Что такое фермент. Как возникают ферменты. Множественные формы ферментов

История изучения

Термин фермент предложен в XVII веке химиком ван Гельмонтом при обсуждении механизмов пищеварения .

В кон. ХVIII - нач. XIX вв. уже было известно, что мясо переваривается желудочным соком , а крахмал превращается в сахар под действием слюны. Однако механизм этих явлений был неизвестен .

Классификация ферментов

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ , - Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:

  • КФ 1: Оксидоредуктазы , катализирующие окисление или восстановление. Пример: каталаза , алкогольдегидрогеназа .
  • КФ 2: Трансферазы , катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы , переносящие фосфатную группу, как правило, с молекулы АТФ .
  • КФ 3: Гидролазы , катализирующие гидролиз химических связей. Пример: эстеразы , пепсин , трипсин , амилаза , липопротеинлипаза .
  • КФ 4: Лиазы , катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.
  • КФ 5: Изомеразы , катализирующие структурные или геометрические изменения в молекуле субстрата.
  • КФ 6: Лигазы , катализирующие образование химических связей между субстратами за счёт гидролиза АТФ . Пример: ДНК-полимераза .

Кинетические исследования

Простейшим описанием кинетики односубстратных ферментативных реакций является уравнение Михаэлиса - Ментен (см. рис.). На сегодняшний момент описано несколько механизмов действия ферментов. Например, действие многих ферментов описывается схемой механизма «пинг-понг».

В 1972-1973 г.г. была создана первая квантово-механическая модель ферментативного катализа (авторы М. В. Волькенштейн , Р. Р. Догонадзе, З. Д. Урушадзе и др.) .

Структура и механизм действия ферментов

Активность ферментов определяется их трёхмерной структурой .

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот , которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Активный центр ферментов

В активном центре условно выделяют :

  • каталитический центр - непосредственно химически взаимодействующий с субстратом;
  • связывающий центр (контактная или «якорная» площадка) - обеспечивающий специфическое сродство к субстрату и формирование комплекса фермент-субстрат.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторов или ионов металлов.

Фермент, соединяясь с субстратом:

  • очищает субстрат от водяной «шубы»
  • располагает реагирующие молекулы субстратов в пространстве нужным для протекания реакции образом
  • подготавливает к реакции (например, поляризует) молекулы субстратов.

Обычно присоединение фермента к субстрату происходит за счет ионных или водородных связей, редко - за счет ковалентных. В конце реакции её продукт (или продукты) отделяются от фермента.

В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (фактически происходит другая реакция), например:

В отсутствие фермента:

  • А+В = АВ

В присутствии фермента:

  • А+Ф = АФ
  • АФ+В = АВФ
  • АВФ = АВ+Ф

где А, В - субстраты, АВ - продукт реакции, Ф - фермент.

Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции (для протекания которых требуется энергия). Поэтому ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделением большего количества энергии. Например, реакции синтеза биополимеров часто сопрягаются с реакцией гидролиза АТФ.

Для активных центров некоторых ферментов характерно явление кооперативности .

Специфичность

Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (образуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий). Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидаза трипсин разрывает пептидную связь только после аргинина или лизина , если за ними не следует пролин, а пепсин гораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.

Модель «ключ-замок»

Гипотеза Кошланда об индуцированном соответствии

Более реалистичная ситуация в случае индуцированного соответствия. Неправильные субстраты - слишком большие или слишком маленькие - не подходят к активному центру

В 1890 г. Эмиль Фишер предположил, что специфичность ферментов определяется точным соответствием формы фермента и субстрата . Такое предположение называется моделью «ключ-замок». Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса. Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике.

Модель индуцированного соответствия

В 1958 г. Дениел Кошланд предложил модификацию модели «ключ-замок» . Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния. Эта модель получила название «рука-перчатка».

Модификации

Многие ферменты после синтеза белковой цепи претерпевают модификации, без которых фермент не проявляет свою активность в полной мере. Такие модификации называются посттрансляционными модификациями (процессингом). Один из самых распространенных типов модификации - присоединение химических групп к боковым остаткам полипептидной цепи. Например, присоединение остатка фосфорной кислоты называется фосфорилированием, оно катализируется ферментом киназой . Многие ферменты эукариот гликозилированы, то есть модифицированы олигомерами углеводной природы.

Ещё один распространенный тип посттранляционных модификаций - расщепление полипептидной цепи. Например, химотрипсин (протеаза , участвующая в пищеварении), получается при выщеплении полипептидного участка из химотрипсиногена. Химотрипсиноген является неактивным предшественником химотрипсина и синтезируется в поджелудочной железе . Неактивная форма транспортируется в желудок , где превращается в химотрипсин. Такой механизм необходим для того, чтобы избежать расщепления поджелудочной железы и других тканей до поступления фермента в желудок. Неактивный предшественник фермента называют также «зимогеном».

Кофакторы ферментов

Некоторые ферменты выполняют каталитическую функцию сами по себе, безо всяких дополнительных компонентов. Однако есть ферменты, которым для осуществления катализа необходимы компоненты небелковой природы. Кофакторы могут быть как неорганическими молекулами (ионы металлов, железо-серные кластеры и др.), так и органическими (например, флавин или гем). Органические кофакторы, прочно связанные с ферментом, называют также простетическими группами. Кофакторы органической природы, способные отделяться от фермента, называют коферментами.

Фермент, который требует наличия кофактора для проявления каталитической активности, но не связан с ним, называется апо-фермент. Апо-фермент в комплексе с кофактором носит название холо-фермента. Большинство кофакторов связано с ферментом нековалентными, но довольно прочными взаимодействиями. Есть и такие простетические группы, которые связаны с ферментом ковалентно, например, тиаминпирофосфат в пируватдегидрогеназе.

Регуляция работы ферментов

У некоторых ферментов есть сайты связывания малых молекул, они могут быть субстратами или продуктами метаболического пути, в который входит фермент. Они уменьшают или увеличивают активность фермента, что создает возможность для обратной связи.

Ингибирование конечным продуктом

Метаболический путь - цепочка последовательных ферментативных реакций. Часто конечный продукт метаболического пути является ингибитором фермента, ускоряющего первую из реакций данного метаболического пути. Если конечного продукта слишком много, то он действует как ингибитор для самого первого фермента, а если после этого конечного продукта стало слишком мало, то первый фермент опять активируется. Таким образом, ингибирование конечным продуктом по принципу отрицательной обратной связи - важный способ поддержания гомеостаза (относительного постоянства условий внутренней среды организма).

