеется, данное рассмотрение вопроса весьма упрощенное, т.к. функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров — полисахаридов и ДНК.

Также, кроме белков, из аминокислот образуется большое количество веществ небелковой природы (см. ниже), выполняющих специальные функции. К ним, напроимер, относится холин (витаминоподобное вещество, входящее в состав фосфолипидов и являющееся предшественником нейромедиатора ацетилхолина - Нейромедиаторы - это химические вещества, передающие нервный импульс с одной нервной клетки на другую. Таким образом, некоторые аминокислоты крайне необходимы для нормальной работы головного мозга).

2. Небелковые функции аминокислот

Нейромедиатор аминокислоты

Прим.: Нейромедиаторы (нейротрансмиттеры, посредники) — биологически активные химические вещества, посредством которых осуществляется передача электрохимического импульса от нервной клетки через синаптическое пространство между нейронами, а также, например, от нейронов к мышечной ткани или железистым клеткам. Для получения информации от собственных тканей и органов организм человека синтезирует особые химические вещества - нейромедиаторы. Все внутренние ткани и органы тела человека, «подчиненные» вегетативной нервной системе (ВНС), снабжены нервами (иннервированы), т. е. функциями организма управляют нервные клетки. Они как датчики собирают информацию о состоянии организма и передают ее в соответствующие центры, а от них корректирующие воздействия идут к периферии. Любое нарушение вегетативной регуляции приводит к сбоям в работе внутренних органов. Передача информации, или управление, осуществляется с помощью специальных химических веществ-посредников, которые называются медиаторами (от лат. mediator - посредник) или нейромедиаторами. По своей химической природе медиаторы относятся к различным группам: биогенным аминам, аминокислотам, нейропептидам и т. д. В настоящее время изучено более 50 соединений, относящихся к медиаторам.

В организме человека многие аминокислоты используются для синтеза других молекул, например:

  • Триптофан является предшественником нейромедиатора серотонина.
  • L-Тирозин и его предшественник фенилаланин являются предшественниками нейромедиаторов дофамина катехоламинов, адреналина и норадреналина.
  • Глицин является предшественником порфиринов, таких как гем.
  • Аргинин является предшественником оксида азота.
  • Орнитин и S-аденозилметионин являются предшественниками полиаминов.
  • Аспартат, Глицин и глутамин являются предшественниками нуклеотидов.

Тем не менее, все еще известны не все функции других многочисленных нестандартных аминокислот . Некоторые нестандартные аминокислоты используются растениями для защиты от травоядных животных. Например, канаванин является аналогом аргинина, который содержится во многих бобовых, и в особо крупных количествах в Canavalia gladiata (канавалия мечевидная). Эта аминокислота защищает растения от хищников, например насекомых, и при употреблении некоторых необработанных бобовых может вызывать заболевания у людей.

Классификация протеиногенных аминокислот

Рассмотрим классификацию на примере 20 протеиногенных α-аминокислот, необходимых для синтеза белка

Среди многообразия аминокислот только 20 участвует во внутриклеточном синтезе белков (протеиногенные аминокислоты). Также в организме человека обнаружено еще около 40 непротеиногенных аминокислот. Все протеиногенные аминокислоты являются α-аминокислотами. На их примере можно показать дополнительные способы классификации. Названия аминокислот обычно сокращаются до 3-х буквенного обозначения (см. рис. полипептидной цепи вверху страницы). Профессионалы в молекулярной биологии также используют однобуквенные символы для каждой аминокислоты.

1. По строению бокового радикала выделяют:

  • алифатические (аланин, валин, лейцин, изолейцин, пролин, глицин) — соединения, не содержащие ароматических связей.
  • ароматические (фенилаланин, тирозин, триптофан)

Ароматические соединения (арены)

— циклические органические соединения, которые имеют в своём составе ароматическую систему. Основными отличительными свойствами являются повышенная устойчивость ароматической системы и, несмотря на ненасыщенность, склонность к реакциям замещения, а не присоединения.

Различают бензоидные (арены и структурные производные аренов, содержат бензольные ядра) и небензоидные (все остальные) ароматические соединения.

Ароматичность — особое свойство некоторых химических соединений, благодаря которому сопряженное кольцо ненасыщенных связей проявляет аномально высокую стабильность;

  • серусодержащие (цистеин, метионин), содержащие атом серы S
  • содержащие ОН-группу (серин, треонин, опять тирозин),
  • содержащие дополнительную СООН-группу (аспарагиновая и глутаминовая кислоты),
  • дополнительную NH 2 -группу (лизин, аргинин, гистидин, также глутамин, аспарагин).

2. По полярности бокового радикала

Существуют неполярные аминокислоты (ароматические, алифатические) и полярные (незаряженные, отрицательно и положительно заряженные).

3. По кислотно-основным свойствам

По кислотно-основным свойствам подразделяют нейтральные (большинство), кислые (аспарагиновая и глутаминовая кислоты) и основные (лизин, аргинин, гистидин) аминокислоты.

4. По незаменимости

По необходимости для организма выделяют такие, которые не синтезируются в организме и должны поступать с пищей - незаменимые аминокислоты (лейцин, изолейцин, валин, фенилаланин, триптофан, треонин, лизин, метионин). К заменимым относят такие аминокислоты, углеродный скелет которых образуется в реакциях метаболизма и способен каким-либо образом получить аминогруппу с образованием сответствующей аминокислоты. Две аминокислоты являются условно незаменимыми (аргинин, гистидин), т.е.их синтез происходит в недостаточном количестве, особенно это касается детей.

Таблица 1. Классификация аминокислот

Химическая структура

Полярность боковой цепи

Изоэлектри-ческая точка рI

Молеку-лярная масса, г/моль

Степень гидрофильности

Полярность боковой цепи

1. Алифатические

Высокогидрофильные

Аланин

Глютамин

Валин *

Аспарагин

Глицин

Глютаминовая кислота

10,2

Изолейцин*

Гистидин

10,3

Лейцин*

Аспарагиновая кислота

11,0

2. Серосодержащие

Лизин *

15,0

Метионин *

Аргинин

20,0

Цистеин

Умеренно гидрофильные

3. Ароматические

Треонин *

Тирозин

Серин

Триптофан*

Триптофан *

Фенилаланин*

Пролин

4. Оксиаминокислоты

Тирозин

Серин

Высокогидрофобные

Треонин *

Основных аминокислот всего 20. Их названия связаны со случайными моментами. Все аминокислоты, которые входят в состав природных белков – это α -аминокислоты. Это значит, что амино- и карбоксильная группа находятся у одного углеродного атома.

1. аминоуксусная кислота (глицин);

2. α-аминопропанова кислота (аланин);

3. α- аминопентановая кислота (валин);

4. α-аминоизокапроновая кислота (лейцин);

5. α-амино-β-метилвалериановая кислота (изолейцин);

6. α-амино-β-гидроксипропановая кислота (серин);

7. α-амино-β-гидроксимасляная кислота (треонин);

Сера-содержащие :

8. α-амино-β-меркаптопропановая кислота (цистеин);

9. α-амино-γ-метилтиомасляная кислота (метионин);

10. α-аминоянтарная кислота (аспарагиновая кислота);

11. амид аспарагиновой кислоты (аспарагин);

12. α-аминоглутаровая кислота (глутаминовая кислота);

13. амид α-аминоглутаровой кислоты (гутамин);

14. α, ε-диаминокапроновая кислота (лейзин);

15. α-амино-δ-гуанидиловалериановая кислота

(аргинин);

Циклические :

16. α-амино-β-фенилпропановая кислота (фенилаланин);

17. α-амино-β-пара-гидроксифенилпроавновая кислота (тирозин);

18. α-амино-β-имидозолилпропановая ксилота (гистедин);

19. α-амино-β-индолилпропановая ксилота (триптофан);

20. α-тетрагидропироллкарбоновая кислота (пролин).

Все природные аминокислоты относятся к L-стереохимическому ряду, D-рядя только как исключение у бактерий, в составе капсул, чтобы защитить бактерии от действия ферментов.

Лекция 3 .

Для каждой аминокислоты характерны свои единственные физико-химические свойства – изоэлектрическая точка, т.е. та pH среды, при которой раствор этой аминокислоты электронейтрален. (q = 0).

Если же рассматривать такую кислоту в водной среде, то диссоциация происходит и по кислотному и по основному типу – биполярный ион.

В организме млекопитающих в печени имеется фермент оксидаза-D-аминокислот, который избирательно разрушает D-аминокислоты, которые попадают с продуктами питания. D-аминокислоты обнаружены в составе некоторых пептидов микроорганизмов. Кроме того, D-аминокислоты входят в состав большого числа антибиотиков. Например, D-валин, D-лейцин входят в состав антибиотика границидина, D-фенилаланин входит в состав границидина-С, пенициллин содержит необычный фрагмент D-диметилцистеин.



Процесс рацимизиации (переход D в L) происходит не ферментативно, поэтому очень медленно. На этом основано определение возраста млекопитающих.

Все аминокислоты имеют в своем составе амино- и карбоксильную группу обладают свойствами аминов и карбоновых кислот. Кроме того, для α-аминокислот характерна нингидриновая реакция (общая с белками). Со спиртовым раствором нингидрина очень быстро появляется сине-фиолетовая окраска, с пропином желтая.

В конце XIX века была полемика, каким образом аминокислоты образуют связь если взять две аминокислоты, слить их вместе, то не получится никогда линейной структуры (в силу термодинамики, происходит циклизация). Получить полипептид в XIX веке никак не получалось.

Линейные молекулы никак не получатся. С т.з.термодинамики более выгодно отщепить 2Н 2 О, чем образовать линейную молекулу.

В 1888 году химик Данилевский предположил, что белки – это полипептиды, линейные молекулы, которые образуются в результате действия карбоксильной группы одной аминокислоты с карбоксильной группой другой аминокислоты с отщеплением воды и образуется дипептид:

Образуется амидная связь (для белков пептидная), эти пептидные связи разделены только одним углеродным атомом. На основании биуретовой реакции Данилевский сделал такой вывод. Это реакция раствора белка с сульфатом меди в щелочной среде, образуется сине-фиолетовое окрашивание, образуется хилатный комплекс с ионами меди, в результате того, что пептидная связь в белковых молекулах имеет специфическое строение. Вследствие кето-енольной таутомерии она на половину двойная, на половину одинарная. Характерная реакция с Cu(OH) 2:

Биуретовая реакция характерна для биурета (рис.1), для малонамида (рис.2) , белков.

Для того, чтобы окончательно доказать, что бели – это полипептиды в 1901 году Фишер синтезировал полипептид, независимо от него Гофман тоже синтезировал полипептид:

Синтез полипептида по Фишеру:

Продукт давал биуретовую реакцию, плохо растворялся, не обладал биологической активностью, расщеплялся протолитическими ферментами, а ферменты – это специфические биокатализаторы, которые расщеплют природные белки, значит у этого продукта такая же структура, как у природных белков.

В настоящее время синтезировано более 2 тысяч разных белков. Главное в синтезе белка – это защита аминогруппы и активация карбоксильной группы для того, чтобы синтез был направленным. Защита аминогрупп осуществляется ацилированием, для этого обрабатывают ангидридами трихлоруксусной кислоты и вводят трифторацильную группы, либо обрабатывают по Зенерсу (бензиловым эфиром хлоругольной кислоты).

Для синтеза каждого конкретного полипептида, для сшивания конкретного участка могут быть проведены свои собственные методы.

Защита по Зервесу , активация по Курциусу , снятие защиты по Бекману :

Твердофазный синтез полипептидов и белков, специфической особенностью полипептидного синтеза является огромное число однотипных операций. Был разработан метод Робертом Мерифилодм . Мономеры – это аминокислоты, которые используются для синтеза, содержащие защищенную аминогруппу и активированные карбоксильные группы – синтоны. Мерифилд предложил: первый мономер закрепить на полимерной смоле (нерастворимый носитель) и все последующие операции проводятся с полипептидом, растущем на полимерной основе, к смоле добавляют попеременно очередной синтон и реагент для удаления концевой защитной группы. Химические стадии перемежаются соответствующими промывками. В течение всего процесса полипептид остается связанным со смолой. Этот процесс легко можно автоматизировать, запрограммировав смену потоков через колонку. В настоящее время разработаны приборы синтезаторы. На завершающей стадии синтеза полипептид ковалентной связан со смолой, снимается с этой смолы и защитная группа удаляется. Одной из самых главных проблем в твердофазном синтезе является рацимизация аминокислот во время синтеза. Это особенно опасно в этом синтезе, т.к. промежуточных стадии выделения рациматов не существует. Способов отделения в данный момент не существует, но есть условия, чтобы как можно меньше была рацимизация. Сам Мерифилд получил этим методом сразу несколько полипептидов, был получен брадикидин – гормон с сосудорасширяющим действием, ангиотензин – гормон, повышающий кровяное давление, фермент рибонуклеаза, которая катализирует гидролиз РНК.

Выход продуктов этим методом значительно не сравним с методами, которые применялись до этого. С помощью автоматизации можно использовать этот метод в промышленных масштабах.

У каждого полипептида имеется N-конец, а другой С-конец. Аминокислота, которая принимает участие изменяет окончание на ил

Глицил-валил-тирозил-гистедин-аспарагил-пролин. Для определения аминокислот в полипептиде, необходимо провести гидролиз, его проводят при 100 С в течение 24 часов 6Н соляной кислотой. Далее продукты гидролиза анализируют – разделяют методом ионообменной хроматографии на колонке сульфалированным полистиролом. Потом вымывают цитратным буфером из колонки. По количеству элюента судят о том, какие кислоты, т.е. в начале будут вымываться кислые кислоты, а самыми последними – основные. Таким образом можно определять в какой момент, какая аминокислота прошла, а количество определяется фотометрически с помощью нингдрина, этим методом можно определить 1 мкг. Если необходимо оперделить 1 нг, применяют флуоросканин, он реагирует с α-аминокислотами, образуя сильно флуоросцилирующее соединение. Определяют какие и сколько аминокислот находятся, а последовательность аминокислот определить не удается.

Флюоросланин: