Что больше 5 12 или 7 12. Сравнение дробей. Как сравнивать дроби с разными знаменателями

Две неравные дроби подлежат дальнейшему сравнению для выяснения, какая дробь больше, а какая дробь меньше. Для сравнения двух дробей существует правило сравнения дробей, которое мы сформулируем ниже, а также разберем примеры применения этого правила при сравнении дробей с одинаковыми и разными знаменателями. В заключение покажем, как сравнить дроби с одинаковыми числителями, не приводя их к общему знаменателю, а также рассмотрим, как сравнить обыкновенную дробь с натуральным числом.

Навигация по странице.

Сравнение дробей с одинаковыми знаменателями

Сравнение дробей с одинаковыми знаменателями по сути является сравнением количества одинаковых долей. К примеру, обыкновенная дробь 3/7 определяет 3 доли 1/7 , а дробь 8/7 соответствует 8 долям 1/7 , поэтому сравнение дробей с одинаковыми знаменателями 3/7 и 8/7 сводится к сравнению чисел 3 и 8 , то есть, к сравнению числителей.

Из этих соображений вытекает правило сравнения дробей с одинаковыми знаменателями : из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше, и меньше та дробь, числитель которой меньше.

Озвученное правило объясняет, как сравнить дроби с одинаковыми знаменателями. Рассмотрим пример применения правила сравнения дробей с одинаковыми знаменателями.

Пример.

Какая дробь больше: 65/126 или 87/126 ?

Решение.

Знаменатели сравниваемых обыкновенных дробей равны, а числитель 87 дроби 87/126 больше числителя 65 дроби 65/126 (при необходимости смотрите сравнение натуральных чисел). Поэтому, согласно правилу сравнения дробей с одинаковыми знаменателями, дробь 87/126 больше дроби 65/126 .

Ответ:

Сравнение дробей с разными знаменателями

Сравнение дробей с разными знаменателями можно свести к сравнению дробей с одинаковыми знаменателями. Для этого лишь нужно сравниваемые обыкновенные дроби привести к общему знаменателю .

Итак, чтобы сравнить две дроби с разными знаменателями, нужно

  • привести дроби к общему знаменателю;
  • сравнить полученные дроби с одинаковыми знаменателями.

Разберем решение примера.

Пример.

Сравните дробь 5/12 с дробью 9/16 .

Решение.

Сначала приведем данные дроби с разными знаменателями к общему знаменателю (смотрите правило и примеры приведения дробей к общему знаменателю). В качестве общего знаменателя возьмем наименьший общий знаменатель, равный НОК(12, 16)=48 . Тогда дополнительным множителем дроби 5/12 будет число 48:12=4 , а дополнительным множителем дроби 9/16 будет число 48:16=3 . Получаем и .

Сравнив полученные дроби, имеем . Следовательно, дробь 5/12 меньше, чем дробь 9/16 . На этом сравнение дробей с разными знаменателями завершено.

Ответ:

Получим еще один способ сравнения дробей с разными знаменателями, который позволит выполнять сравнение дробей без их приведения к общему знаменателю и всех сложностей, связанных с этим процессом.

Для сравнения дробей a/b и c/d , их можно привести к общему знаменателю b·d , равному произведению знаменателей сравниваемых дробей. В этом случае дополнительными множителями дробей a/b и c/d являются числа d и b соответственно, а исходные дроби приводятся к дробям и с общим знаменателем b·d . Вспомнив правило сравнения дробей с одинаковыми знаменателями, заключаем, что сравнение исходных дробей a/b и c/d свелось к сравнению произведений a·d и c·b .

Отсюда вытекает следующее правило сравнения дробей с разными знаменателями : если a·d>b·c , то , а если a·d

Рассмотрим сравнение дробей с разными знаменателями этим способом.

Пример.

Сравните обыкновенные дроби 5/18 и 23/86 .

Решение.

В этом примере a=5 , b=18 , c=23 и d=86 . Вычислим произведения a·d и b·c . Имеем a·d=5·86=430 и b·c=18·23=414 . Так как 430>414 , то дробь 5/18 больше, чем дробь 23/86 .

Ответ:

Сравнение дробей с одинаковыми числителями

Дроби с одинаковыми числителями и разными знаменателями, несомненно, можно сравнивать с помощью правил, разобранных в предыдущем пункте. Однако, результат сравнения таких дробей легко получить, сравнив знаменатели этих дробей.