Влияние условий среды на активность ферментов

Активность ферментов зависит от условий в клетке или организме - давления, кислотности среды, температуры, концентрации растворённых солей (ионной силы раствора) и др.

Множественные формы ферментов

Множественные формы ферментов можно разделить на две категории:

  • Изоферменты
  • Собственно множественные формы (истинные)

Изоферменты - это ферменты, синтез которых кодируется разными генами, у них разная первичная структура и разные свойства, но они катализируют одну и ту же реакцию. Виды изоферментов:

  • Органные - ферменты гликолиза в печени и мышцах.
  • Клеточные - малатдегидрогеназа цитоплазматическая и митохондриальная (ферменты разные, но катализируют одну и ту же реакцию).
  • Гибридные - ферменты с четвертичной структурой, образуются в результате нековалентного связывания отдельных субъединиц (лактатдегидрогеназа - 4 субъединицы 2 типов).
  • Мутантные - образуются в результате единичной мутации гена.
  • Аллоферменты - кодируются разными аллелями одного и того же гена.

Собственно множественные формы (истинные) - это ферменты, синтез которых кодируется одним и тем же аллелем одного и того же гена, у них одинаковая первичная структура и свойства, но после синтеза на рибосомах они подвергаются модификации и становятся разными, хотя и катализируют одну и ту же реакцию.

Изоферменты разные на генетическом уровне и отличаются от первичной последовательности, а истинные множественные формы становятся разными на посттрансляционном уровне.

Медицинское значение

Связь между ферментами и наследственными болезнями обмена веществ была впервые установлена А. Гэрродом в 1910-е гг. Гэррод назвал заболевания, связанные с дефектами ферментов, «врожденными ошибками метаболизма».

Если происходит мутация в гене , кодирующем определенный фермент, может измениться аминокислотная последовательность фермента. При этом в результате большинства мутаций его каталитическая активность снижается или полностью пропадает. Если организм получает два таких мутантных гена (по одному от каждого из родителей), в организме перестает идти химическая реакция, которую катализирует данный фермент. Например, появление альбиносов связано с прекращением выработки фермента тирозиназы, отвечающего за одну из стадий синтеза темного пигмента меланина. Фенилкетонурия связана с пониженной или отсутствующей активностью фермента фенилаланин-4-гидроксилазы в печени.

В настоящее время известны сотни наследственных заболеваний, связанные с дефектами ферментов. Разработаны методы лечения и профилактики многих из таких болезней.

Практическое использование

Ферменты широко используются в народном хозяйстве - пищевой, текстильной промышленности, в фармакологии и медицине. Большинство лекарств влияют на течение ферментативных процессов в организме, запуская или приостанавливая те или иные реакции.

Ещё шире область использования ферментов в научных исследованиях и в медицине.

Примечания

Литература

  • Волькенштейн М. В., Догонадзе Р. Р., Мадумаров А. К., Урушадзе З. Д., Харкац Ю. И. К теории ферментативного катализа.- Молекулярная биология, т. 6, вып. 3, 1972, ст. 431-439.
  • Диксон, М. Ферменты / М. Диксон, Э. Уэбб. - В 3-х т. - Пер. с англ. - Т.1-2. - М.: Мир, 1982. - 808 с.
  • Большая медицинская энциклопедия

    - (от лат. fermentum брожение, закваска), энзимы, биокатализаторы, специфич. белки, присутствующие во всех живых клетках и играющие роль биол. катализаторов. Через их посредство реализуется генетич. информация и осуществляются все процессы обмена… … Биологический энциклопедический словарь

    - (лат. Fermentum закваска, от fervere быть горячим). Органические вещества, производящие брожение других органических тел, не подвергаясь сами гниению. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ФЕРМЕНТЫ… … Словарь иностранных слов русского языка

    - (от лат. fermentum закваска) (энзимы) биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения веществ в организме, направляя и регулируя тем самым его обмен веществ. По химической природе белки. Ферменты… … Большой Энциклопедический словарь

    - (от латинского fermentum закваска), биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения (обмен) веществ в организме. По химической природе белки. В многочисленных биохимических реакциях в клетке участвует… … Современная энциклопедия

    Сущ., кол во синонимов: 2 биокатализаторы (1) энзимы (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Ферменты. См. энзимы. (

Из чего состоит фермент и чем вызваны такие избирательные его свойства!?

Ещё в 19 веке предполагалось, что основной компонент, который составляет фермент – это белок. В 20 веке в Германии предпринята очередная повторная попытка выяснить, из чего состоит фермент . Ошибочно было предположено, что ферменты нельзя отнести ни к белкам, ни к какому-либо другому органическому веществу. Чуть позже в Америке был получен фермент «уреаза» в виде кристаллов белка, но этот опыт приняли недействительным из-за искажения эксперимента.

Только в 30-х годах 20 века были получены ферменты, такие как трипсин и пепсин в кристаллическом виде, после чего была признана их белковая структура, которая через 20 лет была утверждена рентгеновским структурным анализом.

Белки – это сложные органические вещества с очень сложной структурой. Они могут иметь до 4 различных структурных уровней. Так, если белок состоит из нескольких соединённых между собой цепочек, то такая структура будет называться четвертичной. Например такую структуру имеет ферменталкогольдегидрогеназа дрожжей. Если нарушается хотя бы один белковый уровень, то это вызывает денатурацию белка, кислая среда – разрушает связи и дисульфидные мостики внутри белковых молекул. Если температура возрастает, то спирали, в которые свёрнуты белковые молекулы, начинают разворачиваться, что ведёт к потере каталитических свойств ферментов. Этим объясняется такая чувствительность к условиям функционирования ферментов.

(страница свойства белков посвящена белкам )

Но как оказалось, фермент состоит не только из белка. Кроме белка может также присутствовать другой органический остаток или даже ион металла. Интересно, то что именно те ферменты, содержащие подобные «включения» (металлы или другие органические остатки) способны проявлять активность и быть настоящими катализаторами химических реакций. Та часть молекулы фермента, которая содержит подобные включения называется конферментом (такое название дано в 1897 г, когда был обнаружен марганец в золе фермента лакказы .

Наш организм сам производит необходимые для нас белки, свойственные только нашему организму, но коферменты синтезируются с трудом, так как металлы в наш организм в требуемых количествах попадают в основном с витаминами и микроэлементами. Витамины очень необходимы нашему организму, так как содержат металлы и способствуют образованию дееспособных ферментов.

