Экспонента решение уравнений. Решение показательных уравнений. Основы

Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению . В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.

Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике « » в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.

Прежде чем приступить к разбору конкретных показательных уравнений и неравенств , как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.

Показательная функция

Что такое показательная функция?

Функцию вида y = a x , где a > 0 и a ≠ 1, называют показательной функцией .

Основные свойства показательной функции y = a x :

График показательной функции

Графиком показательной функции является экспонента :

Графики показательных функций (экспоненты)

Решение показательных уравнений

Показательными называются уравнения, в которых неизвестная переменная находится только в показателях каких-либо степеней.

Для решения показательных уравнений требуется знать и уметь использовать следующую несложную теорему:

Теорема 1. Показательное уравнение a f (x ) = a g (x ) (где a > 0, a ≠ 1) равносильно уравнению f (x ) = g (x ).

Помимо этого, полезно помнить об основных формулах и действиях со степенями:

Title="Rendered by QuickLaTeX.com">

Пример 1. Решите уравнение:

Решение: используем приведенные выше формулы и подстановку:

Уравнение тогда принимает вид:

Дискриминант полученного квадратного уравнения положителен:

Title="Rendered by QuickLaTeX.com">

Это означает, что данное уравнение имеет два корня. Находим их:

Переходя к обратной подстановке, получаем:

Второе уравнение корней не имеет, поскольку показательная функция строго положительна на всей области определения. Решаем второе:

С учетом сказанного в теореме 1 переходим к эквивалентному уравнению: x = 3. Это и будет являться ответом к заданию.

Ответ: x = 3.

Пример 2. Решите уравнение:

Решение: ограничений на область допустимых значений у уравнения нет, так как подкоренное выражение имеет смысл при любом значении x (показательная функция y = 9 4 -x положительна и не равна нулю).

Решаем уравнение путем равносильных преобразований с использованием правил умножения и деления степеней:

Последний переход был осуществлен в соответствии с теоремой 1.

Ответ: x = 6.

Пример 3. Решите уравнение:

Решение: обе части исходного уравнения можно поделить на 0,2 x . Данный переход будет являться равносильным, поскольку это выражение больше нуля при любом значении x (показательная функция строго положительна на своей области определения). Тогда уравнение принимает вид:

Ответ: x = 0.

Пример 4. Решите уравнение:

Решение: упрощаем уравнение до элементарного путем равносильных преобразований с использованием приведенных в начале статьи правил деления и умножения степеней:

Деление обеих частей уравнения на 4 x , как и в предыдущем примере, является равносильным преобразованием, поскольку данное выражение не равно нулю ни при каких значениях x .

Ответ: x = 0.

Пример 5. Решите уравнение:

Решение: функция y = 3 x , стоящая в левой части уравнения, является возрастающей. Функция y = —x -2/3, стоящая в правой части уравнения, является убывающей. Это означает, что если графики этих функций пересекаются, то не более чем в одной точке. В данном случае нетрудно догадаться, что графики пересекаются в точке x = -1. Других корней не будет.

Ответ: x = -1.

Пример 6. Решите уравнение:

Решение: упрощаем уравнение путем равносильных преобразований, имея в виду везде, что показательная функция строго больше нуля при любом значении x и используя правила вычисления произведения и частного степеней, приведенные в начале статьи:

Ответ: x = 2.

Решение показательных неравенств

Показательными называются неравенства, в которых неизвестная переменная содержится только в показателях каких-либо степеней.

Для решения показательных неравенств требуется знание следующей теоремы:

Теорема 2. Если a > 1, то неравенство a f (x ) > a g (x ) равносильно неравенству того же смысла: f (x ) > g (x ). Если 0 < a < 1, то показательное неравенство a f (x ) > a g (x ) равносильно неравенству противоположного смысла: f (x ) < g (x ).

