Биологическое окисление. Окислительно-восстановительные реакции: примеры. Медицина и окислительно-восстановительные реакции

Без энергии невозможно существование ни одного живого существа. Ведь каждая химическая реакция, любой процесс требуют ее присутствия. Любому человеку легко понять это и почувствовать. Если весь день не употреблять пищу, то уже к вечеру, а возможно, и раньше, начнутся симптомы повышенной усталости, вялости, сила значительно уменьшится.

Каким же способом разные организмы приспособились к получению энергии? Откуда она берется и какие процессы при этом происходят внутри клетки? Попробуем разобраться в данной статье.

Получение энергии организмами

Каким бы способом ни потребляли существа энергию, в основе всегда лежат Примеры можно привести разные. Уравнение фотосинтеза, который осуществляют зеленые растения и некоторые бактерии − это тоже ОВР. Естественно, что процессы будут отличаться в зависимости от того, какое живое существо имеется в виду.

Так, все животные − это гетеротрофы. То есть такие организмы, которые не способны самостоятельно формировать внутри себя готовые органические соединения для дальнейшего их расщепления и высвобождения энергии химических связей.

Растения, напротив, являются самым мощным продуцентом органики на нашей планете. Именно они осуществляют сложный и важный процесс под названием фотосинтез, который заключается в формировании глюкозы из воды, углекислого газа под действием специального вещества − хлорофилла. Побочным продуктом является кислород, который является источником жизни для всех аэробных живых существ.

Окислительно-восстановительные реакции, примеры которых иллюстрируют данный процесс:

  • 6CO 2 + 6H 2 O = хлорофилл = C 6 H 10 O 6 + 6O 2 ;
  • диоксид углерода + под воздействием пигмента хлорофилла (фермент реакции) = моносахарид + свободный молекулярный кислород.

Также существуют и такие представители биомассы планеты, которые способны использовать энергию химических связей неорганических соединений. Их называют хемотрофы. К ним относят многие виды бактерий. Например, водородные микроорганизмы, окисляющие молекулы субстрата в почве. Процесс происходит по формуле: 2Н 2 +0 2 =2Н 2 0.

История развития знаний о биологическом окислении

Процесс, который лежит в основе получения энергии, сегодня вполне известен. Это биологическое окисление. Биохимия настолько подробно изучила тонкости и механизмы всех стадий действия, что загадок почти не осталось. Однако так было не всегда.

Первые упоминания о том, что внутри живых существ происходят сложнейшие преобразования, которые являются по природе химическими реакциями, появились примерно в XVIII веке. Именно в это время Антуан Лавуазье, знаменитый французский химик, обратил свое внимание на то, как схожи биологическое окисление и горение. Он проследил примерный путь поглощаемого при дыхании кислорода и пришел к выводу, что внутри организма происходят процессы окисления, только более медленные, чем снаружи при горении различных веществ. То есть окислитель − молекулы кислорода − вступают в реакцию с органическими соединениями, а конкретно, с водородом и углеродом из них, и происходит полное превращение, сопровождающееся разложением соединений.

Однако, хоть данное предположение по сути своей вполне реально, непонятными оставались многие вещи. Например:

  • раз процессы схожи, то и условия их протекания должны быть идентичными, но окисление происходит при низкой температуре тела;
  • действие не сопровождается выбросом колоссального количества тепловой энергии и не происходит образования пламени;
  • в живых существах не менее 75-80% воды, но это не мешает «горению» питательных веществ в них.

Чтобы ответить на все эти вопросы и понять, что на самом деле представляет собой биологическое окисление, понадобился не один год.

Существовали разные теории, которые подразумевали важность наличия в процессе кислорода и водорода. Самые распространенные и наиболее успешные были:

  • теория Баха, именуемая перекисной;
  • теория Палладина, основывающаяся на таком понятии, как «хромогены».

В дальнейшем было еще много ученых, как в России, так и других странах мира, которые постепенно вносили дополнения и изменения в вопрос о том, что же такое биологическое окисление. Биохимия современности, благодаря их трудам, может рассказать о каждой реакции этого процесса. Среди самых известных имен в этой области можно назвать следующие:

  • Митчелл;
  • С. В. Северин;
  • Варбург;
  • В. А. Белицер;
  • Ленинджер;
  • В. П. Скулачев;
  • Кребс;
  • Грин;
  • В. А. Энгельгардт;
  • Кейлин и другие.

Виды биологического окисления

Можно выделить два основных типа рассматриваемого процесса, которые протекают при разных условиях. Так, самый распространенный у многих видов микроорганизмов и грибков способ преобразования получаемой пищи − анаэробный. Это биологическое окисление, которое осуществляется без доступа кислорода и без его участия в какой-либо форме. Подобные условия создаются там, куда нет доступа воздуху: под землей, в гниющих субстратах, илах, глинах, болотах и даже в космосе.

Этот вид окисления имеет и другое название − гликолиз. Он же является одной из стадий более сложного и трудоемкого, но энергетически богатого процесса − аэробного преобразования или тканевого дыхания. Это уже второй тип рассматриваемого процесса. Он происходит во всех аэробных живых существах-гетеротрофах, которые для дыхания используют кислород.

Таким образом, виды биологического окисления следующие.

  1. Гликолиз, анаэробный путь. Не требует присутствия кислорода и заканчивается разными формами брожения.
  2. Тканевое дыхание (окислительное фосфорилирование), или аэробный вид. Требует обязательного наличия молекулярного кислорода.

Участники процесса

Перейдем к рассмотрению непосредственно самих особенностей, которые заключает в себе биологическое окисление. Определим основные соединения и их аббревиатуры, которые в дальнейшем будем использовать.

  1. Ацетилкоэнзим-А (ацетил-КоА) − конденсат щавелевой и уксусной кислоты с коферментом, формирующийся на первой стадии цикла трикарбоновых кислот.
  2. Цикл Кребса (цикл лимонной кислоты, трикарбоновых кислот) − ряд сложных последовательных окислительно-восстановительных преобразований, сопровождающихся высвобождением энергии, восстановлением водорода, образованием важных низкомолекулярных продуктов. Является главным звеном ката- и анаболизма.
  3. НАД и НАД*Н − фермент-дегидрогеназа, расшифровывающийся как никотинамидадениндинуклеотид. Вторая формула − это молекула с присоединенным водородом. НАДФ - никотинамидадениндинуклетид-фосфат.
  4. ФАД и ФАД*Н − флавинадениндинуклеотид - кофермент дегидрогеназ.
  5. АТФ − аденозинтрифосфорная кислота.
  6. ПВК − пировиноградная кислота или пируват.
  7. Сукцинат или янтарная кислота, Н 3 РО 4 − фосфорная кислота.
  8. ГТФ − гуанозинтрифосфат, класс пуриновых нуклеотидов.
  9. ЭТЦ − электроно-транспортная цепь.
  10. Ферменты процесса: пероксидазы, оксигеназы, цитохромоксидазы, флавиновые дегидрогеназы, различные коферменты и прочие соединения.

Все эти соединения являются непосредственными участниками процесса окисления, которое происходит в тканях (клетках) живых организмов.

Стадии биологического окисления: таблица

Стадия Процессы и значение
Гликолиз Суть процесса заключается в бескислородном расщеплении моносахаридов, которое предшествует процессу клеточного дыхания и сопровождается выходом энергии, равным двум молекулам АТФ. Также образуется пируват. Это начальная стадия для любого живого организма гетеротрофа. Значение в образовании ПВК, который поступает на кристы митохондрий и является субстратом для тканевого окисления кислородным путем. У анаэробов после гликолиза наступают процессы брожения разного типа.
Окисление пирувата Этот процесс заключается в преобразовании ПВК, образовавшейся в ходе гликолиза, в ацетил-КоА. Он осуществляется при помощи специализированного ферментного комплекса пируватдегидрогеназы. Результат − молекулы цетил-КоА, которые вступают в В этом же процессе осуществляется восстановление НАД до НАДН. Место локализации − кристы митохондрий.
Распад бета-жирных кислот Этот процесс осуществляется параллельно с предыдущим на кристах митохондрий. Суть его в том, чтобы переработать все жирные кислоты в ацетил-КоА и поставить его в цикл трикарбоновых кислот. При этом также восстанавливается НАДН.
Цикл Кребса

Начинается с превращения ацетил-КоА в лимонную кислоту, которая и подвергается дальнейшим преобразованиям. Одна из важнейших стадий, которые включает в себя биологическое окисление. Данная кислота подвергается:

  • дегидрированию;
  • декарбоксилированию;
  • регенерации.

Каждый процесс совершается несколько раз. Результат: ГТФ, диоксид углерода, восстановленная форма НАДН и ФАДН 2 . При этом ферменты биологического окисления свободно располагаются в матриксе митохондриальных частиц.

Окислительное фосфорилирование

Это последняя стадия преобразования соединений в организмах эукариот. При этом происходит преобразование аденозиндифосфата в АТФ. Энергия, необходимая для этого, берется при окислении тех молекул НАДН и ФАДН 2 , которые сформировались на предыдущих стадиях. Путем последовательных переходов по ЭТЦ и понижением потенциалов происходит заключение энергии в макроэргические связи АТФ.

Это все процессы, которые сопровождают биологическое окисление при участии кислорода. Естественно, что описаны они не полностью, а лишь по сущности, так как для подробного описания нужна целая глава книги. Все биохимические процессы живых организмов чрезвычайно многогранны и сложны.

Окислительно-восстановительные реакции процесса

Окислительно-восстановительные реакции, примеры которых могут проиллюстрировать описанные выше процессы окисления субстрата, следующие.

  1. Гликолиз: моносахарид (глюкоза) + 2НАД + + 2АДФ = 2ПВК + 2АТФ + 4Н + + 2Н 2 О + НАДН.
  2. Окисление пирувата: ПВК + фермент = диоксид углерода + ацетальдегид. Затем следующий этап: ацетальдегид + Кофермент А = ацетил-КоА.
  3. Множество последовательных преобразований лимонной кислоты в цикле Кребса.

Данные окислительно-восстановительные реакции, примеры которых приведены выше, отражают суть происходящих процессов лишь в общем виде. Известно, что соединения, о которых идет речь, относятся к высокомолекулярным, либо имеющим большой углеродный скелет, поэтому изобразить все полными формулами просто не представляется возможным.

Энергетический выход тканевого дыхания

По приведенным выше описаниям очевидно, что подсчитать суммарный выход всего окисления по энергии несложно.

  1. Две молекулы АТФ дает гликолиз.
  2. Окисление пирувата 12 молекул АТФ.
  3. 22 молекулы приходится на цикл трикарбоновых кислот.

Итог: полное биологическое окисление по аэробному пути дает выход энергии, равный 36 молекулам АТФ. Значение биологического окисления очевидно. Именно эта энергия используется живыми организмами для жизни и функционирования, а также для согревания своего тела, движения и прочих необходимых вещей.

Анаэробное окисление субстрата

Второй вид биологического окисления − анаэробный. То есть тот, что осуществляется у всех, но на котором останавливаются микроорганизмы определенных видов. и именно с него четко прослеживаются различия в дальнейшем преобразовании веществ между аэробами и анаэробами.

Стадии биологического окисления по данному пути немногочисленны.

  1. Гликолиз, то есть окисление молекулы глюкозы до пирувата.
  2. Брожение, приводящее к регенерации АТФ.

Брожение может быть разных типов, в зависимости от организмов, его осуществляющих.

Молочнокислое брожение

Осуществляется молочнокислыми бактериями, а также некоторыми грибками. Суть состоит в восстановлении ПВК до молочной кислоты. Этот процесс используют в промышленности для получения:

  • кисломолочных продуктов;
  • квашеных овощей и фруктов;
  • силоса для животных.

Этот вид брожения является одним из самых применяемых в нуждах человека.

Спиртовое брожение

Известно людям с самой древности. Суть процесса заключается в превращении ПВК в две молекулы этанола и две диоксида углерода. Благодаря такому выходу продукта, данный вид брожения используют для получения:

  • хлеба;
  • вина;
  • пива;
  • кондитерских изделий и прочего.

Осуществляют его грибы дрожжи и микроорганизмы бактериальной природы.

Маслянокислое брожение

Достаточно узкоспецифичный вид брожения. Осуществляется бактериями рода Клостридиум. Суть состоит в превращении пирувата в масляную кислоту, придающую продуктам питания неприятный запах и прогорклый вкус.

Поэтому реакции биологического окисления, идущие по такому пути, практически не используют в промышленности. Однако эти бактерии самостоятельно засевают продукты питания и наносят вред, понижая их качество.

  • 23. Уравнение Аррениуса. Энергия активации. Теория активных соударений.
  • 27. Активация и ингибирование ферментов.
  • 25. Понятие о кинетики сложных реакций. Параллельный, последовательные, сопряженные и цепные реакции.
  • 28. Роль растворов в жизнедеятельности организмов. Вода как растворитель.
  • 29. Изоэлектрическое состояние и изоэлектрическая точка амфолитов
  • 30. Концентрация растворов и способы их выражения.
  • 31. Сольватная теория растворов.
  • 32. Растворимость газов в жидкостях. Кессонная болезнь.
  • 33. Растворимость жидкости и твердых тел в жидкостях. Гидраты и кристаллогидраты.
  • 35. Вязкость растворов. Аномальная вязкость растворов вмс.
  • 34. Растворы вмс. Набухание. Общая характеристика растворов вмс.
  • 36. Удельная, приведенная, относительная и характеристическая вязкость.
  • 37. Вязкозиметрическое определение молекулярной массы полимеров.
  • 38. Вязкость крови и других биологических жидкостей.
  • 39. Коллигативные свойства растворов.
  • 40. Относительное понижение давления насыщенного пара и закон Рауля. Идеальные растворы.
  • 41. Понижение температуры замерзания и повышение температуры кипения, зависимость их от концентрации раствора.
  • 42. Осмос и осмотическое давление. Закон Вант Гоффа
  • 43. Осмотическое давление в растворах биополимеров. Мембранное равновесие Доннане.
  • 44. Роль осмоса и осмотическое давление в биологических системах.
  • 45. Плазмолиз и гемолиз.
  • 46. Растворы слабых и сильных электролитов. Степень и константа диссоциации слабых электролитов.
  • 48. Электролиты в организме человека. Электролитический состав крови.
  • 49. Понятие о водно – солевом обмене. Антагонизм и синегизм ионов.
  • 52. Диссоциация воды. Ионное производство воды. Водный показатель.
  • 53. Интервалы значения pH для различных жидкостей человеческого организма.
  • 54. Буферные системы их классификация и механизм действия. Емкость буферных систем.
  • 55. Буферные системы крови.
  • 56. Уравнение Гендерсона Гассельбаха.
  • 57. Понятие о кислотно-щелочном состоянии крови.
  • 61. Кислотно-основное титрование. Кривые титрования. Точка эквивалентности. Выбор индикатора. Применение в медицине.
  • 58. Гидролиз солей. Степень гидролиза в биологических процессах.
  • 62. Реакция осаждения и растворения. Производные растворимости. Аргентометрия. Применение в медицине.
  • 63. Окислительно-восстановительные реакции. Роль окислительно-восстановительных процессов в организме. Окислительно-восстановительный потенциал. Уравнение Нернста.
  • 65. Определение направления окислительно-восстановительных реакций по стандартным значениям свободной энергии образования реагентов и по величинам окислительно-восстановительных потенциалов.
  • 66. Оксидометрия, иодометрия, перманганатометрия. Применение в медицине.
  • 67. Квантово – механическая модель атома.
  • 68. Электронное облако орбиталь.
  • 69. Характеристика электрического состояния электрона системой квантовых чисел: главное, орбитальное, магнитное и спиновое квантовые числа.
  • 72. Метод валентных связей. Механизм образования валентных связей.
  • 70. Принцип Паули. Правило Хунда. Основное и возбужденное состояние атома.
  • 73.Виды связей. Кратность связи.
  • 74. Насыщенность, направленность и длина связи.
  • 75. Понятие о гибридизации атомных орбиталей. Геометрия молекул.
  • 76. Ионная связь как предельно поляризованная ковалентная связь.
  • 77. Метод молекулярных орбиталей. Связывающие и разрыхляющие орбитали.
  • 78. Водородная связь. Молекулярная и внутри молекулярная водородная связь.
  • 79. Комплексные соединения. Координационная теория Вернера.
  • 80. Центральный атом, лиганды, координационное число центрального атома.
  • 82. Внутрикомплексные соединения. (хелаты).
  • 83. Комплексоны и их применение в медицине.
  • 85.Реакция комплексообразования.
  • 84. Номенклатура комплексных соединений.
  • 86. Ионные равновесия в растворах комплексных соединений.
  • 87. Константа нестойкости и устойчивости комплексных ионов.
  • 88. Вода и её физико-химические свойства. Значение воды для биосферы и жизненности организмов. Человек и биосфера.
  • 102. Общая характеристика s – элементов.
  • 103. Общая характеристика p - элементов.
  • 63. Окислительно-восстановительные реакции. Роль окислительно-восстановительных процессов в организме. Окислительно-восстановительный потенциал. Уравнение Нернста.

    С окислительно-восстановительными реакциями связаны дыха­ние и обмен веществ, гниение и брожение, фотосинтез и нервная деятельность живых организмов. Окислительно-восстановительные процессы лежат в основе горения топлива, коррозии металлов, электролиза, металлургии и т.д. Реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих молекул, называются окислително- восстановительными. Процессы окисления и восстановления протекают одновременно: если один элемент, участвующий в реак­ции, окисляется, то другой должен восстанавливаться. Окислитель - это вещество, содержащее элемент, который принимает электроны и понижает степень окисления. Окислитель в результате реакции восстанавливается. Так, в реакции 2Fe +3 Cl - 3 + 2K + I - -> I 2 0 + 2Fe +2 Cl 2 - + 2K + Cl - . Восстановитель - вещество, содержащее элемент, который отдает электроны и повышает степень окисления. Восстановитель в результате реакции окисляется. Восстановителем в предлагаемой реакции является ион I - . Источником электрической энергии в элементе служит химическая реакция вытеснения меди цинком: Zn + Cu 2+ + Cu. Работа окисления цинка, равная убыли изобарно-изотермического потенциала, может быть представлена как произведение переносимого электричества на величину э. д. с.: A=--дG 0 =п EF, где п- заряд катиона; Е - з. д. с. элемента и F - число Фарадея. С другой стороны, по уравнению изотермы реакции. Окислительно-восстановительные потенциалы имеют большое значение в физиологии человека и животных. К числу редок-сисистем относятся такие системы в крови и тканях, как гем/гематии и цитохромы, в которых содержится двух- и трехвалентное железо; аскорбиновая кислота (витамин С), находящаяся в окисленной и восстановленной формах; система глутатиона, цистин-цистеина янтарной и фумаровой кислот и др.Важнейший процесс биологического окисления, а именно пере­нос электронов и протонов с окисляемого субстрата на кислород осуществляемый в тканях при помощи строго определенного рядя промежуточных ферментов-переносчиков, также представляет собой цепь окислительно-восстановительных процессов. Каждое звене этой цепи соответствует той или иной редокс-системе, характерезующейся определенным редокс-потенциалом.

    65. Определение направления окислительно-восстановительных реакций по стандартным значениям свободной энергии образования реагентов и по величинам окислительно-восстановительных потенциалов.

    Различные процессы жизнедеятельности сопровождаются воз­никновением в организме электрохимических процессов, играющих существенную роль в обмене веществ. Электрохимические превращения в организме можно разделить на две основные группы: процессы, связанные с переносом электронов и возникновением окислительно-восстановительных потенциалов; процессы, связанные с переносом ионов (без изменения их зарядов) и с образованием биоэлектрических потенциалов. В результате этих процессов возникают разности потенциалов между разными прослойками тканей, находящихся в различных физиологических состояниях. Они связаны с различной интенсив­ностью окислительно-восстановительных биохимических процессов. К ним относятся, например, потенциалы фотосинтеза, возникающие между освещенными н неосвещенными участками листа, причем освещенный участок оказывается положительно заряженным по от­ношению к неосвещенному. Окислительно-восстановительные процессы первой группы в ор­ганизме можно разделить на три типа: 1.Непосредственный перенос электронов между веществами без участия атомов кислорода и водорода, например, перенос элек­трона в цитохромах: цитохром (Fе 3+) + е -> цитохром (Ре 2+) и перенос электрона в ферменте цитохромоксидазе: цитохромоксидаза (Си 2+) + е -> цитохромоксидаза (Си 1+). 2. Окислительный, связанный с участием атомов кислорода и ферментов оксидаз, например, окисление альдегидной группы субстрата в кислотную: RСОН + O  RСООН. 3.рН-Зависимый, происходящий в присутствии ферментов дегидрогеназ (Е) и коферментов (Ко), которые образуют активиро­ванный комплекс фермент-кофермент-субстрат (Е-Ко-5), присоеди­няет электроны и катионы водорода от субстрата и вызывает его окисление.Такими коферментами являются никотинамид-аденин-нуклеотид (НАД +), который присоединяет два электрона и один протон: S-2Н - 2е + НАД*  S + НАДН + Н + , флавин-аденин-динуклеотид (ФАД), который присоединяет два элек­трона и два протона: S - 2Н - 2е + ФАД S + ФАДН 2 , и убихинон или кофермент Q (КоО), который также присоединяет два электрона и два протона: S-2Н - 2е + КоQ  S + КоQН 2 .

    УДК 373.167.1

    З. Н. Хисматуллина

    СУЩНОСТЬ, НАПРАВЛЕНИЕ И РОЛЬ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЙ В БИОЛОГИИ И МЕДИЦИНЕ

    Ключевые слова: окисление, восстановление, метаболизм, диссимиляция, окислительно-восстановительный

    потенциал.

    Показана роль окислительно-восстановительных реакций в обмене веществ и энергии, происходящем в организме человека и животных. Усвоение общих закономерностей протекания данного вида реакций необходимо для последующего изучения свойств неорганических и органических веществ и химических процессов в целом, протекающих в организме, что дает возможность изучать и управлять всей жизнедеятельностью человека.

    Key words: oxidation, reduction, metabolism, dissimilation, redox-potential.

    The role of the redox-reactions in the energy-exchange and substance-exchange that occur in humans and animals is shown. The understanding of the general laws of the occurrence of this reaction type is necessary for the further studying of the properties of the organic and nonorganic materials and chemical processes, which occur in the human body, in general. It makes it possible to study and control the whole of human life.

    На протяжении всей истории прослеживается взаимосвязь медицины и химии, симбиоз этих двух наук приводил и приводит к обогащению и наибыстрейшему развитию каждой из них. Поэтому изучение химии или хотя бы знание ее основ, необходимо не только в медицинском вузе, но и всем тем, кто получает высшее профессиональное образование.

    Нужно отметить, что в нашей стране очень развита молекулярная биология и генетика, уделяется большое внимание организации комплексных научных исследований по раскрытию физико-химической природы жизни, познанию сущности таких важнейших проявлений жизнедеятельности, как обмен веществ, мышление, память, наследственность, иммунитет и т.д. От результатов этих исследований зависят теоретическое вооружение и прогресс практической медицины в ближайшем будущем. Чтобы квалифицированный медико-социальный работник мог следить за ходом этих комплексных исследований, оценивать их значение для практической медико-социальной работы, он должен быть вооружен знаниями не только в области медицины, но и химии. Ведь в основе обмена веществ в конечном итоге лежат химические процессы - диффузия, растворение, диализ, гидролиз, испарение, конденсация и др.

    Для специалистов междисциплинарных профессий, тем более медико-социальных работников высшей квалификации изучение элементов химии необходимо уже потому, что:

    78 элементов входят в состав живых организмов;

    44 элемента входят в состав применяемых в современной медицине лекарственных препаратов;

    Изотопы 38 элементов в настоящее время используются для радиодиагностики и радиотерапии;

    Более 70 элементов входят в состав материалов, применяемых для изготовления современной аппаратуры, приборов и инструментов .

    Без достаточных познаний в области химии невозможно было бы эффективное использование всего арсенала средств целенаправленного воздействия на организм человека. Чтобы воспринять, систематизировать и осмыслить весь поток информации в области медицины и химии, необходимо опираться на определенный теоретический фундамент.

    Более 70 % известных в настоящее время элементов входят в состав человеческого организма. В организме человека постоянно происходят различные химические реакции, в ре-

    зультате чего образуется огромное количество самых разных химических соединений. Исходные вещества, необходимые для этого, поступают в организм с вдыхаемым воздухом, с пищей и питьевой водой. Основная часть синтезированных соединений используется в качестве строительных материалов или источников энергопитания и обеспечивает организму человека рост и развитие. Та же часть синтезированных соединений, которую можно рассматривать как шлаки или отходы этого процесса, выводится из организма.

    В результате жизнедеятельности организма синтезируются вещества, которые являются химическими соединениями кислорода, углерода, водорода, азота, серы и фосфора. Кроме этих шести химических элементов, в метаболизме (обмене веществ) активно участвуют еще по меньшей мере двадцать шесть элементов: кальций, калий, натрий, хлор, железо, магний, фтор и так называемые микроэлементы - алюминий, бор, кремний, ванадий, хром, марганец, кобальт, никель, цинк, медь, мышьяк, бром, селен, стронций, молибден, кадмий, олово, йод, свинец. Обнаружены также еще сорок шесть элементов, правда, в ничтожно малых количествах и вероятно, они тоже играют важную физиологическую роль, которая пока до конца не выяснена.

    Обмен веществ (метаболизм), происходящий в живом организме, включает огромное количество непрерывно протекающих и взаимосвязанных реакций. Живые организмы усваивают поступающие к ним из окружающей среды (главным образом с пищей) вещества, изменяют их химический состав и используют новые химические соединения для создания, обновления элементов ткани и аккумулирования больших запасов химической энергии. Поэтому процесс обмена веществ неразделим с сопутствующим ему процессом обмена энергии. Этот процесс обмена веществ и энергии является самым характерным признаком жизни, с его прекращением останавливается и жизнь.

    Систематическое изучение обмена веществ, происходящего в организме человека и животных, было начато еще в конце XVIII века А.Лавуазье. С именем этого ученого, а также еще и М.В. Ломоносова связано установление роли кислорода в процессах жизнедеятельности организмов и в процессах горения. А.Лавуазье впервые доказал, что в организме человека и животных происходит непрерывное окисление органических веществ кислородом воздуха, с образованием диоксида углерода и одновременным выделением так называемой «животной теплоты». Он в числе первых пытался установить связь между количеством потребляемого человеком кислорода и выделяющегося диоксида углерода, показать, как влияют на интенсивность поглощения и генерации этих двух газов режимы питания и труда, температура окружающей среды.

    В живом организме осуществляется целый ряд физико-химических процессов - испарение и конденсация, растворение и кристаллизация, электролитическая диссоциация и образование молекул из ионов и т. д. - многие сотни тысяч биохимических реакций, протекающих в зависимости от многочисленных условий внешней и внутренней среды. Но тем не менее, благодаря тонкой нейро-гуморальной регуляции достигается поразительное постоянство внутренней среды организма (гомеостазис).

    Как известно, все химические реакции можно разделить на две большие группы:

    1) обменные реакции, при которых происходит лишь рекомбинация атомов или ионов, но не имеет места изменение их степени окисления;

    2) окислительно-восстановительные реакции, при которых происходит частичный или полный переход электронов от одних атомов или ионов к другим с соответствующим изменением степени окисления этих атомов или ионов .

    Окислительно-восстановительные реакции играют исключительную роль в обмене веществ и энергии, происходящем в организме человека и животных. Первые представления о сущности окислительно-восстановительных реакций были введены выдающимся русским ученым Л.В.Писаржевским (1914 г.).

    Окислительно-восстановительными реакциями называются химические реакции, при протекании которых степени окисления элементов изменяются. Изменение степеней окисле-

    ния в ходе окислительно-восстановительных реакций обусловлено полным или частичным переходом электронов от атомов одного элемента к атомам другого элемента.

    Атомы или ионы, отдающие электроны в ходе окислительно-восстановительного процесса другим атомам или ионам, называются восстановителями. При этом данный атом или ион окисляется, т.е. повышает свою степень окисления.

    Атомы или ионы, присоединяющие к себе электроны, называются окислителями. При этом сам атом или ион восстанавливается, т.е. снижает свою степень окисления.

    Реакция окисления неотделима от реакции восстановления, и оба эти процесса необходимо рассматривать в неразрывном единстве. При любой окислительно-восстановительной реакции алгебраическая сумма степеней окисления атомов остается неизменной .

    Многие окислительно-восстановительные реакции сводятся только к взаимодействию окислителя и восстановителя. Но чаще всего, если реакция осуществляется в водной среде, на ход окислительно-восстановительного процесса оказывает большое влияние взаимодействие реагентов с ионами водорода и гидроксила воды, а также присутствующих в растворе кислот и щелочей. Иногда влияние среды на ход окислительно-восстановительного процесса столь велико, что некоторые реакции могут осуществляться только в кислой или щелочной среде. От кислотно-щелочного баланса среды зависит направление окислительно-восстановительной реакции, количество электронов, присоединяемых молекулой (ионом) окислителя и отдаваемых молекулой (ионом) восстановителя и т. д. Например, реакция между иодидами и иодатами с выделением элементов иода протекает только в присутствии сильных кислот, а в сильно щелочной среде при нагревании может протекать обратная реакция.

    Обмен веществ, в котором окислительно-восстановительные процессы играют столь значительную роль, имеет две стороны: 1) пластическую, сводящуюся к синтезу сложных органических веществ, необходимых организму в качестве «строительных материалов» для обновления тканей и клеток, из веществ, которые поступают главным образом с пищей (это анаболические процессы, или процессы ассимиляции, требующие затрат энергии); 2) энергетическую, сводящуюся к распаду (окислению) сложных высокомолекулярных веществ, играющих роль биологического топлива, до более простых - в оды, диоксида углерода и т. д. (это катаболические процессы, или процессы диссимиляции, сопровождающиеся освобождением энергии).

    Окислительно-восстановительные реакции являются необходимыми звеньями в сложной цепи как анаболических, так и катаболических процессов, но их роль особенно велика как основных источников энергии для живого организма. Организмы, существующие в аэробных условиях (т. е. в окислительной атмосфере кислорода воздуха), получают эту энергию за счет процесса дыхания, в результате которого поступающие в организм питательные вещества в клетках и тканях окисляются до диоксида углерода, воды, аммиака, мочевины и других продуктов жизнедеятельности, характеризующихся сравнительно небольшими значениями энергии и высокими значениями энтропии (от греч. - поворот, превращение - это мера беспорядка системы, состоящей из многих элементов).

    В основе процессов дыхания лежит окислительно-восстановительная реакция, при которой молекула диатомного кислорода образует две молекулы воды. В процессе внешнего дыхания кислород воздуха связывается с гемоглобином и в форме оксигемоглобина доставляется с потоком крови к капиллярам тканей. В процессе тканевого, или клеточного дыхания, ткани и клетки поглощают этот кислород, за счет которого осуществляется окисление поступивших в организм из внешней среды белков, жиров и углеводов. одновременно образующийся диоксид углерода с потоком венозной крови направляется в легкие и там, диффундируя через стенки альвеол, оказывается в составе выдыхаемого воздуха. Но в этих процессах биологического окисления субстратами, непосредственно подвергающихся действию кислорода, являются не те высокомолекулярные соединения, которые первоначально находились в составе пищи, а образовавшиеся в результате гидролитического расщепления в желудочно-пищевом тракте более простые, низкомолекулярные продукты.

    На первой стадии диссимиляции в результате гидролиза сложные углеводы - крахмал, сахароза, гликоген и другие при участии амилаз превращаются в глюкозу и другие моносахариды. Жиры при участии липаз превращаются в жирные кислоты и глицерин. Белки под действием протеолитических ферментов превращаются в низкомолекулярные пептиды и аминокислоты. На этой стадии освобождается энергия, составляющая не более 1 % от общей химической энергии пищевых веществ. Часть продуктов, возникших на первой стадии диссимиляции, организм человека использует в качестве исходных веществ для анаболических реакций, связанных с получением материалов для застройки тканей и клеток, а также как запас химического топлива.

    Другая часть продуктов гидролиза подвергается окислению, при котором наряду с диоксидом углерода, водой, аммиаком, мочевиной и т. д. образуются также продукты неполного окисления.

    На второй стадии диссимиляции освобождается около 1/3 общего количества энергии, но еще не происходит аккумулирование выделившейся энергии путем образования высокоэр-гических веществ.

    На третьей стадии диссимиляции происходит полное окисление всех образовавшихся во второй стадии промежуточных продуктов: воды, диоксида углерода, аммиака, мочевины и т. д. и освобождаются остальные 2/3 химической энергии, полученные организмом из пищевых веществ. Это сложный химический процесс, включающий десять последовательно протекающих реакций, каждая из которых катализируется соответствующим ферментом, называется циклом трикарбоновых кислот или циклом Кребса. Ферменты, необходимые для осуществления этих последовательных реакций, локализуются в мембранных структурных элементах клеток - митохондриях.

    На третьей стадии диссимиляции освобождается 40-60 % энергии, которая используется организмом для синтеза высокоэргических веществ .

    Таким образом, рассмотренные стадии диссимиляции в организме питательных веществ показывает, что энергоснабжение организма на 99 % обеспечивается протеканием в нем окислительно-восстановительных процессов.

    Кроме того, с помощью окислительно-восстановительных реакций в организме разрушаются некоторые токсические вещества, образующиеся в ходе метаболизма. Именно таким путем организм избавляется от вредного влияния промежуточных продуктов биохимического окисления.

    Сведения относительно окислительно-восстановительных свойств различных лекарственных препаратов позволяют решать вопросы о совместимости при одновременном их назначении больному, а также о допустимости их совместного хранения. С учетом этих данных становятся понятными несовместимость ряда лекарственных средств (например, таких как ио-дид калия и нитрит натрия, перманганат калия и тиосульфат натрия, пероксид водорода и ио-диды и т.д.).

    Во многих случаях фармацевтические свойства медицинских препаратов находятся в непосредственной связи с их окислительно-восстановительными свойствами. Так, например, многие из антисептических, противомикробных и дезинфицирующих средств, (иод, перманганат калия, пероксид водорода, соли меди, серебра и ртути) являются в то же время и сильными окислителями.

    Применение тиосульфата натрия в качестве универсального антидота (противоядия) основано на его способности участвовать в окислительно-восстановительных реакциях в роли как окислителя, так и восстановителя. В случае отравлений соединениями мышьяка, ртути и свинца, прием внутрь раствора тиосульфата натрия приводит к образованию труднорастворимых и потому практически неядовитых сульфатов. При отравлениях синильной кислотой или цианидами тиосульфат натрия дает возможность превратить эти токсичные вещества в менее ядовитые роданистые соединения. При отравлении галогенами и другими сильными окисли-

    телями антитоксическое действие триосульфата натрия обусловлено его умеренными восстановительными свойствами .

    Говоря об окислительно-восстановительных процессах, нужно отметить, что во время окислительных или восстановительных реакций изменяется электрический потенциал окисляемого или восстанавливаемого вещества: одно вещество, отдавая свои электроны и заряжаясь положительно, окисляется, другое, приобретая электроны и заряжаясь отрицательно, -восстанавливается. Разность электрических потенциалов между ними есть окислительновосстановительный потенциал (ОВП).

    Окислительно-восстановительный потенциал является мерой химической активности элементов или их соединений в обратимых химических процессах, связанных с изменением заряда ионов в растворах. Это означает, что ОВП, называемый также, редокс-потенциал (от английского RedOx - Reduction/Oxidation), характеризует степень активности электронов в окислительно-восстановительных реакциях, т.е. в реакциях, связанных с присоединением или передачей электронов. При измерениях (в электрохимии) величина этой разности обозначается как Eh и выражается в милливольтах. Чем выше концентрация компонентов, способных к окислению, к концентрации компонентов, могущих восстанавливаться, тем выше показатель редокс-потенциала . Такие вещества, как кислород и хлор, стремятся к принятию электронов и имеют высокий электрический потенциал, следовательно, окислителем может быть не только кислород, но и другие вещества (в частности, хлор), а вещества типа водорода, наоборот, охотно отдают электроны и имеют низкий электрический потенциал. Наибольшей окислительной способностью обладает кислород, а восстановительной - водород, но между ними располагаются и другие вещества, присутствующие в воде и менее интенсивно выполняющие роль либо окислителей, либо восстановителей.

    Значение ОВП для каждой окислительно-восстановительной реакции может иметь как положительное, так и отрицательное значение.

    Так, например, в природной воде значение Eh колеблется от -400 до +700 мВ, что определяется всей совокупностью происходящих в ней окислительных и восстановительных процессов. В условиях равновесия значение ОВП определенным образом характеризует водную среду, и его величина позволяет делать некоторые общие выводы о химическом составе воды .

    В биохимии величины редокс-потенциала выражаются не в милливольтах, а в условных единицах rH (reduction Hydrogenii).

    Шкала условных единиц rH содержит 42 деления.

    «0» - означает чистый водород,

    «42» - чистый кислород,

    «28» - нейтральная среда.

    pH и rH тесно взаимосвязаны .

    Окислительные процессы понижают показатель кислотно-щелочного равновесия (чем выше rH, тем ниже pH), восстановительные - способствуют повышению pH. В свою очередь показатель pH влияет на величину rH.

    В организме человека энергия, выделяемая в ходе окислительно-восстановительных реакций, расходуется на поддержание гомеостаза (относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма) и регенерацию клеток организма, т. е. на обеспечение процессов жизнедеятельности организма.

    ОВП внутренней среды организма человека, измеренный на платиновом электроде относительно хлорсеребряного электрода сравнения, в норме всегда меньше нуля, т.е. имеет отрицательные значения, которые обычно находятся в пределах от -100 до -200 милливольт. ОВП питьевой воды, измеренный таким же способом практически всегда больше нуля, обычно находится в пределах от +100 до +400 мВ. Это справедливо практически для всех типов питьевой воды, той, которая течет из водопроводных кранов во всех городах мира, которая продается в стеклянных и пластиковых бутылках, которая получается после очистки в уста-

    новках обратного осмоса и большинства разнообразных больших и малых водоочистительных систем.

    Указанные различия ОВП внутренней среды организма человека и питьевой воды означают, что активность электронов во внутренней среде организма человека намного выше, чем активность электронов в питьевой воде.

    Активность электронов является важнейшей характеристикой внутренней среды организма, поскольку напрямую связана с фундаментальными процессами жизнедеятельности.

    Когда обычная питьевая вода проникает в ткани человеческого (или иного) организма, она отнимает электроны от клеток и тканей, которые состоят из воды на 80-90%. В результате этого биологические структуры организма (клеточные мембраны, органоиды клеток, нуклеиновые кислоты и другие) подвергаются окислительному разрушению. Так организм изнашивается, стареет, жизненно-важные органы теряют свою функцию. Но эти негативные процессы могут быть замедлены, если в организм с питьем и пищей поступает вода, обладающая свойствами внутренней среды организма, т. е. обладающая защитными и восстановительными свойствами .

    Для того, чтобы организм оптимальным образом использовал в обменных процессах питьевую воду с положительным значением окислительно-восстановительного потенциала, ее ОВП должен соответствовать значению ОВП внутренней среды организма. Необходимое изменение ОВП воды в организме происходит за счет затраты электрической энергии клеточных мембран, т.е. энергии самого высокого уровня, энергии, которая фактически является конечным продуктом биохимической цепи трансформации питательных веществ.

    Количество энергии, затрачиваемой организмом на достижение биосовместимости воды, пропорциональна ее количеству и разности ОВП воды и внутренней среды организма.

    Если поступающая в организм питьевая вода имеет ОВП близкий к значению ОВП внутренней среды организма человека, то электрическая энергия клеточных мембран (жизненная энергия организма) не расходуется на коррекцию активности электронов воды и вода тотчас же усваивается, поскольку обладает биологической совместимостью по этому параметру. Если питьевая вода имеет ОВП более отрицательный, чем ОВП внутренней среды организма, то она подпитывает его этой энергией, которая используется клетками, как энергетический резерв антиокси-дантной защиты организма от неблагоприятного влияния внешней среды .

    Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд других химических процессов в основе своей являются окислительновосстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления-восстановления.

    Получение элементарных веществ (железа, хрома, марганца, золота, серебра, серы, хлора, иода и т. д.) и ценных химических продуктов (аммиака, щелочей, азотной, серной и других кислот) основана на окислительно-восстановительных реакциях.

    На окислении-восстановлении в аналитической химии основаны методы объемного анализа: перманганатометрия, йодометрия, броматометрия и другие, играющие важную роль при контролировании производственных процессов и выполнении научных исследований. В органической химии для проведения ряда химических превращений самое широкое распространение нашли именно процессы окисления-восстановления.

    Таким образом, большинство химических процессов, протекающих в природе и осуществляемых человеком в его практической деятельности, представляют собой окислительновосстановительные реакции. Эти реакции являются основными процессами, обеспечивающими жизнедеятельность любого организма и имеют огромное значение в теории и практике.

    Глубокое знание сущности и закономерностей протекания химических реакций дает возможность управлять ими и использовать для синтеза новых веществ. Усвоение общих закономерностей протекания химических реакций необходимо для последующего изучения

    свойств неорганических и органических веществ, что важно для понимания процессов, происходящих в организме человека.

    Литература

    1. Ахмадышин, Р.А. Оценка адсорбции витаминов и микроэлементов клеточной стенкой дрожжей Saccharomyces cerevisiae / Р.А.Ахмадышин, А. В. Канарский, З. А. Канарская. - Вестник Казан. технол. ун-та.- 2007. - № 6. - С. 83-86.

    2. Балакирева, Ю.В. Изучение антиоксидантной активности коровьего и козьего молока / Ю.В.Балакирева, Ф.Ю. Ахмадуллина, А.А. Лапин. - Вестник Казан. технол. ун-та.- 2009. - № 1. -С. 56-60.

    3. Егоров, А.С. Репетитор по химии / под ред. А.С.Егорова. - Изд. 24-е. - Ростов н/Д: Феникс, 2009. -762 с.

    4. Ленский, А.С. Введение в бионеорганическую и биофизическую химию: Учеб. пособие для студентов медицинских вузов / А.С.Ленский. - М.: Высш. шк., 2009. - 256 с.

    5. Николаев, А.Я. Биологическая химия: Учебник. - 3-е изд., перераб. и доп. / А.Я.Николаев. - М.: ООО «Медицинское информационное агентство», 2007. - 568 с.

    © З. Н. Хисматуллина - канд. социол. наук, доц. каф. социальной работы, педагогики и психологии КНИТУ, [email protected].

    С окислительно-восстановительными реакциями связаны дыха­ние и обмен веществ, гниение и брожение, фотосинтез и нервная деятельность живых организмов. Окислительно-восстановительные процессы лежат в основе горения топлива, коррозии металлов, электролиза, металлургии и т.д. Реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих молекул, называются окислително- восстановительными. Процессы окисления и восстановления протекают одновременно: если один элемент, участвующий в реак­ции, окисляется, то другой должен восстанавливаться. Окислитель - это вещество, содержащее элемент, который принимает электроны и понижает степень окисления. Окислитель в результате реакции восстанавливается. Так, в реакции 2Fe +3 Cl - 3 + 2K + I - -> I 2 0 + 2Fe +2 Cl 2 - + 2K + Cl - . Восстановитель - вещество, содержащее элемент, который отдает электроны и повышает степень окисления. Восстановитель в результате реакции окисляется. Восстановителем в предлагаемой реакции является ион I - . Источником электрической энергии в элементе служит химическая реакция вытеснения меди цинком: Zn + Cu 2+ + Cu. Работа окисления цинка, равная убыли изобарно-изотермического потенциала, может быть представлена как произведение переносимого электричества на величину э. д. с.: A=--дG 0 =п EF, где п- заряд катиона; Е - з. д. с. элемента и F- число Фарадея. С другой стороны, по уравнению изотермы реакции. Окислительно-восстановительные потенциалы имеют большое значение в физиологии человека и животных. К числу редок-сисистем относятся такие системы в крови и тканях, как гем/гематии и цитохромы, в которых содержится двух- и трехвалентное железо; аскорбиновая кислота (витамин С), находящаяся в окисленной и восстановленной формах; система глутатиона, цистин-цистеина янтарной и фумаровой кислот и др.Важнейший процесс биологического окисления, а именно пере­нос электронов и протонов с окисляемого субстрата на кислород осуществляемый в тканях при помощи строго определенного рядя промежуточных ферментов-переносчиков, также представляет собой цепь окислительно-восстановительных процессов. Каждое звене этой цепи соответствует той или иной редокс-системе, характерезующейся определенным редокс-потенциалом.

    Определение направления окислительно-восстановительных реакций по стандартным значениям свободной энергии образования реагентов и по величинам окислительно-восстановительных потенциалов.

    Различные процессы жизнедеятельности сопровождаются воз­никновением в организме электрохимических процессов, играющих существенную роль в обмене веществ. Электрохимические превращения в организме можно разделить на две основные группы: процессы, связанные с переносом электронов и возникновением окислительно-восстановительных потенциалов; процессы, связанные с переносом ионов (без изменения их зарядов) и с образованием биоэлектрических потенциалов. В результате этих процессов возникают разности потенциалов между разными прослойками тканей, находящихся в различных физиологических состояниях. Они связаны с различной интенсив­ностью окислительно-восстановительных биохимических процессов. К ним относятся, например, потенциалы фотосинтеза, возникающие между освещенными н неосвещенными участками листа, причем освещенный участок оказывается положительно заряженным по от­ношению к неосвещенному. Окислительно-восстановительные процессы первой группы в ор­ганизме можно разделить на три типа: 1.Непосредственный перенос электронов между веществами без участия атомов кислорода и водорода, например, перенос элек­трона в цитохромах: цитохром (Fе 3+) + е -> цитохром (Ре 2+) и перенос электрона в ферменте цитохромоксидазе: цитохромоксидаза (Си 2+) + е -> цитохромоксидаза (Си 1+). 2. Окислительный, связанный с участием атомов кислорода и ферментов оксидаз, например, окисление альдегидной группы субстрата в кислотную: RСОН + O ó RСООН. 3.рН-Зависимый, происходящий в присутствии ферментов дегидрогеназ (Е) и коферментов (Ко), которые образуют активиро­ванный комплекс фермент-кофермент-субстрат (Е-Ко-5), присоеди­няет электроны и катионы водорода от субстрата и вызывает его окисление.Такими коферментами являются никотинамид-аденин-нуклеотид (НАД +), который присоединяет два электрона и один протон: S-2Н - 2е + НАД* ó S + НАДН + Н + , флавин-аденин-динуклеотид (ФАД), который присоединяет два элек­трона и два протона: S - 2Н - 2е + ФАД óS + ФАДН 2 , и убихинон или кофермент Q (КоО), который также присоединяет два электрона и два протона: S-2Н - 2е + КоQ ó S + КоQН 2 .

    Размер: px

    Начинать показ со страницы:

    Транскрипт

    1 Биологическая роль окислительно-восстановительных реакций Особенностью биологических ОВР является их многостадийность. Они проходят через ряд промежуточных стадий с образованием множества кислородсодержащих продуктов, которые в конце концов окисляются до оксида углерода (IV) и воды. Окислительно-восстановительные реакции необходимы и для синтеза множества жизненно важных кислородсодержащих органических биомолекул (углеводы, жирные кислоты, гормоны). Отдельные стадии биологического окисления обратимы, что обеспечивает поддержание окислительно-восстановительного гомеостаза в организме. В их числе реакция С-гидроксилирования: R R Окисление углеводородов до спиртов осуществляется в организме ферментативным путем и является первой стадией выведения чужеродных органических веществ, в том числе и углеводородов, из организма. Чужеродные органические вещества называются ксенобиотиками. Эта реакция заключается в замене связи С Н на С ОН и служит для введения гидроксильной группы в состав биомолекулы. Образование гликолей из непредельных соединений является важной биохимической реакцией: , 2 В биосредах это превращение идет через промежуточную стадию окиси: которая далее присоединяет воду. Именно эти превращения объясняют сильную канцерогенную (от латинского cancer рак, genos род, происхождение) активность углеводородов, присутствующих в табачном дыме. Арены, попадая в живой организм, превращаются в карбоновые кислоты, а сам бензол подвергается медленному С-гидроксилированию с образованием фенола, обладающего биологическим действием.,

    2 Бензол накапливается в организме, то есть является кумулятивным ядом. Спирты легко подвергаются окислению, в результате чего первичные спирты окисляются в альдегиды: R 2 R , а вторичные в кетоны: R R (Третичные спирты в мягких условиях не окисляются, а в жестких окисляются с разрывом углеродной цепи.) Эти процессы составляют промежуточную фазу окислительных клеточных процессов, происходящих под воздействием ферментов. Реакция обратима. При окислении первичной спиртовой группы глицерина образуется глицериновый альдегид: 2 - а при окислении вторичной диоксиацетон 2 - Окисление глицерина является также обратимым биохимическим превращением, связывающим между собой липиды и углеводы. В целом в живых организмах самые различные органические вещества (углеводы, спирты, альдегиды) обычно претерпевают ферментативное окисление до соответствующих карбоновых кислот: R 2 R

    3 R R Иногда это имеет нежелательные последствия, например: превращение метанола под действием ферментов в формальдегид и муравьиную кислоту объясняет его токсическое действие; разрушительное действие алкоголя на организм тоже объясняется его ферментативным окислением в ацетальдегид; токсичность этиленгликоля обусловлена его окислением до токсичной щавелевой кислоты. Метаболизм органических биомолекул до карбоновых кислот общая биохимическая реакция. Ключевым соединением многостадийного процесса углеводного обмена является пировиноградная кислота: 3 окисляется: При клеточном дыхании в присутствии кислорода она в конечном итоге (аэробное окисление). В отсутствие кислорода она, под действием ферментов, восстанавливается в молочную кислоту: 3 Молочная кислота накапливается в мышцах при интенсивных физических нагрузках, связанных с большими затратами кислорода. За счет различных окислительно-восстановительных процессов организм получает 99% энергии. Окисление липидов сопровождается выделением 39 кдж энергии на 1 г жира, что более чем в 2 раза превышает тепловой эффект окисления углеводов или белков. Кроме того, при окислении 1 г жира, образуется до 1,4 г воды, что является существенным вкладом в поддержание общего водно-электролитного баланса в организме. 3

    4 С помощью окислительно-восстановительных реакций в организме распадаются токсичные вещества, как образующиеся в ходе метаболизма, так и попавшие в него извне. Действие на организм многих токсичных веществ (озон, нитраты, оксиды азота и т.д.) вещества объясняется их сильными окислительными свойствами. Такие необратимо разрушают ферменты. Сильные окислители (перманганат калия, пероксид водорода, иод, хлорная известь и др.) используются в медицине и гигиенической практике как дезинфицирующие средства. Окислительно-восстановительные реакции в органической химии. (методические рекомендации) Огромное количество окислительно-восстановительных реакций протекает с участием органических веществ. Примерно 60% всех реакций, в которые вступают органические вещества, являются окислительно-восстановительными. Рассмотрим методику расстановки коэффициентов в уравнениях реакций с участием органических соединений. В органических соединениях можно или определить «среднюю» степень окисления для всех атомов углерода, или вычислить для каждого из атомов углерода в соединении отдельно. Например: 8/ С 3 Н Определить степень окисления углерода в соединении можно по формуле: с.о. (С) = m l, где m число связей данного атома углерода с гетероатомами (атомами кислорода, галогенов, азота, серы), а l число связей атомов данного атома углерода с водородом. Например, в молекуле метанола атом углерода имеет одну связь с кислородом и три связи с водородом: m = 1; l = 3, степень окисления углерода в метаноле равна 1 3 = 2. Рассмотрим переход: метан метанол метаналь муравьиная кислота оксид углерода (IV). Без применения понятия степень окисления нельзя с уверенностью сказать, являются ли реакции, с помощью которых осуществляется данный переход,

    5 окислительно-восстановительными или нет. Вычислим степени окисления углерода в перечисленных веществах. Получим: Степень окисления атомов углерода возрастает окисление Рассмотрим несколько примеров ОВР с участием органических веществ. Реакция горения н-бутана. Схема реакции: С 4 Н 10 + О 2 СО 2 + Н 2 О Средняя величина степени окисления углерода в бутане: 10/4 = 2,5. Степень окисления углерода в оксиде углерода баланса: 2,5 +4 в-ль 4С 26е 4С 2 ок-е о-ль 2 + 4e 2 13 в-е (IV) равна +4. Составим схему электронного С учетом найденных коэффициентов, уравнение реакции горения н-бутана: Но можно рассуждать и по-другому. В молекуле н-бутана степени окисления атомов углерода различаются: СН 3 СН 2 СН 2 СН 3 В этом случае схема электронного баланса будет выглядеть следующим образом: С 14e ок-е 2С 12e 2 26e e 2 13 в-е Реакция окисления этилена раствором перманганата калия в нейтральной среде. Расставим коэффициенты в уравнении реакции методом электронного баланса. Схема реакции: = 2 + KMn Mn 2 + K 2 1

    6 2 2e 2 3 ок-е Mn + 3e Mn 2 в-е Уравнение реакции: 3 2 = 2 + 2KMn Mn 2 + 2K Можно расставить коэффициенты в данном уравнении и методом полуреакций. Молекулы этилена окисляются в этой реакции с образованием молекул этиленгликоля, а перманганат-ионы восстанавливаются с образованием диоксида марганца. Схемы полуреакций: e 2 4 () Mn e Mn Суммарное электронно-ионное уравнение: Mn () 2 + 2Mn Mn () 2 + 2Mn реакции: Реакция окисления глюкозы перманганатом калия в кислой среде. Схема KMn S MnS 4 + K 2 S а) Метод электронного баланса. Первый вариант. Рассчитываем среднюю степень окисления углерода в глюкозе: e Mn +5e Mn 5 ок-е 24 в-е Второй вариант. Рассчитываем степени окисления каждого из атомов углерода в молекуле глюкозы: () 4 Схема электронного баланса усложняется: e e 4 5 ок-е e

    7 24e Mn + 5e Mn 24 в-е б) Метод полуреакций e ок-е Mn e Mn Суммарное ионное уравнение: 24 в-е Mn Mn Mn Mn Молекулярное уравнение: KMn S MnS K 2 S


    Окислительно-восстановительные реакции с участием органических веществ Рассмотрим наиболее типичные реакции окисления различных классов органических веществ. При этом будем иметь в виду, что реакция горения

    Л. В. Куцапкина Окислительновосстановительные реакции в органической химии Подготовка к ЕГЭ 2016 УДК 82-3 ББК 84-4 К95 К95 Куцапкина Л. В. Окислительно-восстановительные реакции в органической химии:

    План конспекта по теме Алканы (предельные или насыщенные углеводороды, парафины) Фамилия, имя, группа Алканы это выписать определение Гомологический ряд алканов: составьте таблицу первых десяти представителей

    УДК 54 СПОСОБЫ РАССТАНОВКИ КОЭФФИЦИЕНТОВ В РЕАКЦИЯХ ОКИСЛЕНИЯ ОРГАНИЧЕСКИХ ВЕЩЕСТВ Мартынюк К. П. Руководитель: учитель Бурякова Г.А. химии МКОУ Невонская СОШ 6 ВВЕДЕНИЕ Актуальность проблемы. Одной из

    Организация подготовки к ЕГЭ по химии: окислительно-восстановительные реакции с участием органических веществ Лидия Ивановна Асанова к.п.н., доцент кафедры естественнонаучного образования ГБОУ ДПО «Нижегородский

    П\п Тема Урок I II III 9 класс, 2014-2015 учебный год, базовый уровень, химия Тема урока Колво часов Примерные сроки Знания, умения, навыки. Теория электролитической диссоциации (10 часов) 1 Электролиты

    БИЛЕТЫ ПО ХИМИИ 10-11 КЛАСС. БИЛЕТ 1 1. Периодический закон и периодическая система химических элементов Д.И. Менделеева на основе представлений о строении атомов. Значение периоди- ческого закона для

    АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ «Химия» Автор-составитель: Рамзина А.Г. 1. Область применения программы: реализация среднего общего образования в пределах программы подготовки специалистов среднего

    Задания В7 по химии 1. Фенол реагирует с 1) хлором 2) бутаном 3) серой 4) гидроксидом натрия 5) азотной кислотой 6) оксидом кремния (IV) Фенолы- кислородсодержащие органические соединения, в молекуле которых

    Экзаменационные билеты по химии 10 класс Билет 1 1. Основные положения теории химического строения органических веществ А.М. Бутлерова. Химическое строение как порядок соединения и взаимного влияния атомов

    О. В. Архангельская, И. А. Тюльков., МГУ. Трудная задача. Начнем по порядку. Для подбора коэффициентов в уравнениях окислительно-восстановительных реакциях существуют два метода: электронного баланса электронно-ионного

    1. К автотрофным организмам относят 1) мукор 2) дрожжи 3) пеницилл 4) хлореллу ТЕМА «Энергетический обмен» 2. В процессе пиноцитоза происходит поглощение 1) жидкости 2) газов 3) твердых веществ 4) комочков

    Билет 1 1. Периодический закон и периодическая система химических элементов Д.И.Менделеева на основе представлений о строении атомов. Значение периодического закона для развития науки. 2. Предельные углеводороды,

    Задания А15 по химии 1. Свежеосаждённый гидроксид меди(ii) реагирует с 1) этиленгликолем 2) метанолом 3) диметиловым эфиром 4) пропеном Свежеосаждённый гидроксид меди (II) реагирует многоатомными спиртами

    Задания А16 по химии 1. Формальдегид не реагирует с Формальдегид это муравьиный альдегид, он же метаналь; 40%-й раствор формальдегида в воде называется формалин. По карбонильной группе идут реакции присоединения

    Четверть 1 Органические вещества это вещества, содержащие углерод. Раздел химии, изучающий соединения углерода, называется органической химией. Вещества, имеющие одинаковый состав и одинаковую молекулярную

    С п и р т ы R Функциональные г р у п п ы Функц. группа Класс органических веществ Гидроксил Карбонил Карбоксил C С п и р т ы и фенолы Альдегиды Кетоны C Карбоновые кислоты Пример 3 C C 2 C 2 3 C C C 3

    Задания А19 по химии 1. Взаимодействие оксида натрия с водой относится к реакциям 1) соединения, необратимым 2) обмена, обратимым 3) соединения, обратимым 4) обмена, необратимым Оксид натрия - основный

    Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

    СОДЕРЖАНИЕ ПРОГРАММЫ Раздел 1. Химический элемент Тема 1. Строение атомов. Периодический закон и периодическая система химических элементов Д.И. Менделеева. Современные представления о строении атомов.

    Муниципальное бюджетное общеобразовательное учреждение г. Шахты Ростовской области «Средняя общеобразовательная школа 43 имени М.Н.Тарарина» АННОТАЦИИ К РАБОЧЕЙ ПРОГРАММЕ ПО ХИМИИ В 8-11 КЛАССАХ Аннотация

    ЗАДАНИЕ 3 Примеры решения задач Пример 1. При взаимодействии 100 мл раствора неизвестной соли с раствором нитрата серебра выпадает,87 г белого осадка, а при действии на то же количество раствора сульфата

    I.Планируемые результаты освоения обучающимися основной образовательной программы основного общего образования по химии Выпускник научится: характеризовать основные методы познания: наблюдение, измерение,

    Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа 11» Рассмотрено на заседании педагогического совета Протокол от Согласовано Зам. директора по УВР М.Н.Шабурова

    Пояснительная записка Цель: систематизировать и обобщить знания учащихся по химии, подготовить учащихся к ОГЭ по химии. Задачи: 1) продолжить формирование знаний учащихся по химии; 2) продолжить формирование

    Банк заданий по химии 10 класс 1. С каждым из указанных веществ: хлороводород, водород, бромная вода будет реагировать пропан метан этан этилен 5) ацетилен 2. При выполнении задания из предложенного перечня

    Пояснительная записка Изучение химии на ступени основного общего образования направлено на достижение следующих целей: освоение важнейших знаний об основных понятиях и законах химии, химической символике;

    Муниципальное казенное образовательное учреждение "Сулевкентская средняя общеобразовательная школа" Отчет о мониторинговой работе Я_СДАМ_ЕГЭ_III_ЭТАП в 11 классе Химия 2017 г. Отчёт о диагностической работе:

    Общие положения Вступительные испытания по химии для поступающих на обучение по программам бакалавриата и программам специалитета в СибГУ им. М.Ф. Решетнева представляют собой экзамен, проводимый в письменной

    10 класс, химия,2014-2015г, базовый уровень п\п количество Дата проведения Тема урока Тема Урок часов План. факт. I Теоретические основы органической химии (3 часа) II III IV 1 2 3 4 5 6 7 8 9 10 11

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ЛУГАНСКОЙ НАРОДНОЙ РЕСПУБЛИКИ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ЛУГАНСКОЙ НАРОДНОЙ РЕСПУБЛИКИ «РЕСПУБЛИКАНСКИЙ ЦЕНТР РАЗВИТИЯ ОБРАЗОВАНИЯ»

    МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «МАСЛОВСКАЯ ШКОЛА» ДЖАНКОЙСКОГО РАЙОНА РЕСПУБЛИКИ КРЫМ РАБОЧАЯ ПРОГРАММА по химии 10-11 класс (базовый уровень) Срок реализации: 2016 2018 уч. г. Составитель:

    НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ «АССОЦИАЦИЯ МОСКОВСКИХ ВУЗОВ» ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ МСХА

    ПРОГРАММА ВСТУПИТЕЛЬНЫХ ЭКЗАМЕНОВ ПО ХИМИИ В САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ В 2009 ГОДУ 1. Предмет химии, ее задачи. Место химии среди естественных наук, взаимосвязь наук с химией.

    Powered by TCPDF (www.tcpdf.org) Пояснительная записка Изучение химии на ступени основного общего образования направлено на достижение следующих целей: освоение важнейших знаний об основных понятиях и

    1. Планируемые результаты освоения курса химии 10 класса Тема1 Теоретические основы органической химии. В результате изучения темы «Теоретические основы органической химии» учащиеся должны Знать/понимать:

    Содержание Предисловие редактора... 3 Введение... 5 Часть I. ОСНОВЫ ОБЩЕЙ ХИМИИ Раздел 1. Основные понятия и законы химии 1.1. Определение и предмет химии...9 1.2. Первоначальные сведения о строении атомов.

    Т ема: «Спирты» Карточка 1 1. Что такое функциональная группа? Приведите примеры различных функциональных групп. 2. Составьте формулы трёх изомеров вещества состава С 4 Н 10 О и дайте им названия. 3. Напишите

    Химия 10 класс. Демонстрационный вариант 2 (45 минут) 1 Диагностическая тематическая работа 2 по подготовке к ЕГЭ по ХИМИИ по темам «Кислородсодержащие органические соединения: спирты, фенолы, альдегиды

    Муниципальное общеобразовательное учреждение основная школа 8 города Фурманова Рассмотрено На заседании метод.совета /_С.В.Сокова_/ ФИО Протокол от 20 г. Согласовано Заместитель директора по УВР МОУ ООШ

    ХИМИЯ Теория строения вещества Атом. Состав атомных ядер. Химический элемент. Постоянство состава вещества. Относительная атомная и относительная молекулярная масса. Закон сохранения массы, его значение

    2 Муниципальное бюджетное общеобразовательное учреждение «Перовская школа-гимназия» РАССМОТРЕНО СОГЛАСОВАНО УТВЕРЖДАЮ на заседании методического замдиректора по УВР Директор МБОУ объединения учителей «Перовская

    Задания В6 по химии 1. Взаимодействие 2-метилпропана и брома при комнатной температуре на свету 1) относится к реакциям замещения 2) протекает по радикальному механизму 3) приводит к преимущественному

    Особенности изучения химии на углублённом уровне Центр естественно-математического образования зав. редакцией химии Сладков Сергей Анатольевич ПРОПЕДЕВТИЧЕСКОЕ ИЗУЧЕНИЕ ХИМИИ 1. Более раннее изучения химии

    Демоверсия работы по химии за курс 0 класса Часть А.. При выполнении задания из предложенного перечня ответов выберите два правильных и запишите цифры, под которыми они указаны. Для этанола верны следующие

    Департамент здравоохранения города Москвы Государственное бюджетное профессиональное образовательное учреждение Департамента здравоохранения города Москвы «Медицинский колледж 2» ОДОБРЕН УТВЕРЖДАЮ Методическим

    I.Требования к уровню подготовки учащихся Учащиеся в результате усвоения раздела должны знать/понимать: химическую символику: знаки химических элементов, формулы химических веществ и уравнения химических

    Пояснительная записка Рабочая программа составлена на основе примерной программы основного общего образования и авторской программы Гара Н.Н для общеобразовательных учреждений к учебникам химии авторов

    ДИАГНОСТИЧЕСКАЯ КОНТРОЛЬНАЯ РАБОТА ПО органической ХИМИИ 10-11 класс Продолжительность: 50 минут Схема анализа диагностической работы Вопросы 1 2 3 22 % учащихся выполнивших задания 1 вариант 2 вариант

    Задания В2 по химии 1. Установите соответствие между уравнением реакции и свойством азота, которое он проявляет в этой реакции. УРАВНЕНИЕ РЕАКЦИИ А) В) СВОЙСТВО АЗОТА 1) окислитель 2) восстановитель 3)

    Государственный Университет Медицины и Фармации им. Николая Тестемицану Аналитическая программа для вступительных экзаменов. Химия Введение Знания химии необходимы для выявления структур и свойств основных

    ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ХИМИИ Программа по химии для поступающих в университет состоит из четырех частей. В первой части представлены основные теоретические понятия химии, которыми должен

    Химия 1. Цель и задачи дисциплины Целью освоения дисциплины «Химия» является: освоение знаний о химической составляющей естественно-научной картины мира, важнейших химических понятиях, законах и теориях;

    Билет 1. 1. Предмет органической химии. Сигма-связь, пи-связь. Гибридизация орбиталей. Первое, второе и третье валентные состояния атома углерода Билет 2. 1. Теория строения органических веществ Бутлерова

    ПРОГРАММА. ОРГАНИЧЕСКАЯ ХИМИЯ. (2 ч в неделю; всего 68 ч, из них 3 ч резервное время). ВВЕДЕНИЕ В ОРГАНИЧЕСКУЮ ХИМИЮ (5 ч) Предмет органической химии. Взаимосвязь неорганических и органических веществ.

    Пояснительная записка Рабочая программа по химии составлена на основе: федерального компонента государственного образовательного стандарта среднего (полного) общего образования. М.: «Просвещение» 2004,

    Класс, Содержание работы работы 7 класс Предмет химии. Вещества. 1 2 Физические и химические явления. 3 Государственное бюджетное учреждение дополнительного образования Псковской области «Псковский областной

    ЗАДАНИЕ 3 Примеры решения задач Пример 1. Напишите все изомеры вторичных спиртов гексанола и назовите их по заместительной номенклатуре. 2 2 2 гексанол-2 2 2 2 гексанол-3 2 4-метилпентанол-2 2 3-метилпентанол-2

    ЗАДАНИЯ для 2 этапа Олимпиады «Первые шаги в медицину» по химии ФИО КЛАСС ШКОЛА АДРЕС, ТЕЛЕФОН Вариант 1 (60 баллов) ЧАСТЬ 1 (12 балов) При выполнении заданий этой части в бланке ответов 1 под номером

    Тематическое планирование на 2015-2016 уч год химия 10 класс Учебник О.С. Габриелян урока Дата Название раздела, темы урока(с указанием количества часов) Формируемые знания, умения, навыки. Способы деятельности