(Подробно о витаминах Вы можете почитать на страничке Витамины и пищевые добавки , где подробно дано описание употребляемым нами витаминам и пище, в которой их можно найти. Нормальный человеческий организм содержит ионы различных металлов, при этом для человека массой 70 кг необходимо для нормальной жизнедеятельности 2,3 г цинка (Zn), 4,1 г железа (Fe), 0,2 г меди (Cu), а также много других микроэлементов: магний, молибден, кобальт, кальций, кали, натрий.

Например, в организме железо образует комплексные соединения и являются составной частью фермента пероксидазы и каталазы (этот фермент катализирует химическую реакцию окисления взаимодействия перекиси водорода и органических веществ). А вот для того, чтобы наш организм лучше перерабатывал и расщеплял спирт (это выполняет фермент алкогольдегидрогеназа и карбоангидраза), нам необходим цинк.

Как возникают ферменты

Люди разгадали удивительные и полезные свойства ферментов за много времени до их открытия. Получать и выделять ферменты люди ещё не умели, но уже знали, какие вещества обладали каталитическим действием , например, для брожения вина, подготовки теста, створаживания молока широко использовались элементы живой природы (например, те же дрожжи для приготовления алкоголя). Конечно, ферменты живого происхождения (полученные из тканей животных и растений) используются и сейчас, но более интересным и современным направлением является выделение чистых ферментов . Так, например, в известные нам стиральные порошки, которые хорошо отстирывают любые жировые пятна, добавлены специальные виды ферментов, способных легко растворять и не портить ткань.

Основное большинство используемых нами ферментов образуются отдельными видами микроорганизмов. Образуемые таким образов ферменты можно получать практически в неограниченных количествах. Всё зависит от среды содержания и обитания микроорганизмов, которое мы сами можем, при желании, контролировать.

Производство ферментов в применении к широким нуждам людей было организовано в конце 19 века. Но только после середины 20 века с развитием биоинженерии стало возможным реализовать все потребности общества в ферментах и открыть их массовое производство.

В прикладном применении для проведения химической реакции фермент берут в очень малых количествах. Вот, например, чтобы сваренное куриное яйцо (белок) превратить в набор аминокислот и преобразовать их в раствор, потребуется всего лишь 1 г фермента пепсина и 2 часа времени.

В нашем организме за производство ферментов отвечает ДНК. Определённая последовательность структурных составляющих ДНК, встроенная в молекулу бактерии, позволит получить бактерии, которые будут нам производить необходимый фермент - как по строгой программе

Ферменты (от лат. Fermentum - брожение ) , или энзимы (от греч. Эп - внутри, sume - закваска ) - белковые соединения, которые являются биологическими катализаторами. Наука о ферментах называется энзимология. Молекулы ферментов являются белками или рибонуклеиновой кислоты (РНК). РНК-ферменты называются рибозимами и считаются первоначальной формой ферментов, которые были заменены белковыми ферментами в процессе эволюции.

Структурно-функциональная организация. Молекулы ферментов имеют большие размеры, чем молекулы субстратов и сложную пространственную конфигурацию, в основном глобулярной структуры.

Благодаря большим размерам молекул ферментов возникает сильное электрическое поле, в котором: а) ферменты приобретают асимметричной формы, ослабляет связи и обусловливает изменение их структуры; б) становится возможным ориентация молекул субстрата. Функциональная организация ферментов связана с центр - это особая небольшой участок молекулы белка, которая может связывать субстрат и обеспечивать таким образом каталитическую активность фермента. Активный центр простых ферментов представляет собой сочетание определенных аминокислот цепи с образованием своеобразной «карманы», в которой происходят каталитические превращения субстрата. В сложных ферментов количество активных центров равно числу субъединиц, и ими являются кофакторы с прилегающими к нему белковыми функциональными группами. Кроме ативно центра, некоторые ферменты имеют аллостерический центр, регулирующий работу активного центра.

Свойства . Между ферментами и катализаторами неорганической природы существуют определенные общие и отличительные признаки. Общим является то, что они: а) могут катализировать только термодинамически возможные реакции и ускоряют только те реакции, которые могут происходить и без них, но с меньшей скоростью; б) не используются во время реакции и не входят в состав конечных продуктов; б) не смещают химического равновесия, а лишь ускоряют ее наступление. Для ферментов характерны и некоторые специфические свойства, которых нет у неорганические катализаторы.

Ферменты не разрушаются в реакциях, поэтому очень малая их количество вызывает превращение большого количества субстрата например, 1 молекула каталазы может расщепить за 1 мин более 5 млн молекул Н2O2). Зоны ускоряют скорость химических реакций при обычных условиях, но сами при этом не расходуются. Все это вместе обусловливает такое свойство ферментов, как высокая биологическая активность . Оптимальное действие большинства ферментов проявляется при температуре 37-40 ° С. С повышением температуры активность ферментов снижается и впоследствии совсем прекращается, а за + 80 ° С происходит их разрушение. При низких температурах (ниже 0 ° С) ферменты прекращают свое действие, но не разрушаются. Итак, для ферментов характерна термочувствительность.

Ферменты проявляют свою активность при определенной концентрации ионов Н, поэтому говорят о pH-зависимость. Оптимальная действие большинства ферментов наблюдается в среде, близкой к нейтральной.

Такое свойство, как специфичность, или селективность проявляется в том, что каждый фермент действует на определенный субстрат, катализируя только одну "свою" реакцию. Избирательность действия ферментов определяется белковым компонентом.

Ферменты являются катализаторами с регулируемой активностью, которая может существенно изменяться под влиянием определенных химических соединений, которые увеличивают или уменьшают скорость реакции, катализируемой. В качестве активаторов выступают катионы металлов, анионы

кислот, органические вещества, а ингибиторами - катионы тяжелых металлов и др. Это свойство назвали управляемость действия (алостеричнисть ). Ферменты образуются только тогда, когда возникает субстрат, который индуцирует его синтез (индуцибельнисть ), а "отключения" действия ферментов, как правило, осуществляется избытком продуктов ассимиляции (репресибельнисть ). Ферментативные реакции являются обратимыми, что обусловлено способности ферментов катализировать прямую и обратную реакцию. Так, например, липаза может при определенных условиях расщепить жир до глицерина и жирных кислот, а также катализировать его синтез из продуктов распада (возвратность действия ).