Пример 7. Решите неравенство:

Решение: представим исходное неравенство в виде:

Разделим обе части этого неравенства на 3 2x , при этом (в силу положительности функции y = 3 2x ) знак неравенства не изменится:

Воспользуемся подстановкой:

Тогда неравенство примет вид:

Итак, решением неравенства является промежуток:

переходя к обратной подстановке, получаем:

Левое неравенства в силу положительности показательной функции выполняется автоматически. Воспользовавшись известным свойством логарифма, переходим к эквивалентному неравенству:

Поскольку в основании степени стоит число, большее единицы, эквивалентным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательно получаем ответ:

Пример 8. Решите неравенство:

Решение: используя свойства умножения и деления степеней, перепишем неравенство в виде:

Введем новую переменную:

С учетом этой подстановки неравенство принимает вид:

Умножим числитель и знаменатель дроби на 7, получаем следующее равносильное неравенство:

Итак, неравенству удовлетворяют следующие значения переменной t :

Тогда, переходя к обратной подстановке, получаем:

Поскольку основание степени здесь больше единицы, равносильным (по теореме 2) будет переход к неравенству:

Окончательно получаем ответ:

Пример 9. Решите неравенство:

Решение:

Делим обе части неравенства на выражение:

Оно всегда больше нуля (из-за положительности показательной функции), поэтому знак неравенства изменять не нужно. Получаем:

t , находящиеся в промежутке:

Переходя к обратной подстановке получаем, что исходное неравенство распадается на два случая:

Первое неравенство решений не имеет в силу положительности показательной функции. Решаем второе:

Пример 10. Решите неравенство:

Решение:

Ветви параболы y = 2x +2-x 2 направлены вниз, следовательно она ограничена сверху значением, которое она достигает в своей вершине:

Ветви параболы y = x 2 -2x +2, стоящей в показателе, направлены вверх, значит она ограничена снизу значением, которое она достигает в своей вершине:

Вместе с этим ограниченной снизу оказывается и функция y = 3 x 2 -2x +2 , стоящая в правой части уравнения. Она достигает своего наименьшего значения в той же точке, что и парабола, стоящая в показателе, и это значение равно 3 1 = 3. Итак, исходное неравенство может оказаться верным только в том случае, если функция слева и функция справа принимают в одной точке значение, равное 3 (пересечением областей значений этих функций является только это число). Это условие выполняется в единственной точке x = 1.

Ответ: x = 1.

Для того, чтобы научиться решать показательные уравнения и неравенства, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе, а также индивидуальные занятия с профессиональным репетитором. Искренне желаю вам успехов в подготовке и блестящих результатов на экзамене.


Сергей Валерьевич

P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.

На канал на youtube нашего сайта сайт, чтобы быть в курсе всех новых видео уроков.

Для начала вспомним основные формулы степеней и их свойства.

Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a a … a=a n

1. a 0 = 1 (a ≠ 0)

3. a n a m = a n + m

4. (a n) m = a nm

5. a n b n = (ab) n

7. a n /a m = a n — m

Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.

Примеры показательных уравнений:

В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.

Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0

Теперь разберем как решаются показательные уравнения?

Возьмем простое уравнение:

2 х = 2 3

Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:

2 х = 2 3
х = 3

Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.

Теперь подведем итоги нашего решения.

Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Теперь прорешаем несколько примеров:

Начнем с простого.

Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.

x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2

В следующем примере видно, что основания разные это 3 и 9.

3 3х — 9 х+8 = 0

Для начала переносим девятку в правую сторону, получаем:

Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n) m = a nm .

3 3х = (3 2) х+8

Получим 9 х+8 =(3 2) х+8 =3 2х+16

3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.

3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.

Смотрим следующий пример:

2 2х+4 — 10 4 х = 2 4

В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n) m = a nm .

4 х = (2 2) х = 2 2х

И еще используем одну формулу a n a m = a n + m:

2 2х+4 = 2 2х 2 4

Добавляем в уравнение:

2 2х 2 4 — 10 2 2х = 24

Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х,вот и ответ — 2 2х мы можем вынести за скобки:

2 2х (2 4 — 10) = 24

Посчитаем выражение в скобках:

2 4 — 10 = 16 — 10 = 6

Все уравнение делим на 6:

Представим 4=2 2:

2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.

Решим уравнение:

9 х – 12*3 х +27= 0

Преобразуем:
9 х = (3 2) х = 3 2х

Получаем уравнение:
3 2х — 12 3 х +27 = 0

Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены . Число с наименьшей степенью заменяем:

Тогда 3 2х = (3 х) 2 = t 2

Заменяем в уравнении все степени с иксами на t:

t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t 1 = 9
t 2 = 3

Возвращаемся к переменной x .

Берем t 1:
t 1 = 9 = 3 х

Стало быть,

3 х = 9
3 х = 3 2
х 1 = 2

Один корень нашли. Ищем второй, из t 2:
t 2 = 3 = 3 х
3 х = 3 1
х 2 = 1
Ответ: х 1 = 2; х 2 = 1.

На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.

Вступайте в группу

1º. Показательными уравнениями называют уравнения, содержащие переменную в показателе степени.

Решение показательных уравнений основано на свойстве степени: две степени с одним и тем же основание равны тогда и только тогда, когда равны их показатели.

2º. Основные способы решения показательных уравнений :

1) простейшее уравнение имеет решение ;

2) уравнение вида логарифмированием по основанию a сводят к виду ;

3) уравнение вида равносильно уравнению ;

4) уравнение вида равносильно уравнению .

5) уравнение вида через замену сводят к уравнению , а затем решают совокупность простейших показательных уравнений ;

6) уравнение со взаимно обратными величинами заменой сводят к уравнению , а затем решают совокупность уравнений ;

7) уравнения, однородные относительно a g (x) и b g (x) при условии вида через замену сводят к уравнению , а затем решают совокупность уравнений .

Классификация показательных уравнений.

1. Уравнения, решаемые переходом к одному основанию .

Пример 18. Решить уравнение .

Решение: Воспользуемся тем, что все основания степеней являются степенями числа 5: .

2. Уравнения, решаемые переходом к одному показателю степени .

Эти уравнения решаются преобразованием исходного уравнения к виду , которое использованием свойства пропорции приводится к простейшему.

Пример 19. Решить уравнение:

3. Уравнения, решаемые вынесением общего множителя за скобки .

Если в уравнении каждый показатель степени отличается от другого на некоторое число, то уравнения решаются вынесением за скобки степени с наименьшим показателем.

Пример 20. Решить уравнение .

Решение: Вынесем в левой части уравнения степень с наименьшим показателем за скобки:



Пример 21. Решить уравнение

Решение: Сгруппируем отдельно в левой части уравнения слагаемые, содержащие степени с основанием 4, в правой части – с основанием 3, затем вынесем степени с наименьшим показателем за скобки:

4. Уравнения, сводящиеся к квадратным (или кубическим) уравнениям .

К квадратному уравнению относительно новой переменной y сводятся уравнения:

а) вида подстановкой , при этом ;

б) вида подстановкой , при этом .

Пример 22. Решить уравнение .

Решение: Сделаем замену переменной и решим квадратное уравнение:

.

Ответ: 0; 1.

5. Однородные относительно показательных функций уравнения.

Уравнение вида является однородным уравнением второй степени относительно неизвестных a x и b x . Такие уравнения сводятся предварительным делением обеих частей на и последующей подстановкой к квадратным уравнениям.

Пример 23. Решить уравнение .

Решение: Разделим обе части уравнения на :

Положив , получим квадратное уравнение с корнями .

Теперь задача сводится к решению совокупности уравнений . Из первого уравнения находим, что . Второе уравнение не имеет корней, так как при любых значения x .

Ответ: -1/2.

6. Рациональные относительно показательных функций уравнения .

Пример 24. Решить уравнение .