Существует такое правило сравнения дробей с одинаковыми числителями : из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель, и меньше та дробь, знаменатель которой больше.

Рассмотрим решение примера.

Пример.

Сравните дроби 54/19 и 54/31 .

Решение.

Так как числители сравниваемых дробей равны, а знаменатель 19 дроби 54/19 меньше знаменателя 31 дроби 54/31 , то 54/19 больше 54/31 .

Задачи урока:

  1. Обучающие: научить сравнивать обыкновенные дроби различных видов, используя различные приемы;
  2. Развивающие: развитие основных приемов мыслительной деятельности, обобщения сравнения, выделение главного; развитие памяти, речи.
  3. Воспитательные: учиться слушать друг друга, воспитание взаимовыручки, культуры общения и поведения.

Этапы урока:

1. Организационный.

Начнем урок словами французского писателя А.Франса: “Учиться можно весело….Чтобы переварить знания, надо поглощать их с аппетитом”.

Последуем этому совету, постараемся быть внимательными, будем поглощать знания с большим желанием, т.к. они пригодятся нам в дальнейшем.

2. Актуализация знаний учащихся.

1.)Фронтальная устная работа учащихся.

Цель: повторить пройденный материал, требующийся при изучении нового:

А) правильные и неправильные дроби;
Б) приведение дробей к новому знаменателю;
В) нахождение наименьшего общего знаменателя;

(Проводится работа с файлами. Учащиеся имеют их в наличии на каждом уроке. На них пишут ответы фламастером, а за тем ненужная информация стирается.)

Задания для устной работы.

1. Назвать лишнюю дробь среди цепочки:

А) 5/6; 1/3; 7/10; 11/3; 4/7.
Б) 2/6; 6/18; 1/3; 4/5; 4/12.

2. Привести дроби к новому знаменателю 30:

1/2; 2/3; 4/5; 5/6; 1/10.

Найти наименьший общий знаменатель дробей:

1/5 и 2/7; 3/4 и 1/6; 2/9 и 1/2.

2.) Игровая ситуация.

Ребята, наш знакомый клоун (учащиеся познакомились с ним в начале учебного года) попросили меня помочь решить ему задачу. Но я считаю, что вы, ребята, сможете без меня помочь нашему другу. А задача следующая.

“Сравнить дроби:

а) 1/2 и 1/6;
б) 3/5 и 1/3;
в) 5/6 и 1/6;
г) 12/7 и 4/7;
д) 3 1/7 и 3 1/5;
е) 7 5/6 и 3 1/2;
ж) 1/10 и 1;
з) 10/3 и 1;
и) 7/7 и 1.”

Ребята, чтобы помочь клоуну, чему мы должны научиться?

Цель урока, задачи (учащиеся формулируют самостоятельно).

Учитель помогает им, задавая вопросы:

а) а какие из пар дробей мы сможем уже сравнить?

б) какой инструмент для сравнения дробей нам необходим?

3. Ребята в группах (в постоянных разноуровневых).

Каждой группе выдается задание и инструкция к его выполнению.

Первая группа: Сравнить смешанные дроби:

а) 1 1/2 и 2 5/6;
б) 3 1/2 и 3 4/5

и вывести правило равнения смешанных дробей с одинаковыми и с разными целыми частями.

Инструкция: Сравнение смешанных дробей (используется числовой луч)

  1. сравните целые части дробей и сделайте вывод;
  2. сравните дробные части (правило сравнения дробных частей не выводить);
  3. составьте правило – алгоритм:

Вторая группа: Сравнить дроби с разными знаменателями и разными числителями. (использовать числовой луч)

а) 6/7 и 9/14;
б) 5/11 и 1/22

Инструкция

  1. Сравните знаменатели
  2. Подумайте, нельзя ли привести дроби к общему знаменателю
  3. Правило начните со слов: “Чтобы сравнить дроби с разными знаменателями, надо…”

Третья группа: Сравнение дробей с единицей.

а)2/3 и 1;
б) 8/7 и 1;
в)10/10 и 1 и сформулировать правило.

Инструкция

Рассмотрите все случаи: (используйте числовой луч)

а) Если числитель дроби равен знаменателю, ………;
б) Если числитель дроби меньше знаменателя,………;
в) Если числитель дроби больше знаменателя,………. .

