Электродвижущая сила. Внутреннее сопротивление источника тока. Лабораторная работа «Измерение ЭДС и внутреннего сопротивления источника тока» (11 класс)


Мы пришли к выводу, что для поддержания постоянного тока в замкнутой цепи, в нее необходимо включить источник тока. Подчеркнем, что задача источника заключается не в том, чтобы поставлять заряды в электрическую цепь (в проводниках этих зарядов достаточно), а в том, чтобы заставлять их двигаться, совершать работу по перемещению зарядов против сил электрического поля. Основной характеристики источника является электродвижущая сила 1 (ЭДС) − работа, совершаемая сторонними силами по перемещению единичного положительного заряда

Поэтому большинству людей нужны ассоциации или критическая масса в планетарном поле, чтобы получать сигналы энергии и воспоминания о сознании и иметь возможность правильно воспринимать сигналы. Трехмерная система управления не учитывает симптомы вознесения, опыт, связанный с сознанием, или многие радикальные изменения, которые происходят у людей с этой Земли. Заземление - это форма заземления на Земле и относится к прямому контакту тела с элементами Земли. Это может быть полезно для многих людей, которые испытывают недостаток заземления и плотского дискомфорта во время планетарных изменений.

Единицей измерения ЭДС в системе единиц СИ является Вольт. ЭДС источника равна 1 вольт, если он совершает работу 1 Джоуль при перемещении заряда 1 Кулон

Для обозначения источников тока на электрических схемах используется специальное обозначение (рис. 397).

рис. 397
 Электростатическое поле совершает положительную работу по перемещению положительного заряда в направлении уменьшения потенциала поля. Источник тока проводит разделение электрических зарядов − на одном полюсе накапливаются положительные заряды, на другом отрицательный. Напряженность электрического поля в источнике направлена от положительного полюса к отрицательному, поэтому работа электрического поля по перемещению положительного заряда будет положительной при его движения от «плюса» к «минусу». Работа сторонних сил, наоборот, положительна в том случае, если положительные заряды перемещаются от отрицательного полюса к положительному, то есть от «минуса» к «плюсу».
В этом принципиальное отличие понятий разности потенциалов и ЭДС, о котором всегда необходимо помнить.
Таким образом, электродвижущую силу источника можно считать алгебраической величиной, знак которой («плюс» или «минус») зависит от направления тока. В схеме, показанной на рис. 398,

рис. 398
вне источника (во внешней цепи) ток течет 2 от «плюса» источника к «минусу», в внутри источника от «минуса» к «плюсу». В этом случае, как сторонние силы источника, так и электростатические силы во внешней цепи совершают положительную работу.
 Если на некотором участке электрической цепи помимо электростатических действуют и сторонние силы, то над перемещением зарядов «работают» как электростатические, так и сторонние силы. Суммарная работа электростатических и сторонних сил по перемещению единичного положительного заряда называется электрическим напряжением на участке цепи

 В том случае, когда сторонние силы отсутствуют, электрическое напряжение совпадает с разностью потенциалов электрического поля.
 Поясним определение напряжения и знака ЭДС на простом примере. Пусть на участке цепи, по которому протекает электрический ток, имеются источник сторонних сил и резистор (рис. 399).

рис. 399
 Для определенности будем считать, что φ o > φ 1 , то есть электрический ток направлен от точки 0 к точке 1 . При подключении источника, как показано на рис. 399 а, Сторонние силы источника совершают положительную работу, поэтому соотношение (2) в этом случае может быть записано в виде

 При обратном включении источника (рис. 399 б) внутри него заряды движутся против сторонних сил, поэтому работа последних отрицательна. Фактически силы внешнего электрического поля преодолевают сторонние силы. Следовательно, в этом случае рассматриваемое соотношение (2) имеет вид

 Для протекания электрического тока по участку цепи, обладающему электрическим сопротивлением, необходимо совершать работу, по преодолению сил сопротивления. Для единичного положительного заряда эта работа, согласно закону Ома, равна произведению IR = U которое, естественно совпадает с напряжением на данном участке.
 Заряженные частицы (как электроны, так и ионы) внутри источника движутся в некоторой , поэтому со стороны среду на них также действуют тормозящие силы, которые также необходимо преодолевать. Заряженные частицы преодолевают силы сопротивления благодаря действию сторонних сил (если ток в источнике направлен от «плюса» к «минусу») либо благодаря электростатическим силам (если ток направлен от «минуса» к «плюсу»). Очевидно, что работа по преодолению этих сил не зависит от направления движения, так как силы сопротивления всегда направлены в сторону, противоположную скорости движения частиц. Так как силы сопротивления пропорциональны средней скорости движения частиц, то работа по их преодолению пропорциональна скорости движения, следовательно, силе тока силе. Таким образом, мы можем ввести еще характеристику источника − его внутренне сопротивление r , аналогично обычному электрическому сопротивлению. Работа по преодолению сил сопротивления при перемещении единичного положительного заряда между полюсами источника равна A/q = Ir . Еще раз подчеркнем, эта работа не зависит от направления тока в источнике.

Если у вас нет доступа к природе, и вы хотите создать электрическую схему с полем Земли, вы также можете использовать праймер, который связан с человеческим телом. Электрический потенциал цепи заземления зависит от местоположения, атмосферных условий, времени суток и ночи, а также от влаги, которая расположена на поверхности Земли. Интуитивные эмпаты и звездные саженцы, которые хотят восстановить энергетическую настройку с телом планеты, должны обратить внимание на их естественные чувства, потому что они должны знать, должны ли они быть заземлены или нет.

1 Название этой физической величины неудачно − так электродвижущая сила является работой, а не силой в обычном механическом понимании. Но этот термин настолько устоялся, что изменять его не «в наших силах». К слову, сила тока то же не является механической силой! Не говоря уж о таких понятиях «сила духа», «сила воли», «божественная сила» и т.д.
2 Напомним, за направление движения электрического тока принято направление движения положительных зарядов.

В некоторых случаях из-за неорганических или внешних течений в определенных областях эта практика может оказаться нецелесообразной. Для большинства людей, которые посеяны Землей, на фазе духовной интеграции обоснование будет положительно ощущаться и будет очень полезно для тела, потому что оно будет действовать как нейромодулятор. Нейромодуляция - это процесс, в котором активность нервной системы регулируется путем регулирования физиологических уровней посредством стимуляции нейротрансмиттеров. Таким образом, заземление изменяет плотность отрицательного заряда в области энергии человека и его нервной системы и непосредственно влияет на физиологические процессы, такие как химия мозга.

Лабораторная работа

«Измерение ЭДС и внутреннего сопротивления источника тока»

Дисциплина Физика

Преподаватель Виноградов А.Б.

Нижний Новгород

Цель работы: сформировать умение определения ЭДС и внут­реннего сопротивления источника тока с помощью амперметра и вольтметра.

Земля посылает электромагнитные сигналы для поддержки человеческих тел при адаптации к ее вознесению, и этот сигнал позволяет человеческой нервной системе лучше адаптироваться к требованиям, предъявляемым к телу и мозгу во время интенсивных изменений сознания. Когда мы хотим восстановить электрический баланс активности мозга, может быть особенно полезно окружить природу, сосредоточиться на глубоком дыхании и соединиться с Землей или с элементом воды.

Почки - это органы, которые питают энергию. В настоящее время население людей переживает эпидемию заболеваний почек, вызванных неспособностью органов быстро адаптироваться к новым обстоятельствам, плохого признания событий, изменяющих жизнь, сердечных заболеваний, перегрузки токсичными химическими веществами и негативных эмоций. Целью почек является удаление вредных метаболических продуктов, выделяемых мочевым пузырем, и поддержание надлежащей химии крови и давления, поскольку они контролируют все химические вещества, растворенные в кровотоке.

Оборудование: выпрямитель ВУ-4М, амперметр, вольтметр, соединительные провода, элементы планшета №1: ключ, ре­зистор R 1 .

Теоретическое содержание работы .

Внутреннее сопротивление ис­точника тока.

При прохождении тока по замкнутой цепи, электрически заряженные ча­стицы перемещаются не только внутри проводников, соединяющих полюса источника тока, но и внутри самого источ­ника тока. Поэтому в замкнутой электрической цепи раз­личают внешний и внутренний участки цепи. Внешний уча­сток цепи составляет вся та совокупность проводников, которая подсоединяется к полюсам источника тока. Вну­тренний участок цепи - это сам источник тока. Источник тока, как и любой другой проводник, обладает сопротивле­нием. Таким образом, в электрической цепи, состоящей из источника то­ка и проводников с электриче­ским сопротивлением R , элек­трический ток совершает работу не только на внешнем, но и на внутреннем участке цепи. Напри­мер, при подключении лампы накаливания к гальванической батарее карманного фонаря элек­трическим током нагреваются не только спираль лампы и под­водящие провода, но и сама ба­тарея. Электрическое сопротивле­ние источника тока называется внутренним сопротивлением. В электромагнитном генераторе внутренним сопротивлением яв­ляется электрическое сопротивле­ние провода обмотки генератора. На внутреннем участке электри­ческой цепи выделяется коли­чество теплоты, равное

Когда почки ослаблены и перегружены, в крови и тканях накапливаются токсичные отходы, а также химические вещества, которые невозможно фильтровать надлежащим образом. Почечная недостаточность увеличивается в Соединенных Штатах на 5% в год, при этом в качестве терапии используют почечный диализ или трансплантацию. Десять процентов населения имеют некоторую форму диабета и неврологического дискомфорта, и это число, по-видимому, неуклонно растет - у взрослых и у детей. Что случилось с нашими почками?

Восточная медицинская философия знает, что почки питают другие органы тела. Они действуют как корни жизни, которые отвечают за защиту организма и распределение энергии во всех органах, репродуктивных функциях и всего организма. Почки - это органы взаимоотношений, поэтому они страдают от проблем с межличностными и сексуальными отношениями, которые могут возникнуть в результате отсутствия поддержки у других или чувства нелюбимой или даже из-за отсутствия физической чувствительности. Эмоции циркулируют в личной энергетической области, и когда она будет выпущена, у вас может возникнуть ощущение течения, благодаря которому вы ощущаете эмоции.

где r - внутреннее сопротивле­ние источника тока.