Решение: Разделим числитель и знаменатель дроби на 3 x и получим вместо двух – одну показательную функцию:

7. Уравнения вида .

Такие уравнения с множеством допустимых значений (ОДЗ), определяемым условием , логарифмированием обеих частей уравнения приводятся к равносильному уравнению , которые в свою очередь равносильны совокупности двух уравнений или .

Пример 25. Решить уравнение: .

.

Дидактический материал.

Решите уравнения:

1. ; 2. ; 3. ;

4. ; 5. ; 6. ;

9. ; 10. ; 11. ;

14. ; 15. ;

16. ; 17. ;

18. ; 19. ;

20. ; 21. ;

22. ; 23. ;

24. ; 25. .

26. Найдите произведение корней уравнения .

27. Найдите сумму корней уравнения .

Найдите значение выражения:

28. , где x 0 – корень уравнения ;

29. , где x 0 – целый корень уравнения .

Решите уравнение:

31. ; 32. .

Ответы: 1. 0; 2. -2/9; 3. 1/36; 4. 0, 0.5; 5. 0; 6. 0; 7. -2; 8. 2; 9. 1, 3; 10. 8; 11. 5; 12. 1; 13. ¼; 14. 2; 15. -2, -1; 16. -2, 1; 17. 0; 18. 1; 19. 0; 20. -1, 0; 21. -2, 2; 22. -2, 2; 23. 4; 24. -1, 2; 25. -2, -1, 3; 26. -0.3; 27. 3; 28. 11; 29. 54; 30. -1, 0, 2, 3; 31. ; 32. .

Тема №8.

Показательные неравенства.

1º. Неравенство, содержащее переменную в показателе степени, называется показательным неравенством.

2º. Решение показательных неравенств вида основано на следующих утверждениях:

если , то неравенство равносильно ;

если , то неравенство равносильно .

При решении показательных неравенств используют те же приемы, что и при решении показательных уравнений.

Пример 26. Решить неравенство (методом перехода к одному основанию ).

Решение: Так как , то заданное неравенство можно записать в виде: . Так как , то данное неравенство равносильно неравенству .

Решив последнее неравенство, получим .

Пример 27. Решить неравенство: (методом вынесения общего множителя за скобки ).

Решение: Вынесем за скобки в левой части неравенства , в правой части неравенства и разделим обе части неравенства на (-2), поменяв знак неравенства на противоположный:

Так как , то при переходе к неравенству показателей знак неравенства опять меняется на противоположный. Получаем . Таким образом, множество всех решений данного неравенства есть интервал .

Пример 28. Решить неравенство (методом введения новой переменной ).

Решение: Пусть . Тогда данное неравенство примет вид: или , решением которого является интервал .

Отсюда . Поскольку функция возрастает, то .

Дидактический материал.

Укажите множество решений неравенства:

1. ; 2. ; 3. ;

6. При каких значениях x точки графика функции лежат ниже прямой ?

7. При каких значениях x точки графика функции лежат не ниже прямой ?

Решите неравенство:

8. ; 9. ; 10. ;

13. Укажите наибольшее целое решение неравенства .

14. Найдите произведение наибольшего целого и наименьшего целого решений неравенства .

Решите неравенство:

15. ; 16. ; 17. ;

18. ; 19. ; 20. ;

21. ; 22. ; 23. ;

24. ; 25. ; 26. .

Найдите область определения функции:

27. ; 28. .

29. Найдите множество значений аргумента, при которых значения каждой из функций больше 3:

и .

Ответы: 11. 3; 12. 3; 13. -3; 14. 1; 15. (0; 0,5); 16. ; 17. (-1; 0)U(3; 4); 18. [-2; 2]; 19. (0; +∞); 20. (0; 1); 21. (3; +∞); 22. (-∞; 0)U(0,5; +∞); 23. (0; 1); 24. (-1; 1); 25. (0; 2]; 26. (3; 3,5)U (4; +∞); 27. (-∞; 3)U{5}; 28. }