Сформулируйте правило.

Четвертая группа: Сравните дроби:

а) 5/8 и 3/8;
б) 1/7 и 4/7 и сформулируйте правило сравнения дробей с одинаковым знаменателем.

Инструкция

Используйте числовой луч.

Сравните числители и сделайте вывод, начиная словами: “Из двух дробей с одинаковыми знаменателями……”.

Пятая группа: Сравните дроби:

а) 1/6 и 1/3;
б) 4/9 и 4/3, используя числовой луч:

0__.__.__1/6__.__.__1/3__.__.4/9__.__.__.__.__.__.__.__.__.__1__.__.__.__.__.__4/3__.__

Сформулируйте правило сравнения дробей с одинаковыми числителями.

Инструкция

Сравните знаменатели и сделайте вывод, начиная со слов:

“Из двух дробей с одинаковыми числителями………..”.

Шестая группа: Сравните дроби:

а) 4/3 и 5/6; б) 7/2 и 1/2, используя числовой луч

0__.__.__1/2__.__5/6__1__.__4/3__.__.__.__.__.__.__.__.__.__.__.__.__7/2__.__

Сформулируйте правило сравнения правильных и неправильных дробей.

Инструкция.

Подумайте, какая дробь всегда больше, правильная или неправильная.

4. Обсуждение выводов, сделанных в группах.

Слово каждой группе. Формулировка правил учащихся и сравнение их с эталонами соответствующих правил. Далее выдаются распечатки правила сравнения различных видов обыкновенных дробей каждому учащемуся.

5. Возвращаемся к задаче, поставленной в начале урока. (Решаем задачу клоуна вместе).

6. Работа в тетрадях. Используя правила сравнения дробей, учащиеся под руководством учителя сравнивают дроби:

а) 8/13 и 8/25;
б)11/42 и 3/42;
в)7/5 и 1/5;
г) 18/21и 7/3;
д) 2 1/2 и 3 1/5 ;
е) 5 1/2 и 5 4/3;

(возможно приглашение ученика к доске).

7. Учащимся предлагается выполнить тест по сравнению дробей на два варианта.

1 вариант.

1) сравнить дроби: 1/8 и 1/12

а) 1/8 > 1/12;
б) 1/8 <1/12;
в) 1/8=1/12

2) Что больше: 5/13 или 7/13?

а) 5/13;
б) 7/13;
в) равны

3) Что меньше: 2\3 или 4/6?

а) 2/3;
б) 4/6;
в) равны

4) Какая из дробей меньше 1: 3/5; 17/9; 7/7?

а) 3/5;
б) 17/9;
в) 7/7

5) Какая из дробей больше 1: ?; 7/8; 4/3?

а) 1/2;
б) 7/8;
в) 4/3

6) Сравнить дроби: 2 1/5 и 1 7/9

а) 2 1/5<1 7/9;
б) 2 1/5 = 1 7/9;
в) 2 1/5 >1 7/9

2 вариант.

1) сравнить дроби: 3/5 и 3/10

а) 3/5 > 3/10;
б) 3/5<3/10;
в) 3/5=3/10

2) Что больше: 10/12или1/12?

а) равны;
б) 10/12;
в) 1/12

3) Что меньше: 3/5 или 1/10?

а) 3/5;
б) 1/10;
в) равны

4) Какая из дробей меньше 1: 4/3;1/15;16/16?

а) 4/3;
б) 1/15;
в) 16/16

5) Какая из дробей больше 1: 2/5;9/8 ;11/12 ?

а) 2/5;
б) 9/8;
в) 11/12

6) Сравнить дроби: 3 1/4 и 3 2/3

а) 3 1/4=3 2/3;
б) 3 1/4 > 3 2/3;
в) 3 1/4 < 3 2/3

Ответы к тесту:

1 вариант: 1а, 2б, 3в, 4а, 5б, 6а

2 вариант: 2а, 2б, 3б, 4б, 5б, 6в

8. Еще раз возвращаемся к цели урока.

Проверяем правила сравнения и даем дифференцированное домашнее задание:

1,2,3 группы – придумать на каждое правило сравнение по два примера и решить их.

4,5,6 группы - №83 а,б,в, №84 а,б,в (из учебника).

В этом уроке мы научимся сравнивать дроби между собой. Это очень полезный навык, который необходим для решения целого класса более сложных задач.

