Что такое функция общего вида. Исследование функции

Зависимость переменной y от переменно x, при которой каждому значению х соответствует единственное значение y называется функцией. Для обозначения используют запись y=f(x). У каждой функции существует ряд основных свойств, таких как монотонность, четность, периодичность и другие.

Рассмотри подробнее свойство четности.

Функция y=f(x) называется четной, если она удовлетворяет следующим двум условиям:

2. Значение функции в точке х, принадлежащей области определения функции должно равняться значению функции в точке -х. То есть для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = f(-x).

График четной функции

Если построить график четной функции он будет симметричен относительно оси Оу.

Например, функция y=x^2 является четной. Проверим это. Область определения вся числовая ось, а значит, она симметрична относительно точки О.

Возьмем произвольное х=3. f(x)=3^2=9.

f(-x)=(-3)^2=9. Следовательно, f(x) = f(-x). Таким образом, у нас выполняются оба условия, значит функция четная. Ниже представлен график функции y=x^2.

На рисунке видно, что график симметричен относительно оси Оу.

График нечетной функции

Функция y=f(x) называется нечетной, если она удовлетворяет следующим двум условиям:

1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.

2. Для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = -f(x).

График нечетной функции симметричен относительно точки О - начала координат. Например, функция y=x^3 является нечетной. Проверим это. Область определения вся числовая ось, а значит, она симметрична относительно точки О.

Возьмем произвольное х=2. f(x)=2^3=8.

f(-x)=(-2)^3=-8. Следовательно, f(x) = -f(x). Таким образом, у нас выполняются оба условия, значит функция нечетная. Ниже представлен график функции y=x^3.

На рисунке наглядно представлено, что нечетная функция y=x^3 симметрична относительно начала координат.
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • сформировать понятие чётности и нечётности функции, учить умению определять и использовать эти свойства при исследовании функций, построении графиков;
  • развивать творческую активность учащихся, логическое мышление, умение сравнивать, обобщать;
  • воспитывать трудолюбие, математическую культуру; развивать коммуникативные качества.

Оборудование: мультимедийная установка, интерактивная доска, раздаточный материал.

Формы работы: фронтальная и групповая с элементами поисково-исследовательской деятельности.

Информационные источники:

1.Алгебра9класс А.Г Мордкович. Учебник.
2.Алгебра 9класс А.Г Мордкович. Задачник.
3.Алгебра 9 класс. Задания для обучения и развития учащихся. Беленкова Е.Ю. Лебединцева Е.А

ХОД УРОКА

1. Организационный момент

Постановка целей и задач урока.

2. Проверка домашнего задания

№10.17 (Задачник 9кл. А.Г. Мордкович).

а) у = f (х ), f (х ) =

б) f (–2) = –3; f (0) = –1; f (5) = 69;

в) 1. D(f ) = [– 2; + ∞)
2. Е(f ) = [– 3; + ∞)
3. f (х ) = 0 при х ~ 0,4
4. f (х ) >0 при х > 0,4 ; f (х ) < 0 при – 2 < х < 0,4.
5. Функция возрастает при х € [– 2; + ∞)
6. Функция ограничена снизу.
7. у наим = – 3, у наиб не существует
8. Функция непрерывна.

(Вы использовали алгоритм исследования функции?) Слайд.

2. Таблицу, которую вам задавалась, проверим по слайду.

Заполните таблицу

Область определения

Нули функции

Промежутки знакопостоянства

Координаты точек пересечения графика с Оу

х = –5,
х = 2

х € (–5;3) U
U (2; ∞)

х € (–∞;–5) U
U (–3;2)

х ∞ –5,
х ≠ 2

х € (–5;3) U
U (2; ∞)

х € (–∞;–5) U
U (–3;2)

х ≠ –5,
х ≠ 2

х € (–∞; –5) U
U (2; ∞)

х € (–5; 2)

3. Актуализация знаний

– Даны функции.
– Указать область определения для каждой функции.
– Сравнить значение каждой функции для каждой пары значения аргумента: 1 и – 1; 2 и – 2.
– Для каких из данных функций в области определения выполняются равенства f (– х ) = f (х ), f (– х ) = – f (х )? (полученные данные занести в таблицу) Слайд

f (1) и f (– 1) f (2) и f (– 2) графики f (– х ) = –f (х ) f (– х ) = f (х )
1. f (х ) =
2. f (х ) = х 3
3. f (х ) = | х |
4. f (х ) = 2х – 3
5. f (х ) =

х ≠ 0

6. f (х )= х > –1

и не опред.

4. Новый материал

– Выполняя данную работу, ребята мы выявили ещё одно свойство функции, незнакомое вам, но не менее важное, чем остальные – это чётность и нечетность функции. Запишите тему урока: «Чётные и нечётные функции», наша задача – научиться определять чётность и нечётность функции, выяснить значимость этого свойства в исследовании функций и построении графиков.
Итак, найдём определения в учебнике и прочитаем (стр. 110). Слайд

Опр. 1 Функция у = f (х ), заданная на множестве Х называется чётной , если для любого значения х Є Х выполняется равенство f(–х)= f(х). Приведите примеры.

Опр. 2 Функция у = f (х) , заданная на множестве Х называется нечётной , если для любого значения х Є Х выполняется равенство f(–х)= –f(х). Приведите примеры.

Где мы встречались с терминами «четные» и «нечётные»?
Какие из данных функций будут чётными, как вы думаете? Почему? Какие нечётными? Почему?
Для любой функции вида у = х n , где n – целое число можно утверждать, что функция нечётна при n – нечётном и функция чётна при n – чётном.
– Функции вида у = и у = 2х – 3 не являются ни чётным, ни нечётными, т.к. не выполняются равенства f (– х ) = – f (х ), f (– х ) = f (х )

Изучение вопроса о том, является ли функция чётной или нечётной называют исследованием функции на чётность. Слайд

В определениях 1 и 2 шла речь о значениях функции при х и – х, тем самым предполагается, что функция определена и при значении х , и при – х .

Опр 3. Если числовое множество вместе с каждым своим элементом х содержит и противоположный элемент –х, то множество Х называют симметричным множеством.

Примеры:

(–2;2), [–5;5]; (∞;∞) – симметричные множества, а , [–5;4] – несимметричные.

– У чётных функций область определения – симметричное множество? У нечётных?
– Если же D(f ) – несимметричное множество, то функция какая?
– Таким образом, если функция у = f (х ) – чётная или нечётная, то её область определения D(f ) – симметричное множество. А верно ли обратное утверждение, если область определения функции симметричное множество, то она чётна, либо нечётна?
– Значит наличие симметричного множества области определения – это необходимое условие, но недостаточное.
– Так как же исследовать функцию на четность? Давайте попробуем составить алгоритм.

Слайд

Алгоритм исследования функции на чётность

1. Установить, симметрична ли область определения функции. Если нет, то функция не является ни чётной, ни нечётной. Если да, то перейти к шагу 2 алгоритма.

2. Составить выражение для f (– х ).

3. Сравнить f (– х ).и f (х ):

  • если f (– х ).= f (х ), то функция чётная;
  • если f (– х ).= – f (х ), то функция нечётная;
  • если f (– х ) ≠ f (х ) и f (– х ) ≠ –f (х ), то функция не является ни чётной, ни нечётной.

Примеры:

Исследовать на чётность функцию а) у = х 5 +; б) у = ; в) у = .

Решение.

а) h(х) = х 5 +,

1) D(h) = (–∞; 0) U (0; +∞), симметричное множество.

2) h (– х) = (–х) 5 + – х5 –= – (х 5 +),

3) h(– х) = – h (х) => функция h(х) = х 5 + нечётная.

б) у =,

у = f (х ), D(f) = (–∞; –9)? (–9; +∞), несимметричное множество, значит функция ни чётная, ни нечётная.

в) f (х ) = , у = f (х),

1) D(f ) = (–∞; 3] ≠ ; б) (∞; –2), (–4; 4]?

Вариант 2

1. Является ли симметричным заданное множество: а) [–2;2]; б) (∞; 0], (0; 7) ?


а); б) у = х· (5 – х 2). 2. Исследуйте на чётность функцию:

а) у = х 2 · (2х – х 3), б) у =

3. На рис. построен график у = f (х ), для всех х , удовлетворяющих условию х ? 0.
Постройте график функции у = f (х ), если у = f (х ) – чётная функция.

3. На рис. построен график у = f (х ), для всех х, удовлетворяющих условию х? 0.
Постройте график функции у = f (х ), если у = f (х ) – нечётная функция.

Взаимопроверка по слайду.

6. Задание на дом: №11.11, 11.21,11.22;

Доказательство геометрического смысла свойства чётности.

***(Задание варианта ЕГЭ).

1. Нечётная функция у = f(х) определена на всей числовой прямой. Для всякого неотрицательного значения переменной х значение этой функции совпадает со значением функции g(х ) = х (х + 1)(х + 3)(х – 7). Найдите значение функции h(х ) = при х = 3.

7. Подведение итогов

Скрыть Показать

Способы задания функции

Пусть функция задается формулой: y=2x^{2}-3 . Назначая любые значения независимой переменной x , можно вычислить, пользуясь данной формулой соответствующие значения зависимой переменной y . Например, если x=-0,5 , то, пользуясь формулой, получаем, что соответствующее значение y равно y=2 \cdot (-0,5)^{2}-3=-2,5 .

Взяв любое значение, принимаемое аргументом x в формуле y=2x^{2}-3 , можно вычислить только одно значение функции, которое ему соответствует. Функцию можно представить в виде таблицы:

x −2 −1 0 1 2 3
y −4 −3 −2 −1 0 1

Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3 ; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

Еще функции возможно задать, используя графики. С помощью графика устанавливается какое значение функции соотносится с определенным значением x . Наиболее часто, это будет приближенное значение функции.

Четная и нечетная функция

Функция является четной функцией , когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy .

Функция является нечетной функцией , когда f(-x)=-f(x) для любого x из области определения. Такая функция будет симметрична относительно начала координат O (0;0) .

Функция является ни четной , ни нечетной и называется функцией общего вида , когда она не обладает симметрией относительно оси или начала координат.

Исследуем на четность нижеприведенную функцию:

f(x)=3x^{3}-7x^{7}

D(f)=(-\infty ; +\infty) с симметричной областью определения относительно начала координат. f(-x)= 3 \cdot (-x)^{3}-7 \cdot (-x)^{7}= -3x^{3}+7x^{7}= -(3x^{3}-7x^{7})= -f(x) .

Значит, функция f(x)=3x^{3}-7x^{7} является нечетной.

Периодическая функция

Функция y=f(x) , в области определения которой для любого x выполняется равенство f(x+T)=f(x-T)=f(x) , называется периодической функцией с периодом T \neq 0 .

Повторение графика функции на любом отрезке оси абсцисс, который имеет длину T .

Промежутки, где функция положительная, то есть f(x) > 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих выше оси абсцисс.

f(x) > 0 на (x_{1}; x_{2}) \cup (x_{3}; +\infty)

Промежутки, где функция отрицательная, то есть f(x) < 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих ниже оси абсцисс.

f(x) < 0 на (-\infty; x_{1}) \cup (x_{2}; x_{3})

Ограниченность функции

Ограниченной снизу принято называть функцию y=f(x), x \in X тогда, когда существует такое число A , для которого выполняется неравенство f(x) \geq A для любого x \in X .

Пример ограниченной снизу функции: y=\sqrt{1+x^{2}} так как y=\sqrt{1+x^{2}} \geq 1 для любого x .

Ограниченной сверху называется функция y=f(x), x \in X тогда, когда существует такое число B , для которого выполняется неравенство f(x) \neq B для любого x \in X .

Пример ограниченной снизу функции: y=\sqrt{1-x^{2}}, x \in [-1;1] так как y=\sqrt{1+x^{2}} \neq 1 для любого x \in [-1;1] .

Ограниченной принято называть функцию y=f(x), x \in X тогда, когда существует такое число K > 0 , для которого выполняется неравенство \left | f(x) \right | \neq K для любого x \in X .

Пример ограниченной функции: y=\sin x ограничена на всей числовой оси, так как \left | \sin x \right | \neq 1 .

Возрастающая и убывающая функция

О функции, что возрастает на рассматриваемом промежутке принято говорить как о возрастающей функции тогда, когда большему значению x будет соответствовать большее значение функции y=f(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значения аргумента x_{1} и x_{2} , причем x_{1} > x_{2} , будет y(x_{1}) > y(x_{2}) .

Функция, что убывает на рассматриваемом промежутке, называется убывающей функцией тогда, когда большему значению x будет соответствовать меньшее значение функции y(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значений аргумента x_{1} и x_{2} , причем x_{1} > x_{2} , будет y(x_{1}) < y(x_{2}) .

Корнями функции принято называть точки, в которых функция F=y(x) пересекает ось абсцисс (они получаются в результате решения уравнения y(x)=0 ).

а) Если при x > 0 четная функция возрастает, то убывает она при x < 0

б) Когда при x > 0 четная функция убывает, то возрастает она при x < 0

в) Когда при x > 0 нечетная функция возрастает, то возрастает она и при x < 0

г) Когда нечетная функция будет убывать при x > 0 , то она будет убывать и при x < 0

Экстремумы функции

Точкой минимума функции y=f(x) принято называть такую точку x=x_{0} , у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняться неравенство f(x) > f(x_{0}) . y_{min} - обозначение функции в точке min.

Точкой максимума функции y=f(x) принято называть такую точку x=x_{0} , у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняется неравенство f(x) < f(x^{0}) . y_{max} - обозначение функции в точке max.

Необходимое условие

Согласно теореме Ферма: f"(x)=0 тогда, когда у функции f(x) , что дифференцируема в точке x_{0} , появится экстремум в этой точке.

Достаточное условие

  1. Когда у производной знак меняется с плюса на минус, то x_{0} будет точкой минимума;
  2. x_{0} - будет точкой максимума только тогда, когда у производной меняется знак с минуса на плюс при переходе через стационарную точку x_{0} .

Наибольшее и наименьшее значение функции на промежутке

Шаги вычислений:

  1. Ищется производная f"(x) ;
  2. Находятся стационарные и критические точки функции и выбирают принадлежащие отрезку ;
  3. Находятся значения функции f(x) в стационарных и критических точках и концах отрезка. Меньшее из полученных результатов будет являться наименьшим значением функции , а большее — наибольшим .

Четная функция.

Четной называется функция, знак которой не меняется при изменении знака x .

x выполняется равенство f (–x ) = f (x ). Знак x не влияет на знак y .

График четной функции симметричен относительно оси координат (рис.1).

Примеры четной функции:

y = cos x

y = x 2

y = –x 2

y = x 4

y = x 6

y = x 2 + x

Пояснение:
Возьмем функцию y = x 2 или y = –x 2 .
При любом значении x функция положительная. Знак x не влияет на знак y . График симметричен относительно оси координат. Это четная функция.

Нечетная функция.

Нечетной называется функция, знак которой меняется при изменении знака x .

Говоря иначе, для любого значения x выполняется равенство f (–x ) = –f (x ).

График нечетной функции симметричен относительно начала координат (рис.2).

Примеры нечетной функции:

y = sin x

y = x 3

y = –x 3

Пояснение:

Возьмем функцию y = –x 3 .
Все значения у в ней будут со знаком минус. То есть знак x влияет на знак y . Если независимая переменная – положительное число, то и функция положительная, если независимая переменная – отрицательное число, то и функция отрицательная: f (–x ) = –f (x ).
График функции симметричен относительно начала координат. Это нечетная функция.

Свойства четной и нечетной функций:

ПРИМЕЧАНИЕ:

Не все функции являются четными или нечетными. Есть функции, которые не подчиняются такой градации. К примеру, функция корня у = √х не относится ни к четным, ни к нечетным функциям (рис.3). При перечислении свойств подобных функций следует давать соответствующее описание: ни четна, ни нечетна.

Периодические функции.

Как вы знаете, периодичность – это повторяемость определенных процессов с определенным интервалом. Функции, описывающие эти процессы, называют периодическими функциями . То есть это функции, в чьих графиках есть элементы, повторяющиеся с определенными числовыми интервалами.

Исследование функции.

1) D(y) – Область опрделения: множество всех тех значений переменной х. при которых алгебраические выражения f(x) и g(x) имеют смысл.

Если функция задана формулой, то область определения состоит из всех значений независимой переменной, при которых формула имеет смысл.

2) Свойства функции: четность/нечетность, периодичность:

Нечётными и чётными называются функции, графики которых обладают симметрией относительно изменения знака аргумента.