Механизм действия. Для понимания механизма действия ферментов на протекание химических реакций важны теория активного центра, гипотеза "ключ-замок" и гипотеза индуцированного соответствия. Согласно теории активного центра, в молекуле каждого фермента одна или более участков, в которых за счет тесного контакта между ферментом и субстратом происходит Биокатализ. Гипотеза "ключ-замок" (1890, Э. Фишер) объясняет специфичность ферментов соответствием формы фермента (замок) и субстрата (ключ). Фермент сочетается с субстратом с образованием временного фермент-субстратного комплекса. Гипотеза индуцированной соответствии (1958, Д. Кошланда). базируется на утверждении о том, что ферменты являются гибкими молекулами, благодаря чему в них в присутствии субстрата конфигурация активного центра претерпевает изменения, то есть фермент ориентирует свои функциональные группы так, чтобы обеспечить наибольшую каталитическую активность. Молекула субстрата, присоединяясь к ферменту, также меняет свою конфигурацию для увеличения реакционной способности.

Разнообразие . В современной энзимологии известно свыше 3000 ферментов. Ферменты, как правило, классифицируют по химическому составу и по типу реакций, на которые они влияют. Классификация ферментов по химическому составу включает простые и сложные ферменты. Простые ферменты (однокомпонентные ) - содержат только белковую часть. Большинство ферментов этой группы могут кристаллизоваться. Примером простых ферментов является рибонуклеаза, гидролазы (амилазы, липазы, протеазы), уреаза и др. Сложные ферменты (двухкомпонентные ) - состоят из апофермента и кофактора. Белковый компонент, который определяет специфичность сложных ферментов и синтезируется, как правило, организмом и является чувствительным к температуры - это апофермент. Небелковый компонент, определяющий активность сложных ферментов и, как правило, поступает в организм в виде предшественников или в готовом виде, и сохраняет стабильность при неблагоприятных условиях, является кофактором. Кофакторы могут быть как неорганическими молекулами (например, ионы металлов), так и органическими (например, флавин). Органические кофакторы, постоянно связаны с ферментом, называют простетическими группами. Кофакторы органической природы, способные отделяться от фермента, называют коферментами. сложных ферментов является оксидоредуктаз (например, каталаза), лигазы (например, ДНК-полимераза, тРНК-синтетазы), лиазы и др.

Ферментативные реакции делятся на анаболических (реакции синтеза) и катаболитични (реакции распада), а совокупность всех этих процессов в живой системе называют метаболизмом. В рамках этих групп процессов выделяют типы ферментативных реакций, согласно которым ферменты делят на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы.

1. Оксидоредуктазы катализируют окислительно-восстановительные реакции (перенос электронов и атомов Н от одних субстратов на другие).

2. Трансферазы ускоряют реакции трансферации (перенос химических групп от одних субстратов на другие).

3. Гидролазы являются ферментами реакций гидролиза (расщепления субстратов с участием воды).

4. Лиазы катализируют реакции негидролитичного распада (расщепление субстратов без участия воды с образованием двойной связи и без использования энергии АТФ).

5. Изомеразы влияют на скорость реакций изомеризации (внутримолекулярный перемещения различных групп).

6. Лигазы катализируют реакции синтеза (сочетание молекул с использованием энергии АТФ и образованием новых связей).

Обычно фермент называют по типу реакции, которую он катализирует, добавляя суффикс -аза к названию субстрата (например, лактаза - фермент, участвующий в превращении лактозы).

Значения. Ферменты обеспечивают химические превращения веществ вследствие снижения энергии активации, то есть в снижении уровня энергии, необходимой для предоставления реакционной способности молекуле (например, для разрыва связи между азотом и Карбоном в лабораторных условиях необходимо около 210 кДж, тогда как в биосистема на это расходуется только 42-50 кДж). Ферменты имеющиеся во всех живых клетках способствуют превращению одних веществ (субстратов) на другие (продукты). Энзимы выступают в роли катализаторов практически во всех биохимических реакциях, происходящих живых организмах - ими катализируется около 4000 химически отдельных биореакции Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляю или и регулируя обмен веществ организма. Ферменты широко используются хозяйстве.

Некоторые примеры использования ферментов в деятельности человека

отрасль

ферменты

Использование

пищевая промышленность

Пектиназа

Для освещения фруктовых соков

глюкозооксидаза

Для сохранения мяса, соков, пива как антисжиснювач

Для расщепления крахмала до глюкозы, которую сбраживают дрожжи в процессе выпечки хлеба

Пепсин, трипсин

Для производства «готовых» каш, продуктов детского питания

Для производства сыра

Легкая промышленность

Пептигидролизы

Для размягчения кож и удаления из них шерсти

фармацевтическая промышленность

Для удаления зубного налета в составе зубных паст

коллагеназы

Для очистки ран от ожогов, обморожений, варикозных язв в составе мазей и новых типов повязок

Химическая промышленность

бактериальные протеазы

Для стирки белья с помощью биопорошков с ферментными добавками

Сельское хозяйство

целлюлаза

Кормовые ферменты для увеличения питательной ценности кормов

бактериальные протеазы

Для получения кормовых белков

генная инженерия

Лигазы и рестриктазы

Для разрезания и сшивания молекул ДНК с целью видоизменения их наследственной информации

косметическая промышленность

Калагеназы

Для омоложения кожи в составе кремов и масок

Нуклеиновые кислоты - это соединения, которые связывают прошлое с будущим.

Ферменты (энзимы): значение для здоровья, классификация, применение. Растительные (пищевые) ферменты: источники, польза.

Ферменты (энзимы) – это высокомолекулярные вещества белковой природы, что выполняют в организме функции катализаторов (активизируют и ускоряют различные биохимические реакции). Fermentum в переводе с латинского языка – брожение. Слово enzyme имеет греческие корни: «en» – внутри, «zyme» – закваска. Эти два термина – ферменты и энзимы, используются как синонимы, а наука о ферментах называется энзимологией.

Значение ферментов для здоровья. Применение энзимов

Ключами жизни ферменты называют неспроста. Они обладают уникальным свойством действовать специфично, избирательно, только на узкий круг веществ. Заменять друг друга энзимы не могут.