Полное количество теплоты, выделяющееся при протекании постоянного тока в замкнутой цепи, внешний и внутренний участки которой имеют сопротивления, соответственно равные R и r , равно

Всякую замкнутую цепь можно представить как два последовательно соединенных резистора с эквивалентными сопротивлениями R и r . Поэтому сопротивление полной це­пи равно сумме внешнего и внутреннего сопротивлений:

. Поскольку при последовательном соединении сила тока на всех участках цепи одинакова, то через внеш­ний и внутренний участок цепи проходит одинаковый по величине ток. Тогда по закону Ома для участка цепи паде­ние напряжений на ее внешнем и внутреннем участках бу­дут соответственно равны:

Это позволяет вам освобождать эмоциональную боль и страх и избавляет вас от хронических проблем с почками, открывая для себя большее эмоциональное и духовное расширение энергии. Когда это наоборот, когда сердце закрыто от боли и страха, что блокирует эмоции, оно влияет на функцию управления жидкостью через почки и нарушает распределение жизненной энергии, необходимой для заземленного, здорового и сбалансированного ума и тела.

Более того, когда наше сердце исцеляется, внутри горит пламя, которое также питается жизненной энергией, хранящейся в почках. Треугольный соединитель соединяет сердце с каждой почкой, которая работает в светящемся теле, как электрическая цепь. В основании этого треугольника слева и справа находятся почки, а верхняя точка связана с сердцем. Когда сердце исцеляется, пламя в сердце и почках одновременно активирует конфигурацию сердца во внутреннем двойном пламени. Двойное пламя соответствует восстановленному энергетическому балансу между энергией самца и женщины, т.е. структурой света, созданного в комплексе сердца.


и

(3)

Электродвижущая сила.

Пол­ная работа сил электростати­ческого поля при движении за­рядов по замкнутой цепи по­стоянного тока равна нулю. Сле­довательно, вся работа электри­ческого тока в замкнутой элек­трической цепи оказывается со­вершенной за счет действия сто­ронних сил, вызывающих разде­ление зарядов внутри источника и поддерживающих постоянное напряжение на выходе источника тока. Отношение работы

, совершаемой сторонними силами по перемещению заряда q вдоль цепи, к значению этого заряда называется электродвижущей си­лой источника (ЭДС) :

Поэтому, когда два огня зажигаются в сердце, жизненно важная сущность, хранящаяся в почках, помогает переносить чи-пламя по всему физическому телу, чтобы соединиться с духовным пламенем монадического тела. Монада - это большее пламя духа, а физическое тело - меньшее пламя жизненной сущности или жизненной силы. Когда эти два огня зажигаются и объединяются, пламя взрывается от сердца, которое посылает огонь, чтобы поддержать рост сущности жизни, создаваемой почками. В основном, почки помогают построить внутреннее светящееся тело, необходимое для встраивания монадического тела.


, (4)

- переносимый заряд.

ЭДС вы­ражается в тех же единицах, что и напряжение или разность по­тенциалов, т. е. в вольтах:

.

Закон Ома для полной цепи.

Любые визуальные упражнения, направленные на создание жизненной силы энергии в низших диенах и вызывают энергию для циркуляции у подножия ног, укрепляют способность почек хранить жизненно важную сущность, помогают исправить механизм заземления и выполнять функции физической очистки крови. Существуют некоторые потенцирующие агенты для почек и трав, которые являются общими для восточной медицины и полезны для тонизирования функции почек, особенно если есть проблема с заземлением или центрированием сердечника.

Почечная недостаточность вызывает выработку надпочечников. Надпочечники - это железы, которые производят много гормонов, и хорошо известно, что под давлением они перекачивают кортизол в кровоток, что приводит к тому, что человеческая нервная система переходит в состояние борьбы или полета. Адреналин обычно продуцируется как надпочечниками, так и некоторыми нейронами, которые также могут активироваться эмоциональными реакциями. Каждая эмоциональная реакция имеет поведенческий компонент, компонент вегетативной нервной системы, секрецию железы или гормональный фактор.

Если в результате прохождения постоянного тока в замкнутой электрической цепи происходит только нагревание проводников, то по закону сохранения энергии полная работа электрического то­ка в замкнутой цепи, равная работе сторонних сил источни­ка тока, равна количеству тепло­ты, выделившейся на внешнем и внутреннем участках цепи:

Гормональные факторы, связанные со стрессом и эмоциональной болью, включают высвобождение адреналина и реакции надпочечников - в ответ на чувства, основанные на страхе, контролируемые симпатической нервной системой. Основная эмоция, которая выделяет адреналин в кровь, - это страх.

Кроме того, надпочечники играют важную роль в реагировании на борьбу или бегство, увеличивая приток крови к мышцам и сердцу, а затем учащиеся расширяются и уровень сахара в крови увеличивается. Адреналин закачивается в кровоток, когда человек провоцируется на террористические акты или страх, чтобы произвести как можно больше негативной эмоциональной энергии, что может быть основной причиной того, что надпочечники полностью истощены у большинства людей. Когда человек не исправляет это состояние и все еще накачивает адреналин или другие гормоны стресса в кровоток, нервная система замерзает, состояние шока и онемения.


. (5)

Из выражений (2), (4) и (5) получаем:

. (6)

, то


, (7)

В какой-то момент, когда вы испытываете постоянную боль или страх, из-за чрезмерной нагрузки адреналина, тело и нервная система попадают в состояние онемения, которое отключает эмоциональные реакции, закрывая сердце. Надпочечники находятся в верхней части каждой почки, поэтому они непосредственно подвержены истощению почек, что, естественно, приводит к выходу надпочечников. Если мы делаем что-то действительно нездоровое для нашего духа, и наша повседневная работа не соответствует тому, кто мы есть, он также истощает почки, адреналин и жизненную силу.


. (8)

Сила тока в электрической цепи прямо пропорциональна электродвижущей силе источ­ника тока и обратно пропор­циональна сумме электрических сопротивлений внешнего и внут­реннего участков цепи. Выраже­ние (8) называется законом Ома для полной цепи.

Когда нам приходится сталкиваться с трудными стрессовыми факторами на работе, в отношениях или в других ситуациях, организм может подвергаться глубокому бессознательному эмоциональному стрессу. Мы чувствуем себя беспомощными и расстроены тем, что мы должны просто работать, чтобы выполнить финансовые обязательства или выжить. Наше тело дает нам сообщение из-за чрезмерного истощения, что мы уже не можем жить таким же образом, мы должны вносить изменения, и первое изменение должно состоять в том, чтобы осуществить сознание через смерть эго.

Таким образом, с точки зрения физики Закон Ома выражает закон сохранения энергии для замкнутой цепи постоянного тока.

Порядок выполнения работы .

    Подготовка к выполнению работы.

Перед вами на столах находится минилаборатория по электродинамике. Её вид представлен в л. р. № 9 на рисунке 2.

Слева находятся миллиамперметр, выпрямитель ВУ-4М, вольтметр, амперметр. Справа закреплен планшет № 1 (см. рис. 3 в л. р. № 9). В задней секции корпуса размещаются соединительные провода цветные: красный провод использу­ют для подключения ВУ-4М к гнезду «+» планшета; белый провод - для подключения ВУ-4М к гнезду «-»; желтые провода - для подключения к элементам планшета измерительных приборов ; синие - для соединения между собой элементов планшета. Секция закрыта откидной площадкой. В рабочем положении площадка располагается горизонтально и используется в качестве рабочей поверхности при сборке экспериментальных установок в опытах.

Планетарный контроль над человеческими почками Чи. Мы должны стремиться к восстановлению сердечного центра и превращению почек в более высокую цель, связанную с вознесением тела. Существуют оверлеи, кодирующие человеческие тела для порабощения, установленные во время рождения, в записи последовательности трансдукции в теле проявления ядра или в Древе Жизни. Основной шаблон проявления сетки дерева имеет набор инструкций для контроля функций органов и желез на уровне каждого измерения, поскольку железы выделяют вещества и гормоны, которые позволяют человеческому сознанию двигаться быстрее между измерениями.

2. Ход работы.

В ходе работы вы освоите метод измерения основных характеристик источника тока, используя закон Ома для полной цепи, который связывает силу тока I в цепи, ЭДС источника тока , его внутреннее сопротивление r и сопротивление внешней цепи R соотношением:

В землях Соединенного Королевства ключи от пробуждения структур Альбиона скрыты, и они являются гигантскими спящими существами. Теги используются для руководства людьми на Земле для будущих временных линий для работы в рабских колониях или в различных галактических местах торговли людьми, которые контролируются этими внеземными коррумпированными конгломератами и группами драконов.

Группы Черного Солнца Ориона оставляли за собой право на некоторые человеческие тела, генетический материал и человеческое Древо Жизни, и именно поэтому они контролируют его. Благодаря этому им легче контролировать и контролировать информацию, связанную со структурой души и многомерной анатомией. Это драконовцы, которые воруют из духовных частей тела, а также из органов и желез.

. (9)

1 способ.

Схема экспериментальной установки показана на рисунке 1.

Внимательно изучите её. При разомкну­том ключе В источник замкнут на вольтметр, сопротивление которого много больше внутреннего сопротивления источника (r R ). В этом случае ток в цепи настолько мал, что можно пренебречь значением падения на­пряжения на внутреннем сопротивлении источника

, и ЭДС источника с пренеб­режимо малой погрешностью равна напря­жения на его зажимах , которое измеряется вольтметром, т.е.


. (10)

Таким образом, ЭДС источника определяется по показаниям вольтметра при разомкнутом ключе В.

Если ключ В замкнуть, вольтметр покажет падение напряжения на резисторе R :


. (11)

Тогда на основании равенств (9), (10) и (11) можно утверждать, что


(12)

Из формулы (12) вид­но, что для определения внутреннего сопротивления источника тока необходимо, кроме его ЭДС, знать силу тока в цепи и напря­жение на резисторе R при замкнутом ключе.

Силу тока в цепи можно измерить при помощи амперметра. Проволочный резистор изготовлен из нихромовой проволоки и имеет сопротивление 5 Ом.

Соберите цепь по схеме, показанной на рисунке 3.

После того, как цепь будет собрана, необходимо поднять руку, позвать учителя, чтобы он проверил правильность сборки электрической цепи. И если цепь собрана правильно, то приступайте к выполнению работы.

При разомкну­том ключе В снимите показания вольтметра и занесите значение напряжения в таблицу 1. Затем замкните ключ В и опять снимите показания вольтметра, но уже и показания амперметра. Занесите значение напряжения и силы тока в таблицу 1.

Сформулируйте закон Ома для полной цепи.

Если бы мы не знали значения сопротивлений проволочных резисторов, то можно ли было бы использовать второй способ и что для этого надо сделать (может нужно, например, включить в цепь какой-нибудь прибор)?

Уметь собирать электрические цепи, используемые в работе.

Литература

    Кабардин О. Ф.. Справ. Материалы: Учеб. Пособие для учащихся.-3-е изд.-М.:Просвещение,1991.-с.:150-151.