    Нечётная функция - функция, меняющая значение на противоположное при изменении знака независимой переменной (симметричная относительно центра координат).

    Чётная функция - функция, не изменяющая своего значения при изменении знака независимой переменной (симметричная относительно оси ординат).

    Ни чётная ни нечётная функция (функция общего вида) - функция, не обладающая симметрией. В эту категорию относят функции, не подпадающие под предыдущие 2 категории.

    Функции, не принадлежащие ни одной из категорий выше, называются ни чётными ни нечётными (или функциями общего вида).

Нечётные функции

Нечётная степень где - произвольное целое число.

Чётные функции

Чётная степень где - произвольное целое число.

Периоди́ческая фу́нкция ― функция, повторяющая свои значения через некоторый регулярный интервал аргумента, то есть не меняющая своего значения при добавлении к аргументу некоторого фиксированного ненулевого числа (пери́ода функции) на всей области определения.

3) Нули (корни) функции - точки, где она обращается в ноль.

Нахождение точки пересечения графика с осью Oy . Для этого нужно вычислить значение f (0). Найти также точки пересечения графика с осью Ox , для чего найти корни уравнения f (x ) = 0 (или убедиться в отсутствии корней).

Точки, в которых график пересекает ось , называют нулями функции . Чтобы найти нули функции нужно решить уравнение , то есть найти те значения «икс» , при которых функция обращается в ноль.

4) Промежутки постоянства знаков, знаки в них.

Промежутки, где функция f(x) сохраняет знак.

Интервал знакопостоянства – это интервал, в каждой точке которого функция положительна либо отрицательна.

ВЫШЕ оси абсцисс.

НИЖЕ оси .

5) Непрерывность (точки разрыва, характер разрыва, ассимптоты).

Непрерывная функция - функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.

Устранимые точки разрыва

Если предел функции существует , но функция не определена в этой точке, либо предел не совпадает со значением функции в данной точке:

,

то точка называется точкой устранимого разрыва функции (в комплексном анализе -устранимая особая точка).

Если «поправить» функцию в точке устранимого разрыва и положить , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением функции до непрерывной или доопределением функции по непрерывности , что и обосновывает название точки, как точки устранимого разрыва.

Точки разрыва первого и второго рода

Если функция имеет разрыв в данной точке (то есть предел функции в данной точке отсутствует или не совпадает со значением функции в данной точке), то для числовых функций возникает два возможных варианта, связанных с существованием у числовых функций односторонних пределов :

    если оба односторонних предела существуют и конечны, то такую точку называют точкой разрыва первого рода . Точки устранимого разрыва являются точками разрыва первого рода;

    если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода .

Аси́мпто́та - прямая , обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви вбесконечность.

Вертикальная

Вертикальная асимптота - прямая предела .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

Горизонтальная

Горизонтальная асимптота - прямая вида при условии существования предела

.

Наклонная

Наклонная асимптота - прямая вида при условии существования пределов

Замечание: функция может иметь не более двух наклонных (горизонтальных) асимптот.

Замечание: если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует.

если в п. 2.), то , и предел находится по формуле горизонтальной асимптоты, .

6) Нахождение промежутков монотонности. Найти интервалы монотонности функции f (x )(то есть интервалы возрастания и убывания). Это делается с помощью исследования знака производной f (x ). Для этого находят производную f (x ) и решают неравенство f (x )0. На промежутках, где это неравенство выполнено, функция f (x )возрастает. Там, где выполнено обратное неравенство f (x )0, функция f (x )убывает.

Нахождение локального экстремума. Найдя интервалы монотонности, мы можем сразу определить точки локального экстремума там, где возрастание сменяется убыванием, располагаются локальные максимумы, а там, где убывание сменяется возрастанием - локальные минимумы. Вычислить значение функции в этих точках. Если функция имеет критические точки, не являющиеся точками локального экстремума, то полезно вычислить значение функции и в этих точках.

Нахождение наибольшего и наименьшего значений функции y = f(x) на отрезке (продолжение)

1. Найти производную функции: f (x ).

2. Найти точки, в которых производная равна нулю: f (x )=0x 1, x 2 ,...

3. Определить принадлежность точек х 1 , х 2 ,отрезку [a ; b ]: пусть x 1a ;b , а x 2a ;b .