К настоящему времени известно уже более 3 тысяч ферментов. Каждая клеточка живого организма содержит сотни разнообразных энзимов. Без них невозможно не только переваривание пищи и ее превращение в те вещества, которые клетки способны усвоить. Ферменты принимают участие в процессах обновления кожи, крови, костей, регуляции обмен веществ, очищении организма, заживлении ран, зрительном и слуховом восприятии, работе центральной нервной системы, реализации генетической информации. Дыхание, мышечное сокращение, работа сердца, рост и деление клеток – все эти процессы поддерживаются бесперебойной работой ферментных систем.

Энзимы играют чрезвычайно важную роль в поддержке нашего иммунитета. Специализированные ферменты участвуют в выработке антител, необходимых для борьбы с вирусами и бактериями, активизируют работу макрофагов – больших хищных клеток, что распознают и обезвреживают любые инородные частицы, попадающие в организм. Удаление продуктов жизнедеятельности клеток, обезвреживание ядов, защита от проникновения инфекции – все это функции ферментов.

Специальные энзимы (бактерии, дрожжи, сычужные ферменты) играют важную роль в производстве квашеных овощей, кисломолочных продуктов, брожении теста, изготовлении сыров.

Классификация ферментов

По принципу действия все энзимы (согласно международной иерархической классификации) делятся на 6 классов:

  1. Оксидоредуктазы – каталаза, алкогольдегидрогеназа, лактатдегидрогеназа, полифенолоксидаза и др.;
  2. Трансферазы (ферменты переноса) – аминотрансферазы, ацилтрансферазы, фосфортрансферазы и др.;
  3. Гидролазы – амилаза, пепсин, трипсин, пектиназа, лактаза, мальтаза, липопротеинлипаза и др.;
  4. Лиазы;
  5. Изомеразы;
  6. Лигазы (синтетазы) – ДНК-полимераза и др.

Каждый класс состоит из подклассов, а каждый подкласс – из групп.

Все ферменты можно разделить на 3 большие группы:

  1. Пищеварительные – действуют в желудочно-кишечном тракте, отвечают за переработку питательных веществ и их абсорбцию в системный кровоток. Энзимы, что выделяются стенками тонкой кишки и поджелудочной железой, называются панкреатическими;
  2. Пищевые (растительные) – поступают (должны поступать) с пищей. Продукты, в которых присутствуют пищевые ферменты, иногда называют живой едой;
  3. Метаболические – запускают обменные процессы внутри клеток. Каждая система человеческого организма имеет свою сеть ферментов.

Пищеварительные ферменты, в свою очередь, делятся на 3 категории:

  1. Амилазы – амилаза слюны, лактаза поджелудочного сока, мальтаза слюны. Эти энзимы присутствуют и в слюне, и в кишечнике. Действуют на углеводы: последние распадаются на простые сахара и легко проникают в кровь;
  2. Протеазы – вырабатываются поджелудочной железой и слизистой оболочкой желудка. Помогают переваривать белки, а также нормализуют микрофлору пищеварительного тракта. Присутствуют в кишечнике и желудочном соке. К протеазам относятся пепсин и химозин желудка, эрепсин килечного сока, карбоксипептидаза поджелудочной железы, химотрипсин, трипсин;
  3. Липаза – вырабатывается поджелудочной железой. Присутствует в желудочном соке. Помогает расщеплять и усваивать жиры.

Действие ферментов

Оптимальная температура для жизнедеятельности ферментов – около 37 градусов, то есть температура тела. Ферменты обладают огромной силой: они заставляют семена прорастать, жиры – «гореть». А с другой стороны, они чрезвычайно чувствительны: при температуре свыше 42 градусов энзимы начинают разрушаться. И кулинарная обработка пищи, и глубокая заморозка приводят к гибели ферментов и потери их жизнедеятельной силы. В консервированных, стерилизованных, пастеризованных и даже замороженных продуктах энзимы частично или полностью разрушены. Но не только мертвая пища, но и слишком холодные и горячие блюда убивают ферменты. Когда мы едим слишком горячую пищу, мы убиваем пищеварительные энзимы и обжигаем пищевод. Желудок сильно увеличивается в размерах, а потом из-за спазмов мышцы, что его держит, становится похожим на петушиный гребешок. В результате пища поступает в 12-ти перстную кишку в необработанном состоянии. Если так происходит постоянно, могут появиться такие проблемы, как дисбактериоз, запоры, расстройство кишечника, язва желудка. От холодных блюд (мороженого, например), желудок тоже страдает – сначала скукоживается, а потом увеличивается в размерах, а ферменты замораживаются. Мороженое начинает бродить, выделяются газы и человек получает вздутие живота.

Пищеварительные ферменты

Ни для кого не секрет, что хорошее пищеварение – это неотъемлемое условие полноценной жизни и активного долголетия. Пищеварительные ферменты играют в этом процессе решающую роль. Они отвечают за переваривание, адсорбцию и усвоение пищи, выстраивая наше тело подобно рабочим на стройке. У нас могут быть все строительные материалы – минералы, белки, жиры, вода, витамины, но без ферментов, как без рабочих, строительство не продвинется ни на шаг.

Современный человек потребляет слишком много пищи, для переваривания которой в организме практически нет ферментов, например, крахмалистых продуктов – макаронных, хлебобулочных изделий, картофеля.

Если вы съедите свежее яблоко, оно переварится за счет собственных энзимов, причем действие последних видно невооруженным глазом: потемнение надкусанного яблока – это работа ферментов, что пытаются залечить «ранку», защитить организм от угрозы в лице плесени и бактерий. Но если вы запечете яблоко, чтобы его переварить, организму придется задействовать свои собственные ферменты для пищеварения, так как термически обработанная пища лишена естественных энзимов. Кроме того, те ферменты, которые «мертвые» продукты забирают у нашего организма, мы теряем навсегда, так как их запасы в нашем теле не безграничны.

Растительные (пищевые) ферменты

Употребление продуктов, богатых ферментами, не только облегчает пищеварение, но и высвобождает энергию, которую организм может направить на очистку печени, латание дыр в иммунитете, омоложение клеток, защиту от опухолей и т.д. При этом человек ощущает легкость в животе, чувствует себя бодрым, да и выглядит хорошо. А сырая растительная клетчатка, поступающая в организм с живой пищей, требуется для питания микроорганизмов, что вырабатывают метаболические ферменты.