    Справочник школьника. Физика/ Сост. Т. Фещенко, В. Вожегова.–М.: Филологическое об-щество «СЛОВО», ООО «Фирма» «Издательство АСТ», Центр гуманитарных наук при ф-те журна-листики МГУ им. М. В. Ломоносова, 1998. - с.: 124,500-501.

    Самойленко П. И.. Физика (для нетехнических специальностей): Учебн. для общеобразоват. учреждений сред. Проф. Образования/ П. И.Самойленко, А. В. Сергеев.-2-е изд., стер.-М.: Издательский центр «Академия», 2003-с.: 181-182.

8.5. Тепловое действие тока

8.5.1. Мощность источника тока

Полная мощность источника тока:

P полн = P полезн + P потерь,

где P полезн - полезная мощность, P полезн = I 2 R ; P потерь - мощность потерь, P потерь = I 2 r ; I - сила тока в цепи; R - сопротивление нагрузки (внешней цепи); r - внутреннее сопротивление источника тока.

Полная мощность может быть рассчитана по одной из трех формул:

P полн = I 2 (R + r ), P полн = ℰ 2 R + r , P полн = I ℰ,

где ℰ - электродвижущая сила (ЭДС) источника тока.

Полезная мощность - это мощность, которая выделяется во внешней цепи, т.е. на нагрузке (резисторе), и может быть использована для каких-то целей.

Полезная мощность может быть рассчитана по одной из трех формул:

P полезн = I 2 R , P полезн = U 2 R , P полезн = IU ,

где I - сила тока в цепи; U - напряжение на клеммах (зажимах) источника тока; R - сопротивление нагрузки (внешней цепи).

Мощность потерь - это мощность, которая выделяется в источнике тока, т.е. во внутренней цепи, и расходуется на процессы, имеющие место в самом источнике; для каких-то других целей мощность потерь не может быть использована.

Мощность потерь, как правило, рассчитывается по формуле

P потерь = I 2 r ,

где I - сила тока в цепи; r - внутреннее сопротивление источника тока.

При коротком замыкании полезная мощность обращается в нуль

P полезн = 0,

так как сопротивление нагрузки в случае короткого замыкания отсутствует: R = 0.

Полная мощность при коротком замыкании источника совпадает с мощностью потерь и вычисляется по формуле

P полн = ℰ 2 r ,

где ℰ - электродвижущая сила (ЭДС) источника тока; r - внутреннее сопротивление источника тока.

Полезная мощность имеет максимальное значение в случае, когда сопротивление нагрузки R равно внутреннему сопротивлению r источника тока:

R = r .

Максимальное значение полезной мощности:

P полезн max = 0,5 P полн,

где P полн - полная мощность источника тока; P полн = ℰ 2 / 2 r .

В явном виде формула для расчета максимальной полезной мощности выглядит следующим образом:

P полезн max = ℰ 2 4 r .

Для упрощения расчетов полезно помнить два момента:

  • если при двух сопротивлениях нагрузки R 1 и R 2 в цепи выделяется одинаковая полезная мощность, то внутреннее сопротивление источника тока r связано с указанными сопротивлениями формулой

r = R 1 R 2 ;

  • если в цепи выделяется максимальная полезная мощность, то сила тока I * в цепи в два раза меньше силы тока короткого замыкания i :

I * = i 2 .

Пример 15. При замыкании на сопротивление 5,0 Ом батарея элементов дает ток силой 2,0 А. Ток короткого замыкания батареи равен 12 А. Рассчитать наибольшую полезную мощность батареи.

Решение . Проанализируем условие задачи.

1. При подключении батареи к сопротивлению R 1 = 5,0 Ом в цепи течет ток силой I 1 = 2,0 А, как показано на рис. а , определяемый законом Ома для полной цепи:

I 1 = ℰ R 1 + r ,

где ℰ - ЭДС источника тока; r - внутреннее сопротивление источника тока.

2. При замыкании батареи накоротко в цепи течет ток короткого замыкания, как показано на рис. б . Сила тока короткого замыкания определяется формулой

где i - сила тока короткого замыкания, i = 12 А.

3. При подключении батареи к сопротивлению R 2 = r в цепи течет ток силой I 2 , как показано на рис. в , определяемый законом Ома для полной цепи:

I 2 = ℰ R 2 + r = ℰ 2 r ;

в этом случае в цепи выделяется максимальная полезная мощность:

P полезн max = I 2 2 R 2 = I 2 2 r .

Таким образом, для расчета максимальной полезной мощности необходимо определить внутреннее сопротивление источника тока r и силу тока I 2 .

Для того чтобы найти силу тока I 2 , запишем систему уравнений:

i = ℰ r , I 2 = ℰ 2 r }

и выполним деление уравнений:

i I 2 = 2 .

Отсюда следует:

I 2 = i 2 = 12 2 = 6,0 А.

Для того чтобы найти внутреннее сопротивление источника r , запишем систему уравнений:

I 1 = ℰ R 1 + r , i = ℰ r }

и выполним деление уравнений:

I 1 i = r R 1 + r .

Отсюда следует:

r = I 1 R 1 i − I 1 = 2,0 ⋅ 5,0 12 − 2,0 = 1,0 Ом.

Рассчитаем максимальную полезную мощность:

P полезн max = I 2 2 r = 6,0 2 ⋅ 1,0 = 36 Вт.