Для начала напомню определение равенства дробей:

Дроби a /b и c /d называются равными, если ad = bc .

  1. 5/8 = 15/24, поскольку 5 · 24 = 8 · 15 = 120;
  2. 3/2 = 27/18, поскольку 3 · 18 = 2 · 27 = 54.

Во всех остальных случаях дроби являются неравными, и для них справедливо одно из следующих утверждений:

  1. Дробь a /b больше, чем дробь c /d ;
  2. Дробь a /b меньше, чем дробь c /d .

Дробь a /b называется большей, чем дробь c /d , если a /b − c /d > 0.

Дробь x /y называется меньшей, чем дробь s /t , если x /y − s /t < 0.

Обозначение:

Таким образом, сравнение дробей сводится к их вычитанию. Вопрос: как не запутаться с обозначениями «больше» (>) и «меньше» (<)? Для ответа просто приглядитесь к тому, как выглядят эти знаки:

  1. Расширяющаяся часть галки всегда направлена к большему числу;
  2. Острый нос галки всегда указывает на меньшее число.

Часто в задачах, где требуется сравнить числа, между ними ставят знак «∨». Это - галка носом вниз, что как бы намекает: большее из чисел пока не определено.

Задача. Сравнить числа:

Следуя определению, вычтем дроби друг из друга:


В каждом сравнении нам потребовалось приводить дроби к общему знаменателю. В частности, используя метод «крест-накрест» и поиск наименьшего общего кратного. Я намеренно не акцентировал внимание на этих моментах, но если что-то непонятно, загляните в урок «Сложение и вычитание дробей » - он совсем легкий.

Сравнение десятичных дробей

В случае с десятичными дробями все намного проще. Здесь не надо ничего вычитать - достаточно просто сравнить разряды. Не лишним будет вспомнить, что такое значащая часть числа. Тем, кто забыл, предлагаю повторить урок «Умножение и деление десятичных дробей » - это также займет буквально пару минут.

Положительная десятичная дробь X больше положительной десятичной дроби Y , если в ней найдется такой десятичный разряд, что:

  1. Цифра, стоящая в этом разряде в дроби X , больше соответствующей цифры в дроби Y ;
  2. Все разряды старше данного у дробей X и Y совпадают.
  1. 12,25 > 12,16. Первые два разряда совпадают (12 = 12), а третий - больше (2 > 1);
  2. 0,00697 < 0,01. Первые два разряда опять совпадают (00 = 00), а третий - меньше (0 < 1).

Другими словами, мы последовательно просматриваем десятичные разряды и ищем различие. При этом большей цифре соответствует и большая дробь.

Однако это определение требует пояснения. Например, как записывать и сравнивать разряды до десятичной точки? Вспомните: к любому числу, записанному в десятичной форме, можно приписывать слева любое количество нулей. Вот еще пара примеров:

  1. 0,12 < 951, т.к. 0,12 = 000,12 - приписали два нуля слева. Очевидно, 0 < 9 (речь идет о старшем разряде).
  2. 2300,5 > 0,0025, т.к. 0,0025 = 0000,0025 - приписали три нуля слева. Теперь видно, что различие начинается в первом же разряде: 2 > 0.

Конечно, в приведенных примерах с нулями был явный перебор, но смысл именно такой: заполнить недостающие разряды слева, а затем сравнить.

Задача. Сравните дроби:

  1. 0,029 ∨ 0,007;
  2. 14,045 ∨ 15,5;
  3. 0,00003 ∨ 0,0000099;
  4. 1700,1 ∨ 0,99501.

По определению имеем:

  1. 0,029 > 0,007. Первые два разряда совпадают (00 = 00), дальше начинается различие (2 > 0);
  2. 14,045 < 15,5. Различие - во втором разряде: 4 < 5;
  3. 0,00003 > 0,0000099. Здесь надо внимательно считать нули. Первые 5 разрядов в обеих дробях нулевые, но дальше в первой дроби стоит 3, а во второй - 0. Очевидно, 3 > 0;
  4. 1700,1 > 0,99501. Перепишем вторую дробь в виде 0000,99501, добавив 3 нуля слева. Теперь все очевидно: 1 > 0 - различие обнаружено в первом же разряде.

К сожалению, приведенная схема сравнения десятичных дробей не универсальна. Этим методом можно сравнивать только положительные числа . В общем же случае алгоритм работы следующий:

  1. Положительная дробь всегда больше отрицательной;
  2. Две положительные дроби сравниваются по приведенному выше алгоритму;
  3. Две отрицательные дроби сравниваются так же, но в конце знак неравенства меняется на противоположный.

Ну как, неслабо? Сейчас рассмотрим конкретные примеры - и все станет понятно.

Задача. Сравните дроби:

  1. 0,0027 ∨ 0,0072;
  2. −0,192 ∨ −0,39;
  3. 0,15 ∨ −11,3;
  4. 19,032 ∨ 0,0919295;
  5. −750 ∨ −1,45.
  1. 0,0027 < 0,0072. Здесь все стандартно: две положительные дроби, различие начинается на 4 разряде (2 < 7);
  2. −0,192 > −0,39. Дроби отрицательные, 2 разряд разный. 1 < 3, но в силу отрицательности знак неравенства меняется на противоположный;
  3. 0,15 > −11,3. Положительное число всегда больше отрицательного;
  4. 19,032 > 0,091. Достаточно вторую дробь переписать в виде 00,091, чтобы увидеть, что различие возникает уже в 1 разряде;
  5. −750 < −1,45. Если сравнить числа 750 и 1,45 (без минусов), легко видеть, что 750 > 001,45. Различие - в первом же разряде.

Данная статья рассматривает сравнение дробей. Здесь мы выясним, какая из дробей больше или меньше, применим правило, разберем примеры решения. Сравним дроби как с одинаковыми, так и разными знаменателями. Произведем сравнение обыкновенной дроби с натуральным числом.

Yandex.RTB R-A-339285-1

Сравнение дробей с одинаковыми знаменателями

Когда производится сравнение дробей с одинаковыми знаменателями, мы работаем только с числителем, а значит, сравниваем доли числа. Если имеется дробь 3 7 , то она имеет 3 доли 1 7 , тогда дробь 8 7 имеет 8 таких долей. Иначе говоря, если знаменатель одинаковый, производится сравнение числителей этих дробей, то есть 3 7 и 8 7 сравниваются числа 3 и 8 .

Отсюда следует правило сравнения дробей с одинаковыми знаменателями:из имеющихся дробей с одинаковыми показателями считается большей та дробь, у которой числитель больше и наоборот.

Это говорит о том, что следует обратить внимание на числители. Для этого рассмотрим пример.

Пример 1

Произвести сравнение заданных дробей 65 126 и 87 126 .

Решение

Так как знаменатели дробей одинаковые, переходим к числителям. Из чисел 87 и 65 очевидно, что 65 меньше. Исходя из правила сравнения дробей с одинаковыми знаменателями имеем, что 87 126 больше 65 126 .

Ответ: 87 126 > 65 126 .

Сравнение дробей с разными знаменателями

Сравнение таких дробей можно соотнести со сравнением дробей с одинаковыми показателями, но имеется различие. Теперь необходимо дроби приводить к общему знаменателю.

Если имеются дроби с разными знаменателями, для их сравнения необходимо:

  • найти общий знаменатель;
  • сравнить дроби.

Рассмотрим данные действия на примере.

Пример 2

Произвести сравнение дробей 5 12 и 9 16 .

Решение

В первую очередь необходимо привести дроби к общему знаменателю. Это делается таким образом: находится НОК, то есть наименьший общий делитель, 12 и 16 . Это число 48 . Необходимо надписать дополнительные множители к первой дроби 5 12 , это число находится из частного 48: 12 = 4 , для второй дроби 9 16 – 48: 16 = 3 . Запишем получившееся таким образом: 5 12 = 5 · 4 12 · 4 = 20 48 и 9 16 = 9 · 3 16 · 3 = 27 48 .

После сравнения дробей получаем, что 20 48 < 27 48 . Значит, 5 12 меньше 9 16 .

Ответ: 5 12 < 9 16 .

Имеется еще один способ сравнения дробей с разными знаменателями. Он выполняется без приведения к общему знаменателю. Рассмотрим на примере. Чтобы сравнить дроби a b и c d , приводим к общему знаменателю, тогда b · d , то есть произведение этих знаменателей. Тогда дополнительные множители для дробей будут являться знаменатели соседней дроби. Это запишется так a · d b · d и c · b d · b . Используя правило с одинаковыми знаменателями, имеем, что сравнение дробей свелось к сравнениям произведений a · d и c · b . Отсюда получаем правило сравнения дробей с разными знаменателями:если a · d > b · c , тогда a b > c d , но если a · d < b · c , тогда a b < c d . Рассмотрим сравнение с разными знаменателями.

Пример 3

Произвести сравнение дробей 5 18 и 23 86 .

Решение

Данный пример имеет a = 5 , b = 18 , c = 23 и d = 86 . Тогда необходимо вычислить a · d и b · c . Отсюда следует, что a · d = 5 · 86 = 430 и b · c = 18 · 23 = 414 . Но 430 > 414 , тогда заданная дробь 5 18 больше, чем 23 86 .

Ответ: 5 18 > 23 86 .

Сравнение дробей с одинаковыми числителями

Если дроби имеют одинаковые числители и разные знаменатели, тогда можно выполнять сравнение по предыдущему пункту. Результат сравнения возможет при сравнении их знаменателей.

Имеется правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та дробь, которая имеет меньший знаменатель и наоборот.

Рассмотрим на примере.

Пример 4

Произвести сравнение дробей 54 19 и 54 31 .

Решение

Имеем, что числители одинаковые, значит, что дробь, имеющая знаменатель 19 больше дроби, которая имеет знаменатель 31 . Это понятно, исходя из правила.

Ответ: 54 19 > 54 31 .

Иначе можно рассмотреть на примере. Имеется две тарелки, на которых 1 2 пирога, анна другой 1 16 . Если съесть 1 2 пирога, то насытишься быстрей, нежели только 1 16 . Отсюда вывод, что наибольший знаменатель при одинаковых числителях является наименьшим при сравнении дробей.

Сравнение дроби с натуральным числом

Сравнение обыкновенной дроби с натуральным числом идет как и сравнение двух дробей с записью знаменателей в виде 1 . Для детального рассмотрения ниже приведем пример.

Пример 4

Необходимо выполнить сравнение 63 8 и 9 .

Решение

Необходимо представить число 9 в виде дроби 9 1 . Тогда имеем необходимость сравнения дробей 63 8 и 9 1 . Далее следует приведение к общему знаменателю путем нахождения дополнительных множителей. После этого видим, что нужно сравнить дроби с одинаковыми знаменателями 63 8 и 72 8 . Исходя из правила сравнения, 63 < 72 , тогда получаем 63 8 < 72 8 . Значит, заданная дробь меньше целого числа 9 , то есть имеем 63 8 < 9 .

Ответ: 63 8 < 9 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Не только простые числа можно сравнивать, но и дроби тоже. Ведь дробь — это такое же число как, к примеру, и натуральные числа. Нужно знать только правила, по которым сравнивают дроби.

Сравнение дробей с одинаковыми знаменателями.

Если у двух дробей одинаковые знаменатели, то такие дроби сравнить просто.

Чтобы сравнить дроби с одинаковыми знаменателями, нужно сравнить их числители. Та дробь больше у которой больше числитель.

Рассмотрим пример:

Сравните дроби \(\frac{7}{26}\) и \(\frac{13}{26}\).

Знаменатели у обоих дробей одинаковые равны 26, поэтому сравниваем числители. Число 13 больше 7. Получаем:

\(\frac{7}{26} < \frac{13}{26}\)

Сравнение дробей с равными числителями.

Если у дроби одинаковые числители, то больше та дробь, у которой знаменатель меньше.

Понять это правило можно, если привести пример из жизни. У нас есть торт. К нам в гости могут прийти 5 или 11 гостей. Если придут 5 гостей, то мы разрежем торт на 5 равных кусков, а если придут 11 гостей, то разделим на 11 равных кусков. А теперь подумайте в каком случаем на одного гостя придется кусок торта большего размера? Конечно, когда придут 5 гостей, кусок торта будет больше.

Или еще пример. У нас есть 20 конфет. Мы можем поровну раздать конфеты 4 друзьям или поровну поделить конфеты между 10 друзьями. В каком случае у каждого друга будет конфет больше? Конечно, когда мы разделим только на 4 друзей, количество конфет у каждого друга будет больше. Проверим эту задачу математически.

\(\frac{20}{4} > \frac{20}{10}\)

Если мы до решаем эти дроби, то получим числа \(\frac{20}{4} = 5\) и \(\frac{20}{10} = 2\). Получаем, что 5 > 2

В этом и заключается правило сравнения дробей с одинаковыми числителями.