Растительные энзимы дают нам жизнь и энергию. Если вы посадите в землю два орешка – один жареный, а другой сырой, вымоченный в воде, то жареный просто сгниет в земле, а в сыром зернышке весной проснутся жизненные силы, потому что в нем есть ферменты. И вполне возможно, что из него вырастет большое пышное дерево. Так и человек, потребляя пищу, в которой есть ферменты, вместе с ней получает жизнь. Продукты, лишенные энзимов, заставляют наши клетки работать без отдыха, перегружаться, стареть и умирать. Если ферментов не хватает, в организме начинают накапливаться «отходы»: яды, шлаки, погибшие клетки. Это ведет к увеличению веса, болезням и раннему старению. Любопытный и в то же время печальный факт: в крови пожилых людей содержание ферментов примерно в 100 раз ниже, чем у молодых.

Энзимы в продуктах. Источники растительных ферментов

Источниками пищевых энзимов являются растительные продукты из огорода, сада, океана. Это преимущественно овощи, фрукты, ягоды, зелень, зерновые культуры. Собственные ферменты содержат бананы, манго, папайя, ананасы, авокадо, аспергиловое растение, проращенные зерна. Растительные ферменты присутствуют только в сырой, живой пище.

Проростки пшеницы являются источником амилазы (расщепляющей углеводы), в плодах папайи содержатся протеазы, в плодах папайи и ананаса – пептидазы. Источники липазы (расщепляющей жиры) – это плоды, семена, корневища, клубни злаковых культур, горчичное и подсолнечное семя, семена бобовых. Папаином (расщепляющим белки) богаты бананы, ананасы, киви, папайя, манго. Источником лактазы (фермента, расщепляющего молочный сахар) является ячменный солод.

Преимущества растительных (пищевых) энзимов над животными (панкреатическими)

Растительные ферменты начинают обрабатывать пищу уже в желудке, а панкреатические энзимы в кислой желудочной среде работать не могут. Когда пища попадет в тонкую кишку, благодаря растительным ферментам она будет предварительно переварена, это снизит нагрузку на кишечник и позволит питательным веществам лучше усвоиться. К тому же, растительные энзимы продолжают свою работу и в кишечнике.

Как питаться, чтобы организму хватало ферментов?

Все очень просто. Завтрак должен состоять из свежих ягод и фруктов (плюс белковые блюда – творог, орехи, сметана). Каждый прием пищи нужно начинать с овощных салатов с зеленью. Желательно, чтобы ежедневно один прием пищи включал только сырые фрукты, ягоды и овощи. Ужин должен быть легким – состоять из овощей (с кусочком куриной грудки, отварной рыбы или порцией морепродуктов). Несколько раз в месяц полезно устраивать разгрузочные дни на фруктах или свежеотжатых соках.

Для качественного усвоения пищи и полноценного здоровья энзимы просто незаменимы. Лишний вес, аллергии, различные заболевания ЖКТ – все эти и многие другие проблемы можно победить с помощью здорового рациона. А роль ферментов в питании огромна. Наша задача – просто позаботиться о том, чтобы каждый день и в достаточном количестве они присутствовали в наших блюдах. Крепкого вам здоровья!

В клетке любого живого организма протекают миллионы химических реакций. Каждая из них имеет большое значение, поэтому важно поддерживать скорость биологических процессов на высоком уровне. Почти каждая реакция катализируется своим ферментом. Что такое ферменты? Какова их роль в клетке?

Ферменты. Определение

Термин "фермент" происходит от латинского fermentum - закваска. Также они могут называться энзимами от греческого en zyme - "в дрожжах".

Ферменты - биологически активные вещества, поэтому любая реакция, протекающая в клетке, не обходится без их участия. Эти вещества выполняют роль катализаторов. Соответственно, любой фермент обладает двумя основными свойствами:

1) Энзим ускоряет биохимическую реакцию, но при этом не расходуется.

2) Величина константы равновесия не меняется, а лишь ускоряется достижение этого значения.

Ферменты ускоряют биохимические реакции в тысячу, а в некоторых случаях в миллион раз. Это значит, что при отсутствии ферментативного аппарата все внутриклеточные процессы практически остановятся, а сама клетка погибнет. Поэтому роль ферментов как биологически активных веществ велика.

Разнообразие энзимов позволяет разносторонне регулировать метаболизм клетки. В любом каскаде реакций принимает участие множество ферментов различных классов. Биологические катализаторы обладают большой избирательностью благодаря определенной конформации молекулы. Т. к. энзимы в большинстве случаев имеют белковую природу, они находятся в третичной или четвертичной структуре. Объясняется это опять же специфичностью молекулы.

Функции энзимов в клетке

Главная задача фермента - ускорение соответствующей реакции. Любой каскад процессов, начиная с разложения пероксида водорода и заканчивая гликолизом, требует присутствия биологического катализатора.

Правильная работа ферментов достигается высокой специфичностью к определенному субстрату. Это значит, что катализатор может ускорять только определенную реакцию и никакую больше, даже очень похожую. По степени специфичности выделяют следующие группы энзимов:

1) Ферменты с абсолютной специфичностью, когда катализируется только одна-единственная реакция. Например, коллагеназа расщепляет коллаген, а мальтаза расщепляет мальтозу.

2) Ферменты с относительной специфичностью. Сюда входят такие вещества, которые могут катализировать определенный класс реакций, к примеру, гидролитическое расщепление.

Работа биокатализатора начинается с момента присоединения его активного центра к субстрату. При этом говорят о комплементарном взаимодействии наподобие замка и ключа. Здесь имеется в виду полное совпадение формы активного центра с субстратом, что дает возможность ускорять реакцию.

Следующий этап заключается в протекании самой реакции. Ее скорость возрастает благодаря действию ферментативного комплекса. В конечном итоге мы получаем энзим, который связан с продуктами реакции.

Заключительный этап - отсоединение продуктов реакции от фермента, после чего активный центр вновь становится свободным для очередной работы.

Схематично работу фермента на каждом этапе можно записать так:

1) S + E ——> SE

2) SE ——> SP

3) SP ——> S + P , где S - это субстрат, E - фермент, а P - продукт.

Классификация ферментов

В организме человека можно найти огромное количество ферментов. Все знания об их функциях и работе были систематизированы, и в итоге появилась единая классификация, благодаря которой можно легко определить, для чего предназначен тот или иной катализатор. Здесь представлены 6 основных классов энзимов, а также примеры некоторых подгрупп.

  1. Оксидоредуктазы.

Ферменты этого класса катализируют окислительно-восстановительные реакции. Всего выделяют 17 подгрупп. Оксидоредуктазы обычно имеют небелковую часть, представленную витамином или гемом.