Таким образом, максимальная полезная мощность батареи составляет 36 Вт.

Цель работы: изучить метод измерения ЭДС и внутреннего сопротивления источника тока с помощью амперметра и вольтметра.

Оборудование: металлический планшет, источник тока, амперметр, вольтметр, резистор, ключ, зажимы, соединительные провода.

Для измерения ЭДС и внутреннего сопротивления источника тока собирают электрическую цепь, схема которой показана на рисунке 1.

К источнику тока подключают амперметр, сопротивление и ключ, соединенные последовательно. Кроме того, непосредствен­но к выходным гнездам источника подключают еще и вольтметр.

ЭДС измеряют по показанию вольтметра при разомкнутом ключе. Этот прием определения ЭДС основан на следствии из за­кона Ома для полной цепи, согласно которому при бесконечно большом сопротивлении внешней цепи напряжение на зажимах источника равно его ЭДС. (См. параграф "Закон Ома для полной цепи" учебника "Физика 10").

Для определения внутреннего сопротивления источника за­мыкают ключ К. При этом в цепи можно условно выделить два участка: внешний (тот, который подключен к источнику) и внутренний (тот, который находится внутри источника тока). Поскольку ЭДС источника равна сумме падения напряжений на внутрен­нем и внешнем участках цепи:

ε = U r +U R , то U r = ε -U R (1)

По закону Ома для участка цепи U r = I· r (2). Подставив равенство (2) в (1) получают:

I · r = ε - U r , откуда r = (ε - U R )/ J

Следовательно, чтобы узнать внутреннее сопротивление источника тока, необходимо пред­варительно определить его ЭДС, затем замкнуть ключ и измерить падение напряжения на внеш­нем сопротивлении, а также силу тока в нем.

Ход работы

1. Подготовьте таблицу для записи результатов измерений и вычислений:

ε

U r , B

i,a

r , Ом

    Начертите в тетради схему для измерения ЭДС и внутреннего сопротивления источника.

    После проверки схемы соберите электрическую цепь. Ключ разомкните.

    Измерьте величину ЭДС источника.

    Замкните ключ и определите показания амперметра и вольтметра.

    Вычислите внутреннее сопротивление источника.

  1. Определение эдс и внутреннего сопротивления источника тока графическим методом

Цель работы: изучить измерения ЭДС, внутреннего сопротивления и тока короткого замы­кания источника тока, основанный на анализе графика зависимости напряже­ния на выходе источника от силы тока в цепи.

Оборудование: гальванический элемент, амперметр, вольтметр, резистор R 1 , переменный резистор, ключ, зажимы, металлический планшет, соединительные провода.

Из закона Ома для полной цепи следует, что напряжение на выходе источника тока зависит прямо пропорционально от силы тока в цепи:

так как I =E/(R+r), то IR + Ir = Е, но IR = U, откуда U + Ir = Е или U = Е – Ir (1).

Если построить график зависимости U от I, то по его точкам пересечения с осями координат можно определить Е, I К.З. - силу тока короткого замыкания (ток, который потечет в цепи источни­ка, когда внешнее сопротивление R станет равным нулю).

ЭДС определяют по точке пересечения графика с осью напряжений. Эта точка графика со­ответствует состоянию цепи, при котором ток в ней отсутствует и, следовательно, U = Е.

Силу тока короткого замыкания определяют по точке пересечения графика с осью токов. В этом случае внешнее сопротивление R = 0 и, следовательно, напряжение на выходе источника U = 0.

Внутреннее сопротивление источника находят по тангенсу угла наклона графика относи­тельно оси токов. (Сравните формулу (1) с математической функцией вида У = АХ +В и вспомни­те смысл коэффициента при X).

Ход работы

    Для записи результатов измерений подготовьте таблицу:

  1. После проверки схемы преподавателем соберите электрическую цепь. Ползунок переменного резистора установите в положение, при котором сопротивление цепи, подключенной к источ­нику тока, будет максимальным.
  2. Определите значение силы тока в цепи и напряжение на зажимах источника при максимальной величине сопротивления переменного резистора. Данные измерений занесите в таблицу.

    Повторите несколько раз измерения силы тока и напряжения, уменьшая всякий раз величину переменного сопротивления так, чтобы напряжение на зажимах источника уменьшалось на 0,1В. Измерения прекратите, когда сила тока в цепи достигнет значения в 1А.

    Нанесите полученные в эксперименте точки на график. Напряжение откладывайте по верти­кальной оси, а силу тока - по горизонтальной. Проведите по точкам прямую линию.

    Продолжите график до пересечения с осями координат и определите величины Е и, I К.З.

    Измерьте ЭДС источника, подключив вольтметр к его выводам при разомкнутой внешней це­пи. Сопоставьте значения ЭДС, полученные двумя способами, и укажите причину возможного расхождения результатов.

    Определите внутреннее сопротивление источника тока. Для этого вычислите тангенс угла на­клона построенного графика к оси токов. Так как тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему, то практически это можно сделать, найдя отношение Е / I К.З

Допустим, есть простейшая электрическая замкнутая цепь, включающая в себя источник тока, например генератор, гальванический элемент или аккумулятор, и резистор, обладающий сопротивлением R. Поскольку ток в цепи нигде не прерывается, то и внутри источника он течет.