Рассмотрим еще пример.

Сравните дроби с одинаковым числителем \(\frac{1}{17}\) и \(\frac{1}{15}\) .

Так как числители одинаковые, больше та дробь, где знаменатель меньше.

\(\frac{1}{17} < \frac{1}{15}\)

Сравнение дробей с разными знаменателями и числителями.

Чтобы сравнить дроби с разными знаменателями, необходимо дроби привести к , а потом сравнить числители.

Сравните дроби \(\frac{2}{3}\) и \(\frac{5}{7}\).

Сначала найдем общий знаменатель дробей. Он будет равен числу 21.

\(\begin{align}&\frac{2}{3} = \frac{2 \times 7}{3 \times 7} = \frac{14}{21}\\\\&\frac{5}{7} = \frac{5 \times 3}{7 \times 3} = \frac{15}{21}\\\\ \end{align}\)

Потом переходим к сравнению числителей. Правило сравнения дробей с одинаковыми знаменателями.

\(\begin{align}&\frac{14}{21} < \frac{15}{21}\\\\&\frac{2}{3} < \frac{5}{7}\\\\ \end{align}\)

Сравнение .

Неправильная дробь всегда больше правильной. Потому что неправильная дробь больше 1, а правильная дробь меньше 1.

Пример:
Сравните дроби \(\frac{11}{13}\) и \(\frac{8}{7}\).

Дробь \(\frac{8}{7}\) неправильная и она больше 1.

\(1 < \frac{8}{7}\)

Дробь \(\frac{11}{13}\) правильная и она меньше 1. Сравниваем:

\(1 > \frac{11}{13}\)

Получаем, \(\frac{11}{13} < \frac{8}{7}\)

Вопросы по теме:
Как сравнить дроби с разными знаменателями?
Ответ: надо привести к общему знаменателю дроби и потом сравнить их числители.

Как сравнивать дроби?
Ответ: сначала нужно определиться к какой категории относятся дроби: у них есть общий знаменатель, у них есть общий числитель, у них нет общего знаменателя и числителя или у вас правильная и неправильная дробь. После классификации дробей применить соответствующее правило сравнения.

Что такое сравнение дробей с одинаковыми числителями?
Ответ: если у дробей одинаковые числители, та дробь больше у которой знаменатель меньше.

Пример №1:
Сравните дроби \(\frac{11}{12}\) и \(\frac{13}{16}\).

Решение:
Так как нет одинаковых числителей или знаменателей, применяем правило сравнения с разными знаменателями. Нужно найти общий знаменатель. Общий знаменатель будет равен 96. Приведем дроби к общему знаменателю. Первую дробь \(\frac{11}{12}\) умножим на дополнительный множитель 8, а вторую дробь \(\frac{13}{16}\) умножим на 6.

\(\begin{align}&\frac{11}{12} = \frac{11 \times 8}{12 \times 8} = \frac{88}{96}\\\\&\frac{13}{16} = \frac{13 \times 6}{16 \times 6} = \frac{78}{96}\\\\ \end{align}\)

Сравниваем дроби числителями, та дробь больше у которой числитель больше.

\(\begin{align}&\frac{88}{96} > \frac{78}{96}\\\\&\frac{11}{12} > \frac{13}{16}\\\\ \end{align}\)

Пример №2:
Сравните правильную дробь с единицей?

Решение:
Любая правильная дробь всегда меньше 1.

Задача №1:
Сын с отцом играли в футбол. Сын из 10 подходов в ворота попал 5 раз. А папа из 5 подходов попал в ворота 3 раза. Чей результат лучше?

Решение:
Сын попал из 10 возможных подходов 5 раз. Запишем в виде дроби \(\frac{5}{10} \).
Папа попал из 5 возможных подходов 3 раз. Запишем в виде дроби \(\frac{3}{5} \).

Сравним дроби. У нас разные числители и знаменатели, приведем к одному знаменателю. Общий знаменатель будет равен 10.

\(\begin{align}&\frac{3}{5} = \frac{3 \times 2}{5 \times 2} = \frac{6}{10}\\\\&\frac{5}{10} < \frac{6}{10}\\\\&\frac{5}{10} < \frac{3}{5}\\\\ \end{align}\)

Ответ: у папы результат лучше.