Среди оксидоредуктаз часто встречаются следующие подгруппы:

а) Дегидрогеназы. Биохимия ферментов-дегидрогеназ заключается в отщеплении атомов водорода и переносе их на другой субстрат. Эта подгруппа чаще всего встречается в реакциях дыхания, фотосинтеза. В составе дегидрогеназ обязательно присутствует кофермент в виде НАД/НАДФ или флавопротеидов ФАД/ФМН. Нередко встречаются ионы металлов. Примерами могут служить такие энзимы, как цитохромредуктазы, пируватдегидрогеназа, изоцитратдегидрогеназа, а также многие ферменты печени (лактатдегидрогеназа, глутаматдегидрогеназа и т. д.).

б) Оксидазы. Ряд ферментов катализирует присоединение кислорода к водороду, в результате чего продуктами реакции могут быть вода или пероксид водорода (H 2 0, H 2 0 2). Примеры ферментов: цитохромоксидаза, тирозиназа.

в) Пероксидазы и каталазы - энзимы, катализирующие распад H 2 O 2 на кислород и воду.

г) Оксигеназы. Эти биокатализаторы ускоряют присоединение кислорода к субстрату. Дофамингидроксилаза - один из примеров таких энзимов.

2. Трансферазы.

Задача ферментов этой группы состоит в переносе радикалов от вещества-донора к веществу-реципиенту.

а) Метилтрансферазы. ДНК-метилтрансферазы - основные ферменты, контролирующие процесс репликации нуклеотидов играет большую роль в регуляции работы нуклеиновой кислоты.

б) Ацилтрансферазы. Энзимы этой подгруппы транспортируют ацильную группу с одной молекулы на другую. Примеры ацилтрансфераз: лецитинхолестеринацилтрансфераза (переносит функциональную группу с жирной кислоты на холестерин), лизофосфатидилхолинацилтрансфераза (ацильная группа переносится на лизофосфатидилхолин).

в) Аминотрансферазы - ферменты, которые участвуют в превращении аминокислот. Примеры ферментов: аланинаминотрансфераза, которая катализирует синтез аланина из пирувата и глутамата путем переноса аминогруппы.

г) Фосфотрансферазы. Ферменты этой подгруппы катализируют присоединение фосфатной группы. Другое название фосфотрансфераз, киназы, встречается намного чаще. Примерами могут служить такие энзимы, как гексокиназы и аспартаткиназы, которые присоединяют фосфорные остатки к гексозам (чаще всего к глюкозе) и к аспарагиновой кислоте соответственно.

3. Гидролазы - класс энзимов, которые катализируют расщепление связей в молекуле с последующим присоединением воды. Вещества, которые относятся к этой группе, - основные ферменты пищеварения.

а) Эстеразы - разрывают эфирные связи. Пример - липазы, которые расщепляют жиры.

б) Гликозидазы. Биохимия ферментов этого ряда заключается в разрушении гликозидных связей полимеров (полисахаридов и олигосахаридов). Примеры: амилаза, сахараза, мальтаза.

в) Пептидазы - энзимы, катализирующие разрушение белков до аминокислот. К пептидазам относятся такие ферменты, как пепсины, трипсин, химотрипсин, карбоиксипептидаза.

г) Амидазы - расщепляют амидные связи. Примеры: аргиназа, уреаза, глутаминаза и т. д. Многие ферменты-амидазы встречаются в

4. Лиазы - ферменты, по функции схожие с гидролазами, однако при расщеплении связей в молекулах не затрачивается вода. Энзимы этого класса всегда имеют в составе небелковую часть, например, в виде витаминов В1 или В6.

а) Декарбоксилазы. Эти ферменты действуют на С-С связь. Примерами могут служить глутаматдекарбоксилаза или пируватдекарбоксилаза.

б) Гидратазы и дегидратазы - ферменты, которые катализируют реакцию расщепления связей С-О.

в) Амидин-лиазы - разрушают С-N связи. Пример: аргининсукцинатлиаза.

г) Р-О лиазы. Такие ферменты, как правило, отщепляют фосфатную группу от вещества-субстрата. Пример: аденилатциклаза.

Биохимия ферментов основана на их строении

Способности каждого энзима определяются индивидуальным, только ему свойственным строением. Любой фермент - это, прежде всего, белок, и его структура и степень сворачивания играют решающую роль в определении его функции.

Для каждого биокатализатора характерно наличие активного центра, который, в свою очередь, делится на несколько самостоятельных функциональных областей:

1) Каталитический центр - это специальная область белка, по которой происходит присоединение фермента к субстрату. В зависимости от конформации белковой молекулы каталитический центр может принимать разнообразную форму, которая должна соответствовать субстрату так же, как замок ключу. Такая сложная структура объясняет то, что находится в третичном или четвертичном состоянии.

2) Адсорбционный центр - выполняет роль «держателя». Здесь в первую очередь происходит связь между молекулой фермента и молекулой-субстратом. Однако связи, которые образует адсорбционный центр, очень слабые, а значит, каталитическая реакция на этом этапе обратима.

3) Аллостерические центры могут располагаться как в активном центре, так и по всей поверхности фермента в целом. Их функция - регулирование работы энзима. Регулирование происходит с помощью молекул-ингибиторов и молекул-активаторов.

Активаторные белки, связываясь с молекулой фермента, ускоряют его работу. Ингибиторы же, напротив, затормаживают каталитическую активность, причем это может происходить двумя способами: либо молекула связывается с аллостерическим центром в области активного центра фермента (конкурентное ингибирование), либо она присоединяется к другой области белка (неконкурентное ингибирование). считается более действенным. Ведь при этом закрывается место для связывания субстрата с ферментом, причем этот процесс возможен только в случае практически полного совпадения формы молекулы ингибитора и активного центра.

Энзим зачастую состоит не только из аминокислот, но и из других органических и неорганических веществ. Соответственно, выделяют апофермент - белковую часть, кофермент - органическую часть, и кофактор - неорганическую часть. Кофермент может быть представлен улгеводами, жирами, нуклеиновыми кислотами, витаминами. В свою очередь, кофактор - это чаще всего вспомогательные ионы металлов. Активность ферментов определяется его строением: дополнительные вещества, входящие в состав, меняют каталитические свойства. Разнообразные виды ферментов - это результат комбинирования всех перечисленных факторов образования комплекса.

Регуляция работы ферментов

Энзимы как биологически активные вещества не всегда необходимы организму. Биохимия ферментов такова, что они могут в случае чрезмерного катализа навредить живой клетке. Для предотвращения пагубного влияния энзимов на организм необходимо каким-то образом регулировать их работу.

Т. к. ферменты имеют белковую природу, они легко разрушаются при высоких температурах. Процесс денатурации обратим, однако он может существенно повлиять на работу веществ.

pH также играет большую роль в регуляции. Наибольшая активность ферментов, как правило, наблюдается при нейтральных значениях pH (7,0-7,2). Также есть энзимы, которые работают только в кислой среде или только в щелочной. Так, в клеточных лизосомах поддерживается низкий pH, при котором активность гидролитических ферментов максимальна. В случае их случайного попадания в цитоплазму, где среда уже ближе к нейтральной, их активность снизится. Такая защита от «самопоедания» основана на особенностях работы гидролаз.

Стоит упомянуть о значении кофермента и кофактора в составе ферментов. Наличие витаминов или ионов металла существенно влияет на функционирование некоторых специфических энзимов.

Номенклатура ферментов

Все ферменты организма принято называть в зависимости от их принадлежности к какому-либо из классов, а также по субстрату, с которым они вступают в реакцию. Иногда по используют в названии не один, а два субстрата.

Примеры названия некоторых энзимов:

  1. Ферменты печени: лактат-дегидроген-аза, глутамат-дегидроген-аза.
  2. Полное систематическое название фермента: лактат-НАД+-оксидоредукт-аза.

Сохранились и тривиальные названия, которые не придерживаются правил номенклатуры. Примерами являются пищеварительные ферменты: трипсин, химотрипсин, пепсин.

Процесс синтеза ферментов

Функции ферментов определяются еще на генетическом уровне. Т. к. молекула по большому счету - белок, то и ее синтез в точности повторяет процессы транскрипции и трансляции.

Синтез ферментов происходит по следующей схеме. Вначале с ДНК считывается информация о нужном энзиме, в результате чего образуется мРНК. Матричная РНК кодирует все аминокислоты, которые входят в состав энзима. Регуляция ферментов может происходить и на уровне ДНК: если продукта катализируемой реакции достаточно, транскрипция гена прекращается и наоборот, если возникла потребность в продукте, активизируется процесс транскрипции.

После того как мРНК вышла в цитоплазму клетки, начинается следующий этап - трансляция. На рибосомах эндоплазматической сети синтезируется первичная цепочка, состоящая из аминокислот, соединенных пептидными связями. Однако молекула белка в первичной структуре еще не может выполнять свои ферментативные функции.

Активность ферментов зависит от структуры белка. На той же ЭПС происходит скручивание протеина, в результате чего образуются сначала вторичная, а потом третичная структуры. Синтез некоторых ферментов останавливается уже на этом этапе, однако для активизации каталитической активности зачастую необходимо присоединение кофермента и кофактора.

В определенных областях эндоплазматической сети происходит присоединение органических составляющих энзима: моносахаридов, нуклеиновых кислот, жиров, витаминов. Некоторые ферменты не могут работать без наличия кофермента.

Кофактор играет решающую роль в образовании Некоторые функции ферментов доступны только при достижении белком доменной организации. Поэтому для них очень важно наличие четвертичной структуры, в которой соединяющим звеном между несколькими глобулами белка является ион металла.

Множественные формы ферментов

Встречаются ситуации, когда необходимо наличие нескольких энзимов, катализирующих одну и ту же реакцию, но отличающихся друг от друга по каким-либо параметрам. Например, фермент может работать при 20 градусах, однако при 0 градусов он уже не сможет выполнять свои функции. Что делать в подобной ситуации живому организму при низких температурах среды?

Эта проблема легко решается наличием сразу нескольких ферментов, катализирующих одну и ту же реакцию, но работающих в разных условиях. Существуют два типа множественных форм энзимов:

  1. Изоферменты. Такие белки кодируются разными генами, состоят из разных аминокислот, однако катализируют одну и ту же реакцию.
  2. Истинные множественные формы. Эти белки транскрибируются с одного и того же гена, однако на рибосомах происходит модификация пептидов. На выходе получают несколько форм одного и того же фермента.

В результате первый тип множественных форм сформирован на генетическом уровне, когда второй - на посттрансляционном.

Значение ферментов

В медицине сводится к выпуску новых лекарственных средств, в составе которых вещества уже находятся в нужных количествах. Ученые еще не нашли способ стимулирования синтеза недостающих энзимов в организме, однако сегодня широко распространены препараты, которые могут на время восполнить их недостаток.

Различные ферменты в клетке катализируют большое количество реакций, связанных с поддержанием жизнедеятельности. Одними из таких энизмов являются представители группы нуклеаз: эндонуклеазы и экзонуклеазы. Их работа заключается в поддержании постоянного уровня нуклеиновых кислот в клетке, удалении поврежденных ДНК и РНК.

Не стоит забывать о таком явлении, как свертывание крови. Являясь эффективной мерой защиты, данный процесс находится под контролем ряда ферментов. Главным из них является тромбин, который переводит неактивный белок фибриноген в активный фибрин. Его нити создают своеобразную сеть, которая закупоривает место повреждения сосуда, тем самым препятствуя излишней кровопотере.

Ферменты используются в виноделии, пивоварении, получении многих кисломолочных продуктов. Для получения спирта из глюкозы могут использоваться дрожжи, однако для удачного протекания этого процесса достаточно и экстракта из них.

Интересные факты, о которых вы не знали

Все ферменты организма имеют огромную массу - от 5000 до 1000000 Да. Это связано с наличием белка в составе молекулы. Для сравнения: молекулярная масса глюкозы - 180 Да, а углекислого газа - всего 44 Да.

На сегодняшний день открыто более чем 2000 ферментов, которые были обнаружены в клетках различных организмов. Однако большинство из этих веществ до конца еще не изучено.

Активность ферментов используется для получения эффективных стиральных порошков. Здесь энзимы выполняют ту же роль, что и в организме: они разрушают органические вещества, и это свойство помогает в борьбе с пятнами. Рекомендуется использовать подобный стиральный порошок при температуре не выше 50 градусов, иначе может пойти процесс денатурации.

По статистике, 20% людей по всему миру страдает от недостатка какого-либо из ферментов.

О свойствах энзимов знали очень давно, однако только в 1897 году люди поняли, что для сбраживания сахара в спирт можно использовать не сами дрожжи, а экстракт из их клеток.