В такой ситуации можно сказать, что любой источник обладает некоторым внутренним сопротивлением, препятствующим току. Это внутреннее сопротивление характеризует источник тока и обозначается буквой r. Для или аккумулятора внутреннее сопротивление - это сопротивление раствора электролита и электродов, для генератора - сопротивление обмоток статора и т. д.

Таким образом, источник тока характеризуется как величиной ЭДС, так и величиной собственного внутреннего сопротивления r – обе эти характеристики свидетельствуют о качестве источника.

Электростатические высоковольтные генераторы (как генератор Ван де Граафа или генератор Уимшурста), к примеру, отличаются огромной ЭДС измеряемой миллионами вольт, при этом их внутреннее сопротивление измеряется сотнями мегаом, потому они и непригодны для получения больших токов.


Гальванические элементы (такие как батарейка) - напротив - имеют ЭДС порядка 1 вольта, хотя внутреннее сопротивление у них порядка долей или максимум - десятка Ом, и от гальванических элементов поэтому можно получать токи в единицы и десятки ампер.

На данной схеме показан реальный источник с присоединенной нагрузкой. Здесь обозначены , его внутреннее сопротивление, а также сопротивление нагрузки. Согласно , ток в данной цепи будет равен:

Поскольку участок внешней цепи однороден, то из закона Ома можно найти напряжение на нагрузке:

Выразив из первого уравнения сопротивление нагрузки, и подставив его значение во второе уравнение, получим зависимость напряжения на нагрузке от тока в замкнутой цепи:

В замкнутом контуре ЭДС равна сумме падений напряжений на элементах внешней цепи и на внутреннем сопротивлении самого источника. Зависимость напряжения на нагрузке от тока нагрузки в идеальном случае линейна.

График это показывает, но экспериментальные данные на реальном резисторе (крестики возле графика) всегда отличаются от идеала:


Эксперименты и логика показывают, что при нулевом токе нагрузки напряжение на внешней цепи равно ЭДС источника, а при нулевом напряжении на нагрузке ток в цепи равен . Это свойство реальных цепей помогает экспериментально находить ЭДС и внутреннее сопротивление реальных источников.

Экспериментальное нахождение внутреннего сопротивления

Чтобы экспериментально определить данные характеристики, строят график зависимости напряжения на нагрузке от величины тока, затем экстраполируют его до пересечения с осями.

В точке пересечения графика с остью напряжения находится значение ЭДС источника, а в точке пересечения с осью тока находится величина тока короткого замыкания. В итоге внутреннее сопротивление находится по формуле:

Развиваемая источником полезная мощность выделяется на нагрузке. График зависимости этой мощности от сопротивления нагрузки приведен на рисунке. Эта кривая начинается от пересечения осей координат в нулевой точке, затем возрастает до максимального значения мощности, после чего спадает до нуля при сопротивлении нагрузки равном бесконечности.


Чтобы найти максимальное сопротивление нагрузки, при котором теоретически разовьется максимальная мощность при данном источнике, берется производная от формулы мощности по R и приравнивается к нулю. Максимальная мощность разовьется при сопротивлении внешней цепи, равном внутреннему сопротивлению источника:

Это положение о максимальной мощности при R = r, позволяет экспериментально найти внутреннее сопротивление источника, построив зависимость мощности, выделяемой на нагрузке, от величины сопротивления нагрузки. Найдя реальное, а не теоретическое, сопротивление нагрузки, обеспечивающее максимальную мощность, определяют реальное внутреннее сопротивление источника питания.

КПД источника тока показывает отношение максимальной выделяемой на нагрузке мощности к полной мощности, которую в данный момент развивает

Источник – это устройство, которое преобразует механическую, химическую, термическую и некоторые другие формы энергии в электрическую. Другими словами, источник является активным сетевым элементом, предназначенным для генерации электроэнергии. Различные типы источников, доступных в электросети, представляют собой источники напряжения и источники тока. Эти две концепции в электронике различаются друг от друга.

Источник постоянного напряжения

Источник напряжения – устройство с двумя полюсами, напряжение его в любой момент времени является постоянным, и проходящий через него ток не оказывает влияния. Такой источник будет идеальным, имеющим нулевое внутреннее сопротивление. В практических условиях он не может быть получен.

На отрицательном полюсе источника напряжения скапливается избыток электронов, у положительного полюса – их дефицит. Состояния полюсов поддерживаются процессами внутри источника.

Батареи

Батареи хранят химическую энергию внутри и способны преобразовывать ее в электрическую. Батареи не могут быть перезаряжены, что является их недостатком.

Аккумуляторы

Аккумуляторы являются перезаряжаемыми батареями. При зарядке электрическая энергия сохраняется внутри в виде химической. Во время разгрузки химический процесс протекает в противоположном направлении, а электрическая энергия высвобождается.

Примеры:

  1. Свинцово-кислотный аккумуляторный элемент. Изготавливается из свинцовых электродов и электролитической жидкости в виде разведенной дистиллированной водой серной кислоты. Напряжение на ячейку – около 2 В. В автомобильных аккумуляторах шесть ячеек обычно соединены в последовательную цепь, на клеммах выхода результирующее напряжение – 12 В;

  1. Никель-кадмиевые аккумуляторы, напряжение ячейки – 1,2 В.

Важно! При небольших токах батареи и аккумуляторы можно рассматривать как хорошее приближение к идеальным источникам напряжения.

Источник переменного напряжения

Электроэнергия производится на электрических станциях с помощью генераторов и после регулирования напряжения передается к потребителю. Переменное напряжение домашней сети 220 В в блоках питания различных электронных устройств легко преобразуется в более низкий показатель при применении трансформаторов.

Источник тока

По аналогии, как идеальный источник напряжения создает постоянное напряжение на выходе, задача источника тока – выдать постоянное значение тока, автоматом контролируя требуемое напряжение. Примерами являются трансформаторы тока (вторичная обмотка), фотоэлементы, коллекторные токи транзисторов.

Расчет внутреннего сопротивления источника напряжения

Реальные источники напряжения обладают собственным электрическим сопротивлением, которое называется «внутреннее сопротивление». Присоединенная на выводы источника нагрузка обозначается под названием «внешнее сопротивление» – R.

Батарея аккумуляторов генерирует ЭДС:

ε = E/Q, где:

  • Е – энергия (Дж);
  • Q – заряд (Кл).

Суммарная ЭДС аккумуляторного элемента является напряжением его разомкнутой цепи при отсутствии нагрузки. Его можно проконтролировать с хорошей точностью цифровым мультиметром. Разность потенциалов, измеренная на выходных контактах батареи, когда она включена на нагрузочный резистор, составит меньшую величину, чем ее напряжение при незамкнутой цепи, по причине протекания тока через нагрузочное внешнее и через внутреннее сопротивление источника, это приводит к рассеиванию энергии в нем как теплового излучения.

Внутреннее сопротивление аккумулятора с химическим принципом действия находится между долей ома и несколькими омами и в основном связано с сопротивлением электролитических материалов, используемых при изготовлении батареи.

Если резистор сопротивлением R подсоединить к батарее, ток в цепи I = ε/(R + r).

Внутреннее сопротивление – не постоянная величина. На него влияет род батареи (щелочная, свинцово-кислотная и т. д.), оно изменяется в зависимости от нагрузочного значения, температуры и срока использования аккумулятора. К примеру, у разовых батареек внутреннее сопротивление возрастает во время использования, а напряжение в связи с этим падает до прихода в состояние, непригодное для дальнейшей эксплуатации.

Если ЭДС источника – заранее данная величина, внутреннее сопротивление источника определяется, измеряя ток, протекающий через нагрузочное сопротивление.

  1. Так как внутреннее и внешнее сопротивление в приближённой схеме включены последовательно, можно использовать законы Ома и Кирхгофа для применения формулы:
  1. Из этого выражения r = ε/I — R.

Пример. Аккумулятор с известной ЭДС ε = 1.5 В и соединен последовательно с лампочкой. Падение напряжения на лампочке составляет 1,2 В. Следовательно, внутреннее сопротивление элемента создает падение напряжения: 1,5 — 1,2 = 0,3 В. Сопротивление проводов в цепи считается пренебрежимо малым, сопротивление лампы не известно. Измеренный ток, проходящий через цепь: I = 0,3 А. Нужно определить внутреннее сопротивление аккумулятора.

  1. По закону Ома сопротивление лампочки R = U/I = 1,2/0,3 = 4 Ом;
  2. Теперь по формуле для расчета внутреннего сопротивления r = ε/I — R = 1,5/0,3 — 4 = 1 Ом.

В случае короткого замыкания внешнее сопротивление падает почти до нуля. Ток может ограничивать свое значение только маленьким сопротивлением источника. Сила тока, возникающая в такой ситуации, настолько велика, что источник напряжения может быть поврежден тепловым воздействием тока, существует опасность возгорания. Риск пожара предотвращается установкой предохранителей, например, в цепях автомобильных аккумуляторов.

Внутреннее сопротивление источника напряжения – важный фактор, когда решается вопрос, как передать наиболее эффективную мощность подсоединенному электроприбору.

Важно! Максимальная передача мощности происходит, когда внутреннее сопротивление источника равно сопротивлению нагрузки.

Однако при этом условии, помня формулу Р = I² x R, идентичное количество энергии отдается нагрузке и рассеивается в самом источнике, а его КПД составляет всего 50%.

Требования нагрузки должны быть тщательно рассмотрены для принятия решения о наилучшем использовании источника. Например, свинцово-кислотная автомобильная батарея должна обеспечивать высокие токи при сравнительно низком напряжении 12 В. Ее низкое внутреннее сопротивление позволяет ей это делать.

В некоторых случаях источники питания высокого напряжения должны иметь чрезвычайно большое внутреннее сопротивление, чтобы ограничить ток к. з.

Особенности внутреннего сопротивления источника тока

У идеального источника тока бесконечное сопротивление, а для подлинных источников можно представить приближенный вариант. Эквивалентная электросхема – это сопротивление, подключенное к источнику параллельно, и внешнее сопротивление.

Токовый выход от источника тока распределяется так: частично ток течет через наиболее высокое внутреннее сопротивление и через низкое сопротивление нагрузки.

Выходной ток будет находиться из суммы токов на внутреннем сопротивлении и нагрузочного Iо = Iн + Iвн.

Получается:

Iн = Iо — Iвн = Iо — Uн/r.

Эта зависимость показывает, что когда внутреннее сопротивление источника тока растет, тем больше снижается ток на нем, а резистор нагрузки получает большую часть тока. Интересно, что напряжение влиять не будет на токовую величину.

Выходное напряжение реального источника:

Uвых = I x (R x r)/(R +r) = I x R/(1 + R/r). Оцените статью: