Функции белков. Регуляторные функции

Основная статья: Ферменты

Наиболее хорошо известная роль белков в организме - катализ различных химических реакций. Ферменты - группа белков, обладающая специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации и репарации ДНК и матричного синтеза РНК. Известно несколько тысяч ферментов; среди них такие как, например, пепсин расщепляют белки в процессе пищеварения. В процесс посттрансляционной модификации некоторые ферменты добавляют или удаляют химические группы на других белках. Известно около 4000 реакций, катализируемых белками . Ускорение реакции в результате ферментативного катализа иногда огромно: например, реакция, катализируемая ферментом оротат-карбоксилазой, протекает в 10 17 раз быстрее некатализируемой (78 миллионов лет без фермента, 18 миллисекунд с участием фермента) . Молекулы, которые присоединяются к ферменту и изменяются в результате реакции, называются субстратами.

Хотя ферменты обычно состоят из сотен аминокислот, только небольшая часть из них взаимодействует с субстратом, и ещё меньшее количество - в среднем 3-4 аминокислоты, часто расположенные далеко друг от друга в первичной аминокислотной последовательности - напрямую участвуют в катализе . Часть фермента, которая присоединяет субстрат и содержит каталитические аминокислоты, называется активным центром фермента.

[править]Структурная функция

Основные статьи: Структурная функция белков , Фибриллярные белки

Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. Большинство структурных белков являются филаментозными белками: например, мономеры актина и тубулина - это глобулярные, растворимые белки, но после полимеризации они формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форму . Коллаген иэластин - основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоятволосы, ногти, перья птиц и некоторые раковины.



Мышиное антитело против холеры, присоединённое куглеводородному антигену (вверху)

Защитная функция

Основная статья: Защитная функция белков

Существуют несколько видов защитных функций белков:

1. Физическая защита. В ней принимает участие коллаген - белок, образующий основу межклеточного вещества соединительных тканей (в том числе костей, хряща, сухожилий и глубоких слоёв кожи (дермы)); кератин, составляющий основу роговых щитков, волос, перьев, рогов и др. производныхэпидермиса. Обычно такие белки рассматривают как белки со структурной функцией. Примерами этой группы белков служат фибриногены и тромбины , участвующие в свёртывании крови.

2. Химическая защита. Связывание токсинов белковыми молекулами может обеспечивать их детоксикацию. Особенно важную роль в детоксикации у человека играют ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма .

3. Иммунная защита. Белки, входящие в состав крови и других биологических жидкостей, участвуют в защитном ответе организма как на повреждение, так и на атаку патогенов. Белки системы комплемента и антитела (иммуноглобулины) относятся к белкам второй группы; они нейтрализуют бактерии, вирусыили чужеродные белки. Антитела, входящие в состав адаптативной иммунной системы, присоединяются к чужеродным для данного организма веществам, антигенам, и тем самым нейтрализуют их, направляя к местам уничтожения. Антитела могут секретироваться в межклеточное пространство или закрепляться в мембранах специализированных В-лимфоцитов, которые называются плазмоцитами . В то время как ферменты имеют ограниченное сродство к субстрату, поскольку слишком сильное присоединение к субстрату может мешать протеканию катализируемой реакции, стойкость присоединения антител к антигену ничем не ограничена .

Регуляторная функция

Основные статьи: Активатор (белки) , Протеасома , Регуляторная функция белков

Многие процессы внутри клеток регулируются белковыми молекулами, которые не служат ни источником энергии, ни строительным материалом для клетки. Эти белки регулируюттранскрипцию, трансляцию, сплайсинг, а также активность других белков и др. Регуляторную функцию белки осуществляют либо за счёт ферментативной активности (например,протеинкиназы), либо за счёт специфического связывания с другими молекулами, как правило, влияющего на взаимодействие с этими молекулами ферментов.

Так, транскрипция генов определяется присоединением факторов транскрипции - белков-активаторов и белков-репрессоров - к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов , а деградация РНК и белков также проводится специализированными белковыми комплексами . Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы - ферменты, которые активируют или подавляют активность других белков путём присоединения к ним фосфатных групп.

Структура миоглобина с выделенными α-спиралями

Сигнальная функция

Основные статьи: Сигнальная функция белка , Гормоны , Цитокины

Сигнальная функция белков - способность белков служить сигнальными веществами, передавая сигналы между клетками, тканями, о́рганами и разными организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.

Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др.

Гормоны переносятся кровью. Большинство гормонов животных - это белки или пептиды. Связывание гормона с рецептором является сигналом, запускающим в клетке ответную реакцию. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин, который регулирует концентрацию глюкозы в крови.

Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.

Цитокины - небольшие пептидные информационные молекулы. Они регулируют взаимодействия между клетками, определяют их выживаемость, стимулируют или подавляют рост, дифференцировку, функциональную активность и апоптоз, обеспечивают согласованность действий иммунной, эндокринной и нервной систем. Примером цитокинов может служить фактор некроза опухоли, который передаёт сигналы воспаления между клетками организма .

Транспортная функция

Основная статья: Транспортная функция белков

Растворимые белки, участвующие в транспорте малых молекул, должны иметь высокое сродство (аффинность) к субстрату, когда он присутствует в высокой концентрации, и легко его высвобождать в местах низкой концентрации субстрата. Примером транспортных белков можно назвать гемоглобин, который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов .

Некоторые мембранные белки участвуют в транспорте малых молекул через мембрану клетки, изменяя её проницаемость. Липидный компонент мембраны водонепроницаем (гидрофобен), что предотвращает диффузию полярных или заряженных (ионы) молекул. Мембранные транспортные белки принято подразделять на белки-каналы и белки-переносчики. Белки-каналы содержат внутренние заполненные водой поры, которые позволяют ионам (через ионные каналы) или молекулам воды (через белки-аквапорины) перемещаться через мембрану. Многиеионные каналы специализируются на транспорте только одного иона; так, калиевые и натриевые каналы часто различают эти сходные ионы и пропускают только один из них . Белки-переносчики связывают, подобно ферментам, каждую переносимую молекулу или ион и, в отличие от каналов, могут осуществлять активный транспорт с использованием энергии АТФ. «Электростанция клетки» - АТФ-синтаза, которая осуществляет синтез АТФ за счёт протонного градиента, также может быть отнесена к мембранным транспортным белкам .

В живых организмах выполняют множество важных функций. Поэтому в организмах существует множество различных белков.

Ферментативная функция белков заключается в том, что они служат катализаторами различных химических реакций, протекающих в организме. Ферментативную функцию по-другому называют каталитической. При катализе происходит ускорение химических реакций, причем это ускорение может быть даже в миллионы раз.

Белков-ферментов тысячи, каждый из них обслуживает свою химическую реакции или группу схожих реакций. По типу обслуживаемых реакций ферменты делят на классы. Например, оксидоредуктазы катализируют окислительно-восстановительные реакции, гидролазы обеспечивают гидролиз химических связей и т. д. Реакцию катализирует не вся молекула фермента, а только ее так называемый активный центр. Он включает часть молекулы, которая связывает субстрат (молекулу, которая подвергается превращению), и несколько аминокислот (часто не вместе расположенных), которые обеспечивают саму реакцию.

Белки выполняют структурную функцию . Они входят в состав клеточных мембран и органоидов, межклеточного вещества (белки коллаген и эластин), волос, ногтей и т. п. (кератин).

Двигательная функция белков заключается в сокращении мышц (актин и миозин), обеспечении движения клеток, их ресничек и жгутиков.

Существуют белки, которые обеспечивают перенос различных веществ как внутри клетки, так и по всему организму. Такие белки обеспечивают транспортную функцию . Они легко связываются с субстратом, когда его концентрация высока, и легко высвобождают его при низкой концентрации. К транспортным белкам относится гемоглобин. В легких он связывает кислород и высвобождает углекислый газ, а в тканях наоборот.

Ряд белков, входящих в состав мембран клеток, обеспечивают транспорт малых молекул через мембрану. Такой транспорт может быть как пассивным (белки-каналы), так и активным (белки-переносчики).

Регуляторная и сигнальная функции белков разнообразны. Многие внутриклеточные процессы (клеточный цикл, транскрипция и трансляция, активация или подавление активности других белков и т. д.) регулируются белками.

Многие гормоны - это белки, переносимые кровью. Когда гормон связывается с определенным рецептором, то клетка получает сигнал, в результате чего в ней запускается ответная реакция. Гормоны регулируют концентрации веществ, процесс роста, период размножения и др.

Клетки взаимодействуют между собой посредством сигнальных белков, которые передаются через межклеточное вещество. Например, такие сигналы могут стимулировать или подавлять рост клеток. Таким образом обеспечивается согласованность работы клеток той или иной системы органов.

Выделяют рецепторную функцию белков . Белки-рецепторы могут находиться как в цитоплазме, так и в мембранах. Когда на рецептор действует химическое вещество или физический стимул (свет, давление и др), то он изменяется. Это изменение молекулы передается в другие части клетки, посредством катализа определенной реакции, прохождения ионов или связывания молекул-посредников.

Защитная функция белков также весьма разнообразна. Коллаген и кератин обеспечивают не только структурную функцию, но и физическую защиту организма. Также физически организм защищают фибриногены и тромбины, свертывающие кровь в местах ранения (контакта с воздухом).

Белки обеспечивают химическую защиту, связывая и расщепляя чужеродные токсины или вырабатывая свои (для защиты от других организмов).

Защитными белками являются антитела, которые обезвреживают микроорганизмы и чужеродные белки. Так белки обеспечивают иммунную защита.

Если в организме возникает дефицит углеводов и жиров, то белки, распадаясь до конечных продуктов, могут выполнять энергетическую функцию .

Белки могут запасаться как источник энергии и источник аминокислот (например, в яйцеклетках). Это запасающая функция белков .

Гормоны имеют различную химическую природу – это белки, пептиды, стероиды и производные аминокислот. Эти вещества являются посредниками, которые доставляют сигналы к мишеням периферических тканей.

Клетки по-разному реагируют на воздействия различных гормонов. Например, тиреоидные и способны проникать через клеточную мембрану, образуя рецепторные комплексы, которые, в свою очередь, взаимодействуют с генами, участвующими в синтезе белка. Остальные гормоны связываются в сложные реакции, контактируя с рецепторами мембран клеток. При этом создается сложная цепь, образующая вторичного посредника внутри клетки. А это приводит к активности ферментов.

Выполнив свою функцию, гормоны расщепляются в клетках-мишенях, крови, либо подвергаются распаду в печени и выводятся из организма, чаще всего - с мочой. Центральная нервная система контролирует действие гормонов, оказывает влияние на их выработку и воздействие на обменные процессы, ускоряет синтез белков.

Белковые гормоны

К белкам относятся гормоны, которые вырабатываются в гипоталамусе и гипофизе головного мозга, поджелудочной, щитовидной железе, кишечнике:

  • гормон роста;
  • кортикотропин (АКГГ);
  • либерины;
  • статины;
  • вазопрессин;
  • соматотропин;

Какую роль выполняют белки-гормоны в организме человека? Белки-гормоны выполняют регуляторные функции клеточной и физиологической активности. Например, контролирует уровень глюкозы в крови и обеспечивает ее поступление в клетки. отвечает за содержания кальция и состояние костей скелета.

Функции белков в организме

Белки участвуют в метаболизме, входят в структуру органелл и цитоскелета, выделяются в межклеточное пространство, участвуют в гидролизе пищи.

Функциональная классификация белков достаточно условная, так как один гормон может выполнять различные задачи.

  • Регуляторная функция обеспечивает продвижение клетки по клеточному циклу, ее транскрипцию, сплайсинг, трансляцию, активность других белковых соединений. Эта функция происходит за счет связывания с другими молекулами или ферментативного действия. Важную роль играют ферменты, подавляющие активность других белков, это протеинкиназа и протеинфосфатаза.
  • Транспортная функция заключается в переносе мелких молекул. Например, гемоглобин транспортирует кислород из легких к периферическим тканям, а обратно доставляет углекислый газ. Некоторые белковые гормоны переносят молекулы через клеточную мембрану, повышая ее проницаемость. Достигается это за счет образования ионных каналов или АТФ-синтазы.

  • Рецепторное действие. При раздражении белкового рецептора происходит изменение расположения атомов в молекуле, что позволяет обеспечить передачу сигнала с поверхности мембраны к другим рецепторам внутри клетки. При этом создаются ионные каналы, связи-посредники или химические реакции, в зависимости от того, какой это гормон.
  • Каталитическая функция ферментов – это расщепление сложных молекул и их синтез, образование субстратов. Все ферменты классифицируют по типу катализируемых реакций.

  • Защитная работа белков-гормонов бывает нескольких видов: физическая, химическая и иммунная. За физическую отвечает коллаген, кератин, тромбин, фибриноген. Химическую защиту обеспечивают ферменты печени, которые расщепляют токсины и выводят их из организма. Иммунная защита обеспечивается иммуноглобулинами, противостоящими вирусам, бактериям, чужеродным белкам. Адаптивные клетки присоединяются к патологическим молекулам и формируют антигены, которые уничтожают чужеродные тела.
  • За структурную функцию отвечают белки цитоскелета, они придают форму клеткам. Например, эластин и коллаген являются основными компонентами соединительной ткани кожи, а кератин входит в структуру волос и ногтей.

  • Моторная функция отвечает за сократительную работу мышц, движение лейкоцитов, ресничек слизистых оболочек, внутриклеточный транспорт.
  • Резервная функция – это белки, которые накапливаются в качестве запасного источника энергии, аминокислот и оказывают влияние на метаболизм.
  • Сигнальная функция белков – это передача импульсов между клетками. Эту задачу выполняют цитокины, факторы роста. Гормоны отвечают за обменные процессы, размножение, рост, химический состав крови. Цитокины обеспечивают слаженную работу иммунной, эндокринной и нервной системы.

Влияние белков на метаболизм

Состоят белки из аминокислот, соединенных в цепочку пептидной связью. Остатки образующих веществ постоянно подвергаются распаду с последующей утилизацией неиспользованных продуктов. В то же время происходит синтез новых белков. Ускоренный процесс обновления наблюдается в печени, кишечнике, плазме крови. Медленнее обновляются белки в клетках мозга, сердце, половых железах. А наиболее медленный процесс наблюдается в мышцах, коже, костях и сухожилиях.

Белки-гормоны состоят из 20 аминокислот, 18 из которых синтезируются в организме и являются заменимыми, а остальные 8 – это незаменимые вещества, которые поступают только вместе с продуктами питания (триптофан, лизин, валин, метионин, изолейцин, треонин, лейцин, фенилаланин). Дефицит незаменимых аминокислот приводит к отставанию в росте, уменьшению массы тела.

Пищевые белки, попадая в организм, расщепляются в кислой среде желудка, подвергаются гидролизу ферментов (протеазы). Некоторые аминокислоты, полученные в результате переваривания пищи, участвуют в синтезе белков-гормонов, остальные превращаются в глюкозу и используются в качестве источника энергии.

По биологической ценности белки различают:

  • полноценные;
  • неполноценные.

Первая группа – это белки, содержащие необходимый аминокислотный состав, а вторая – это гормоны, с недостаточным составом. Поэтому люди должны ежедневно употреблять белковую пищу с высокой биологической ценностью: мясо, рыба, яйца, молоко.

Регуляция белкового обмена

Соматотропин – это белковый гормон человека, вырабатывающийся гипофизом головного мозга. Его функцией является увеличение размеров внутренних органов и тканей во время роста у детей. У взрослых он отвечает за повышение проницаемости клеточных мембран для поступления аминокислот и подавление протеолитических ферментов.

Влияют на гормональный обмен белков и тиреоидные гормоны (тироксин, трийодтиронин), которые оказывают стимулирующее действие. Глюкокортикоиды усиливают белковый распад в мышечных тканях, а в печени, наоборот, синтезируют белки.

Список литературы

  1. Макаров В.М. Кылбанова Е.С., Хорунов А.Н., Аргунова А.Н., Пальшина А.М., Фармакотерапия неспецифических заболеваний легких. Методическое пособие. Якутск, Изд-во ЯГУ, 2008.
  2. Руководство для врачей скорой мед. помощи. Под редакцией В.А. Михайловича, А.Г. Мирошниченко. 3-е издание. СПб, 2005.
  3. Бессонов П.П., Бессонова Н.Г. Синдромная диагностика хронических болезней печени.

Существуют несколько видов защитных функций белков:

    Физическая защита. В ней принимает участие коллаген - белок, образующий основу межклеточного вещества соединительных тканей (в том числе костей, хряща, сухожилий и глубоких слоев кожи)дермы); кератин, составляющий основу роговых щитков, волос, перьев, рогов и др. производных эпидермиса. Обычно такие белки рассматривают как белки со структурной функцией. Примерами этой группы белков служат фибриногены и тромбины, участвующие в свёртывании крови.

    Химическая защита. Связывание токсины белковыми молекулами может обеспечивать их детоксикацию. Особенно важную роль в детоксикации у человека играют ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма.

    Иммунная защита. Белки, входящие в состав крови и других биологических жидкостей, участвуют в защитном ответе организма как на повреждение, так и на атаку патогенов. Белки системы комплемента и антитела (иммуноглобулины) относятся к белкам второй группы; они нейтрализуют бактерии, вирусы или чужеродные белки. Антитела, входящие в состав адаптивной иммунной системы, присоединяются к чужеродным для данного организма веществам, антигенами, и тем самым нейтрализуют их, направляя к местам уничтожения. Антитела могут секретироваться в межклеточное пространство или закрепляться в мембранах специализированных В-лимфоцитов, которые называются плазмоцитами. В то время как ферменты имеют ограниченное сродство к субстрату, поскольку слишком сильное присоединение к субстрату может мешать протеканию катализируемой реакции, стойкость присоединения антител к антигену ничем не ограничена.

Регуляторная функция

Многие процессы внутри клеток регулируются белковыми молекулами, которые не служат ни источником энергии, ни строительным материалом для клетки. Эти белки регулируют транскрипцию, трансляцию, сплайсинг, а также активность других белков и др. Регуляторную функцию белки осуществляют либо за счет ферментативной активности (например, протеинкиназы), либо за счет специфического связывания с другими молекулами, как правило, влияющего на взаимодействие с этими молекулами ферментов.

Так, транскрипция генов определяется присоединением факторов транскрипции - белков-активаторовибелков-репрессоровк регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, адеградацияРНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играютпротеинкиназы- ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

Сигнальная функция

Сигнальная функция белков- способность белков служить сигнальными веществами, передавая сигналы между тканями, клетками или организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.

Сигнальную функцию выполняют белки-гормоны,цитокины,факторы ростаи др.

Гормоны переносятся кровью. Большинство гормонов животных - это белки или пептиды. Связывание гормона с рецептором является сигналом, запускающим в клетке ответную реакцию. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин, который регулирует концентрациюглюкозывкрови

Клетки могут взаимодействуют друг с другом на небольшом расстоянии с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокиныифакторы роста.

Цитокины- небольшие пептидные информационные молекулы. Они регулируют взаимодействия между клетками, определяют их выживаемость, стимулируют или подавляют рост, дифференцировку, функциональную активность иапоптоз, обеспечивают согласованность действий иммунной, эндокринной и нервной систем. Примером цитокинов может служитьфактор некроза опухолей, который передаёт сигналы воспаления между клетками организма.

В функционировании человеческого организма стала ясна в начале XIX века. Учёные обозначили эти вещества греческим термином «протеины», от слова protos - «главный, первый».

Главная особенность этих химических соединений состоит в том, что они являются основой, которую организм использует для создания новых клеток. Другие их функции состоят в обеспечении регуляторных и обменных процессов; в выполнении транспортных функций (к примеру, белок гемоглобин, распространяющий кислород по всему организму с током крови); в формировании мышечных волокон; в управлении многими витальными функциями организма (ярким примером служит белок инсулин); в регулировании процесса пищеварения, энергетического обмена; в защите организма.

Химическая структура этих веществ определяется количеством аминокислот, из которых состоят белковые молекулы. Молекулы по размеру являются довольно крупными. Эти вещества являются высокомолекулярными органическими веществами и представляют собой цепочку аминокислот, связанных между собой пептидной связью. Аминокислотный состав протеинов обусловлен генетическим кодом. Множество вариаций соединения аминокислот дает разнообразие свойств протеиновых молекул. Как правило, они соединяются между собой и образуют сложные комплексы.

Классификация протеинов не доработана, поскольку учёными исследованы далеко не все белки. Роль многих из них продолжает быть загадкой для людей. Пока что протеины разделяют по биологической роли и по тому, какие именно аминокислоты входят в их состав. Для нашего питания ценен не сам белок, а составляющие его аминокислоты. Аминокислоты – это одна из разновидностей органических кислот. Их насчитывают более 100. Без них невозможно протекание метаболических процессов.

Организм не может полностью усваивать поступающие с пищей протеины. Большая их часть подвергается разрушению под действием кислых пищеварительных соков. Происходит распад белков до аминокислот. Организм «берёт» после распада нужные ему аминокислоты и конструирует из них нужные белки. При этом может происходить трансформация одних аминокислот в другие. Помимо трансформации, они также могут самостоятельно синтезироваться в организме.

Однако не все аминокислоты может производить наш организм. Те, которые не синтезируются, называются незаменимыми, потому что организм в них нуждается, а получить их может только извне. Незаменимые аминокислоты не могут быть заменены другими. К ним причисляют метионин, лизин, изолейцин, лейцин, фенилаланин, треонин, валин. К тому же есть другие аминокислоты, которые образуются исключительно из незаменимых фенилаланина и метионина. Поэтому качество питания обусловлено не количеством поступающих белков, а качественным их составом. Например, в картофеле, белокочанной капусте, свекле, капусте, в бобовых, в хлебе содержится большое количество триптофана, лизина, метионина.

Протекание белкового обмена в нашем организме зависит от достаточного количества нужных белков. Расщепление и трансформация одних веществ в другие происходит с выделением нужной организму энергии.

Как результат жизнедеятельности организма, постоянно происходит потеря части белков. Из поступающих извне белковых веществ теряется примерно 30 г в сутки. Поэтому с учётом потери, рацион должен содержать достаточное количество этих веществ, чтобы обеспечить работоспособность организма.

Потребление организмом белковых веществ зависит от разных факторов: выполнение трудной физической работы или нахождение в состоянии покоя; эмоциональное состояние. В сутки норма потребления белка составляет в совокупности не менее 50 грамм для взрослых людей (это примерно 0,8 грамм на каждый килограмм массы тела). Детям, в связи с интенсивным ростом и развитием, требуется больше протеинов – до 1,9 грамма на килограмм массы тела.

Тем не менее, даже большое количество употреблённых в пищу белковых веществ не гарантирует сбалансированное количество аминокислот в них. Поэтому рацион питания должен быть разнообразный, чтобы организм смог из него извлечь максимум пользы в виде разных аминокислот. Речь не идёт о том, что если сегодня в съеденной вами пище не оказалось триптофана, то уже завтра же вы заболеете. Нет, организм «умеет» в небольших количествах запасать полезные аминокислоты и расходовать в случае необходимости. Однако кумулятивная способность организма не слишком высока, поэтому запасы полезных веществ надо регулярно пополнять.

Если по личным убеждениям (вегетарианство) или по состоянию здоровья (проблемы с желудочно-кишечным трактом и диетическое питание) у вас присутствует ограничение в рационе, то вам необходимо получить консультацию врача-диетолога, чтобы скорректировать своё питание и восстановить баланс протеинов в организме.
При интенсивных спортивных занятиях организм нуждается в большом количестве протеинов. Специально для таких людей выпускается спортивное питание. Однако поступление протеинов должно соответствовать выполняемым физическим нагрузкам. Переизбыток этих веществ, вопреки расхожему мнению, вовсе не приведёт к резкому росту мышеч­ной массы.

Разнообразие функций протеинов охватывает едва ли не все протекающие в организме биохимические процессы. Их можно назвать биохимическими катализаторами.
Из протеинов образуется цитоскелет, который поддерживает форму клеток. Без протеинов невозможно успешное функционирование иммунной системы.

Отличным пищевым источником протеинов являются мясо, молоко, рыба, зерновые, бобовые, орехи. Менее богаты протеинами фрукты, ягоды и овощи.

Первый белок, который был изучен с целью определения его аминокислотной последовательности, это инсулин. За это достижение Ф. Сенгером была получена Нобелевская премия в 60 годах прошлого столетия. А учёные Д. Кендрю и М. Перуц в то же время смогли создать трёхмерную структуру миоглобина и гемоглобина с помощью методики дифракции рентген-лучей. За это они также были удостоены Нобелевской премии.

История изучения


Основоположником изучения протеинов является Антуан Франсуа де Фуркруа. Он выделил их в отдельный класс, после того как заметил их свойство денатурировать (или сворачиваться) под действием кислот или высокой температуры. Он исследовал фибрин (выделенный из крови), глютен (выделенный из пшеничного зерна) и альбумин (яичный белок).


Голландский учёный Г. Мульдер дополнил научные работы своего французского коллеги де Фуркруа и провел анализ белкового состава. На основании данного анализа он выдвинул гипотезу о том, что большая часть белковых молекул имеют похожую эмпирическую формулу. Он также первым смог определить молекулярную массу белка.
По мнению Мульдера, любой белок состоит из малых структурных составляющих – «протеинов». А в 1838 году шведский учёный Я. Берцелиус предложил термин «протеины» в качестве общего названия всех белков.

В последующие 30-40 лет были проведены исследования большей части аминокислот, входящих в состав протеинов. В 1894 году А. Коссель, немецкий физиолог, сделал предположение, что именно аминокислоты и являются теми самыми структурными составляющими белков, и что они соединены между собой пептидными связями. Он пытался исследовать аминокислотную последовательность белка.
В 1926 году, наконец, была признана главенствующая роль протеинов в организме. Это произошло тогда, когда химик из США Д. Самнер доказал, что уреаза (фермент, без которого невозможно протекание многих химических процессов) является белком.

Выделить чистые протеины для нужд науки на тот момент было крайне сложно. Именно поэтому первые опыты проводились с применением тех полипептидов, которые можно было с минимальными затратами очистить в значительном количестве – это белки крови, куриные белки, различные токсины, ферменты пищеварительного или метаболического происхождения, выделяемые после забоя крупного скота. В конце 50-х годов получилось очистить бычью панкреатическую рибонуклеазу. Именно это вещество стало для многих учёных экспериментальным объектом.

В современной науке исследование протеинов продолжилось на качественно новом уровне. Существует отрасль биохимии, называемая протеомикой. Теперь, благодаря протеомике, можно исследовать не только выделенные очищенные белки, но и параллельное, одновременное изменение модификации множества белков, относящихся к разным клеткам и тканям. Теперь учёные могут теоретически рассчитать структуру белка по последовательности аминокислот. Методы криоэлектронной микроскопии позволяют изучить большие и малые белковые комплексы.

Свойства протеинов

Размер протеинов может измеряться в количестве составляющих их аминокислот или в дальтонах, обозначающих их молекулярную массу. Например, белки дрожжей состоят из 450 аминокислот, а их молекулярная масса составляет 53 килодальтона. Самый крупный из известных современной науке белков, который имеет название титин, состоит из более чем 38 тысяч аминокислот и обладает молекулярной массой около 3700 килодальтонов.
Белки, которые связываются с нуклеиновыми кислотами за счёт того, что взаимодействуют с их фосфатными остатками, считаются основными белками. К ним относятся протамины и гистоны.

Белки различают по степени их растворимости, большинство из них хорошо растворимы в воде. Однако встречаются и исключения. Фиброин (основа паутины и шёлка) и кератин (основа волос у человека, а также шерсти у животных и перьев у птиц), являются нерастворимыми.

Денатурация

Как правило, протеины сохраняют физико-химические свойства и структуру живого организма, к которому они относятся. Следовательно, если организм приспособлен к определённой температуре, то и белок её выдержит и не изменит своих свойств.
Изменение таких условий как окружающая температура, или попадание в кислотную/щелочную среду, приводит к тому, что протеин теряет вторичную, третичную и четвертичную структуры. Потеря нативной структуры, присущей живой клетке, называется денатурацией или сворачиванием белка. Денатурация может быть частичной или полной, необратимой или обратимой. Самый популярный и бытовой пример необратимой денатурации – это приготовление куриного яйца вкрутую. Под действием высокой температуры, овальбумин, прозрачный протеин, становится непрозрачным и плотным.

В некоторых случаях денатурация является обратимой, обратное состояние белку можно вернуть при помощи солей аммония. Обратимую денатурацию применяют как метод очистки белка.

Простые и сложные протеины

Помимо пептидных цепей, в состав некоторых белков входят и неаминокислотные структурные единицы. По критерию наличия или отсутствия неаминокислотных фрагментов, протеины делят на две группы: сложные и простые белки. Простые протеины состоят только из аминокислотных цепей. Сложные протеины содержат фрагменты, имеющие небелковую природу.

По химической природе сложных белков выделяют пять классов:

  • Гликопротеиды.
  • Хромопротеиды.
  • Фосфопротеиды.
  • Металлопротеиды.
  • Липопротеиды.
Гликопротеиды содержат в себе ковалентно связанные между собой углеводные остатки и их разновидность – протеогликаны. К гликопротеидам относятся, например, иммуноглобулины.

Хромопротеиды – это общее наименование сложных протеинов, к которым относятся флавопротеиды, хлорофиллы, гемоглобин, и другие.

Белки, называемые фосфопротеидами, содержат в своём составе остатки фосфорной кислоты. К этой группе протеинов относится, например, казеин молока.

Металлопротеиды – это протеины, которые содержат ковалентно связанные ионы некоторых металлов. Среди них есть протеины, которые выполняют транспортные и депонирующие функции (трансферрин, ферритин).

Сложные белки липопротеиды содержат в своём составе остатки липидов. Их функция - транспортировка липидов.

Биосинтез протеинов

Живые организмы создают белки из аминокислот на основе генетической информации, которая закодирована в генах. Каждый из синтезируемых белков состоит из совершенно уникальной последовательности соединённых аминокислот. Уникальная последовательность определяется таким фактором как нуклеотидная последовательность гена, кодирующая информацию о данном белке.

Генетический код состоит из кодонов. Кодоном называют единицу генетической информации, состоящей из остатков нуклеотидов. Каждый из кодонов отвечает за подсоединение одной аминокислоты к белку. Общее их количество – 64. Некоторые аминокислоты определяются не одним, а несколькими кодонами.

Функции протеинов в организме

Наравне с другими биологическими макромолекулами (полисахаридами и липидами) протеины нужны организму для осуществления большинства жизненных процессов в клетках. Протеины осуществляют метаболические процессы и энергетические трансформации. Они входят в состав органелл – клеточных структур, участвуют в синтезе межклеточного вещества.

Следует заметить, что классификация протеинов по их функциям является достаточно условной, потому что у некоторых живых организмов один и тот же протеин может выполнять несколько разных функций. Многие функции протеины выполняют благодаря тому, что обладают высокой ферментативной активностью. В частности, к таким ферментам относится двигательный белок миозин, а также регуляторные белки протеинкиназы.

Каталитическая функция

Наиболее изученная роль протеинов в организме – это катализ разных химических реакций. Ферментами называют группу протеинов, обладающую специфическими каталитическими свойствами. Каждый из таких ферментов является катализатором одной или нескольких сходных реакций. Науке известно несколько тысяч ферментативных веществ. Например, вещество пепсин, расщепляющее в процессе пищеварения белки, является ферментом.

Более 4 000 реакций, протекающих в нашем организме, нуждаются в катализации. Без воздействия ферментов реакция протекает в десятки и сотни раз медленнее.
Молекулы, присоединяющиеся к ферменту в процессе реакции, и затем видоизменяющиеся, называются субстратами. В составе фермента множество аминокислот, но далеко не все из них взаимодействуют с субстратом, и уж тем более не все из них напрямую участвуют процессе катализации. Та часть фермента, к которой присоединяется субстрат, считается активным ферментативным центром.

Структурная функция

Структурные протеины цитоскелета являются своего рода жёсткой основой, придающей форму клеткам. Благодаря ним может изменяться форма клеток. К ним можно отнести эластин, коллаген, кератин. Основными компонентами межклеточного вещества в соединительной ткани является коллаген и эластин. Кератин является основой для образования волос и ногтей, а также перьев у птиц.

Защитная функция

Выделяют несколько защитных функций протеинов: физическая, иммунная, химическая.
В формировании физической защиты принимает участие коллаген. Он образует базис межклеточного вещества таких разновидностей соединительной ткани как кости, хрящи, сухожилия и глубокие слои кожи (дерма). Примерами данной группы протеинов служат тромбины и фибриногены, принимающие участие в свёртывании крови.

Иммунная защита предполагает участие протеинов, входящих в состав крови или других биологических жидкостей, в формировании защитного ответа организма на атаку патогенных микроорганизмов или на повреждение. Например, иммуноглобулины нейтрализуют вирусы, бактерии, или чужеродные протеины. Антитела, вырабатывающиеся иммунной системой, прикрепляются к чужеродным для этого организма веществам, которые называются антигенами, и нейтрализуют их. Как правило, антитела секретируются в межклеточное пространство или закрепляются в мембранах специализированных клеток плазмоцитов.

Ферменты и субстрат соединяются между собой не слишком тесно, в противном случае протекание катализируемой реакции может нарушиться. А вот стойкость присоединения антигена и антител ничем не ограничивается.

Химическая защита состоит в связывании белковыми молекулами различных токсинов, то есть в обеспечении детоксикации организма. Самую ответственную роль в детоксикации нашего организма играют печёночные ферменты, которые расщепляют яды или переводят их в растворимую форму. Растворённые токсины быстро покидают организм.

Регуляторная функция

Большая часть внутриклеточных процессов регулируется белковыми молекулами. Эти молекулы выполняют узкоспециализированную функцию, и не являются ни строительным клеточным материалом, ни источником энергии. Регуляция осуществляется за счёт активности ферментов или за счёт связывания с другими молекулами.
Важную роль в регуляции процессов внутри клеток играют протеинкиназы. Это ферменты, влияющие на активность других протеинов с помощью присоединения к ним фосфатных частиц. Они либо усиливают активность, либо полностью подавляют её.

Сигнальная функция

Сигнальная функция белков выражается в их способности служить сигнальными веществами. Они передают сигналы между тканями, клетками, органами. Иногда сигнальную функцию считают похожей на регуляторную, поскольку многие регуляторные внутриклеточные протеины также осуществляют передачу сигналов. Клетки взаимодействуют между собой с помощью сигнальных белков, которые распространяются через межклеточное вещество.

Цитокины, белки-гормоны выполняют сигнальную функцию.
Гормоны разносятся кровью. Рецептор при связывании с гормоном запускает в клетке ответную реакцию. Благодаря гормонам осуществляется регуляция концентрации веществ в клетках крови, а также регуляция клеточного роста и размножения. Примером таких протеинов служит широко известный инсулин, который регулирует концентрацию в крови глюкозы.

Цитокины являются небольшими пептидными информационными молекулами. Они действуют как регуляторы взаимодействия между различными клетками, а также определяют выживаемость этих клеток, подавляют, или стимулируют их рост и функциональную активность. Без цитокинов невозможна согласованная работа нервной, эндокринной и иммунной систем. Например, цитокины могут вызвать некроз опухоли – то есть подавление роста и жизнедеятельности воспалительных клеток.

Транспортная функция

Растворимые белки, которые принимают участие в транспортировке малых молекул, должны легко соединяться с субстратом, если он присутствует в большой концентрации, и также легко должны его высвобождать там, где он находится в низкой концентрации. Примером транспортных протеинов является гемоглобин. Он транспортирует из лёгких кислород и приносит его к остальным тканям, а также обратно переносит от тканей к лёгким углекислый газ. Во всех царствах живых организмов были найдены белки, аналогичные гемоглобину.

Запасная (или резервная) функция

К таким протеинам относят казеин, овальбумин и другие. Эти резервные протеины в яйцеклетках животных и в семенах растений запасаются в качестве источника энергии. Они выполняют питательные функции. Много протеинов используется в нашем организме в качестве источника аминокислот.

Рецепторная функция белков

Белковые рецепторы могут располагаться как в клеточной мембране, так и в цитоплазме. Одна часть белковой молекулы принимает сигнал (любой природы: химической, световой, термической, механической). Белок-рецептор под влиянием сигнала претерпевает конформационные изменения. Эти изменения влияют на другую часть молекулы, которая ответственна за передачу сигнала на остальные клеточные компоненты. Механизмы сигнальной передачи разнятся друг с другом.

Моторная (или двигательная) функция

Моторные белки ответственны за обеспечение движения и сокращения мышц (на уровне организма) и за движение жгутиков и ресничек, внутриклеточный транспорт веществ, амебоидное движение лейкоцитов (на клеточном уровне).

Белки в обмене веществ

Большая часть растений и микроорганизмов в состоянии синтезировать 20 основных, а также некоторое количество дополнительных аминокислот. Но если они есть в окружающей среде, то организм предпочтёт сберечь энергию и транспортировать их внутрь, а не синтезировать.

Те аминокислоты, которые не синтезируются организмом, называются незаменимыми, следственно, могут поступать к нам только извне.

Человек получает аминокислоты из тех белков, которые содержатся в пище. Белки подвергаются денатурации в процессе пищеварения под действием кислых желудочных соков и ферментов. Некоторая часть полученных в результате пищеварительного процесса аминокислот применяется для синтеза нужных протеинов, а остальная их часть в процессе глюконеогенеза превращается в глюкозу или применяется в цикле Кребса (это процесс метаболического распада).

Использование протеинов в качестве энергетического источника особенно важно в неблагоприятных условиях, когда организм использует внутренний «неприкосновенный запас» – собственные белки. Аминокислоты для организма являются также важным источником азота.

Единых норм суточной потребности в белках нет. Микрофлора, населяющая толстый кишечник, также синтезирует аминокислоты, и они не могут учитываться при составлении протеиновых норм.

Запасы протеинов в человеческом организме минимальны, а новые протеины могут синтезироваться только из распадающихся белков, поступающих от тканей организма и из аминокислот, поступающих вместе пищей. Из тех веществ, которые входят в состав жиров и углеводов, протеины не синтезируются.

Недостаток белка
Недостаток белковых веществ в рационе вызывает у детей сильное замедление роста и развития. Для взрослых белковый дефицит опасен появлением глубоких изменений в печени, изменением гормонального фона, нарушением функционирования желёз внутренней секреции, ухудшением усвояемости питательных веществ, ухудшением памяти и работоспособности, проблемами с сердцем. Все эти негативные явления связаны с тем, что протеины участвуют почти во всех процессах человеческого организма.

В 70 годах прошлого века были зафиксированы летальные случаи у людей, долгое время соблюдающих низкокалорийную диету с выраженным дефицитом белка. Как правило, непосредственной причиной смерти в данном случае являлись необратимые изменения в сердечной мышце.

Дефицит протеинов снижает устойчивость иммунитета к инфекциям, поскольку уменьшается уровень образования антител. Нарушение синтеза интерферона и лизоцима (защитных факторов) вызывает обострение воспалительных процессов. Кроме того, белковый дефицит зачастую сопровождается недостатком витаминов, что в свою очередь тоже приводит к неблагоприятным последствиям.

Дефицит влияет не лучшим образом на выработку ферментов и на усвояемость важных питательных веществ. Не следует забывать, что гормоны являются белковыми образованиями, следовательно, недостаток протеинов может привести к сильным гормональным нарушениям.

Любая активность физического характера наносит вред мышечным клеткам, и чем нагрузка больше, тем больше мышцы страдают. Для восстановления повреждённых клеток мышц необходимо большое количество качественного белка. Вопреки распространённому мнению, физические нагрузки только тогда полезны, когда с пищей в организм поставляется достаточное количество белка. При интенсивных физических нагрузках потребление белка должно достигать 1,5 - 2 грамма на каждый килограмм веса.

Избыток белка

Для поддержания азотистого баланса в организме нужно определённое количество протеинов. Если в рационе белка немного больше, то это не повредит здоровью. Избыточное количество аминокислот в этом случае используется просто как дополнительный источник энергии.

Но если человек не занимается спортом, и при этом употребляет более чем 1,75 грамм белка на килограмм веса, то в печени накапливается избыток протеина, который превращается в азотистые соединения и глюкозу. Азотистое соединение (мочевина) должно в обязательном порядке выводиться почками из организма.

Кроме того, при переизбытке белка возникает кислая реакция организма, что приводит к потере кальция из-за изменения питьевого режима. К тому же мясная пища, богатая белком, зачастую содержит пурины, некоторые из которых в процессе метаболизма откладываются в суставах и вызывают развитие подагры. Следует отметить, что нарушения, связанные с переизбытком протеином, встречаются намного реже, чем нарушения, связанные с белковой недостаточностью.

Оценка достаточного количества белка в рационе осуществляется по состоянию азотистого баланса. В организме беспрестанно происходит синтезирование новых протеинов и выделение наружу конечных продуктов белкового метаболизма. В состав протеинов входит азот, не содержащийся ни в жирах, ни в углеводах. И если азот откладывается в организме про запас, то исключительно в составе белков. При белковом распаде он должен выделиться наружу вместе с мочой. Для того чтобы функционирование организма осуществлялось на нужном уровне, требуется восполнить удаляемый азот. Азотистый баланс означает, что количество потребляемого азота соответствует количеству выведенного из организма.

Белковое питание


Польза пищевых протеинов оценивается по коэффициенту белковой усвояемости. Данный коэффициент учитывает химическую ценность (состав аминокислот), и биологическую ценность (процент переваривания протеинов). Полноценными источниками протеинов считаются те продукты, которые имеют коэффициент усвояемости равный 1,00.

Коэффициент усвояемости равен 1,00 в следующих продуктах: яйца, соевый белок, молоко. Говядина показывает коэффициент 0,92.

Эти продукты являются высококачественным источником протеинов, однако нужно помнить, что они содержат много жира, поэтому злоупотреблять их частотой в рационе нежелательно. Помимо большого количества белка, в организм также попадёт излишнее количество жира.

Предпочтительные продукты с богатым протеиновым содержанием: соевые сыры, нежирные сыры, нежирная телятина, яичный белок, обезжиренный творог, свежая рыба и морепродукты, молодой барашек, курятина, белое мясо.
Менее предпочтительно употребление таких продуктов, как: молоко и йогурты с добавлением сахара, красное мясо (вырезка), темное куриное и индюшачье мясо, нежирная нарезка, домашний творог, переработанное мясо в виде бекона, салями, ветчины.

Яичный белок – это чистый белок, в котором нет жира. В постном мясе содержится около 50 % килокалорий, приходящихся на долю протеинов; в продуктах, содержащих крахмал – 15%; в обезжиренном молоке – 40 %; в овощах – 30 %.

Главное правило при выборе белкового питания состоит в следующем: большее количество белка на единицу калорий и высокий коэффициент усвояемости белка. Полезнее всего употреблять продукты с низким содержанием жира и высоким содержанием белков. Данные о калорийности можно найти на упаковке любого продукта. Обобщённые данные о содержании белков и жиров в тех продуктах, калораж которых сложно высчитать, можно найти в специальных таблицах.

Легче усваиваются протеины, подвергнувшиеся тепловой обработке, поскольку они становятся легкодоступными для воздействия ферментов пищеварительного тракта. Однако температурная обработка может снизить биологическую ценность протеина из-за того, что разрушаются некоторые аминокислоты.

Содержание белков и жиров в некоторых пищевых продуктах

Продукты Белки, граммы Жиры, граммы
Курятина 20,8 8,9
Сердце 15 3
Свинина нежирная 16,3 27,8
Говядина 18,9 12,3
Телятина 19,7 1,2
Докторская варёная колбаса 13,7 22,9
Диетическая варёная колбаса 12,2 13,5
Минтай 15,8 0,7
Сельдь 17,7 19,6
Икра осетровая зернистая 28,6 9,8
Хлеб пшеничный из муки I сорта 7,6 2,3
Хлеб ржаной 4,5 0,8
Сдобная выпечка 7,2 4,3
Очень полезно употреблять соевые продукты: сыр тофу, молоко, мясо. Соя содержит абсолютно все нужные аминокислоты в таком соотношении, какое нужно для удовлетворения потребностей организма. К тому же она отлично усваивается.
Казеин, который содержится в молоке, также является полным протеином. Коэффициент усвояемости у него равен 1,00. Сочетание выделенного из молока казеина и сои даёт возможность создавать полезные продукты питания с высоким белковым содержанием, при этом они не содержат лактозу, что разрешает употребление их лицами, страдающими непереносимостью лактозы. Еще один плюс таких продуктов состоит в том, что в них нет сыворотки, которая является потенциальным источником аллергенов.

Метаболизм протеинов


Чтобы усвоить белок, организму нужно много энергии. Первым делом организм должен расщепить аминокислотную цепочку белка на несколько коротких цепочек, или же на сами аминокислоты. Этот процесс достаточно длительный и требующий разных ферментов, которые организм должен создать и транспортировать в пищеварительный тракт. Остаточные продукты белкового обмена – азотистые соединения – должны быть выведены из организма.


Все эти действия в сумме потребляют немалое количество энергии для усвоения белковой пищи. Поэтому белковая пища стимулирует ускорение метаболизма и увеличение энергетических затрат на внутренние процессы.

На усвоение еды организм может потратить около 15% от всей калорийности рациона.
Пища с высоким содержанием протеинов, в процессе метаболизма способствует усилению теплопродукции. Температура тела немного увеличивается, что приводит к дополнительному расходу энергии на процесс термогенеза.

Белки не всегда используются в качестве энергетической субстанции. Это связано с тем, что применение их в качестве источника энергии для организма бывает невыгодным, ведь из определённого количества жиров и углеводов можно получить гораздо больше калорий и намного эффективнее, чем из аналогичного количества протеина. К тому же в организме редко бывает переизбыток белков, а если он и есть, то большая часть избыточных протеинов идёт для осуществления пластических функций.

В том случае, когда в питании не достаёт энергетических источников в виде жиров и углеводов, организм принимается за использование накопленных жиров.

Достаточное количество протеинов в рационе помогает активизировать и нормализовать замедленный обмен веществ у тех людей, которые страдают ожирением, а также позволяет поддерживать мышечную массу.

Если белка не хватает, организм переключается на использование мышечных белков. Это происходит потому, что мышцы не так важны для поддержания жизнедеятельности организма. В мышечных волокнах сгорает большая часть калорий, и снижение мышечной массы понижает энергетические затраты организма.

Очень часто люди, придерживающиеся различных диет для похудения, выбирают такую диету, в которой очень мало белка поступает с пищей в организм. Как правило, это овощные или фруктовые диеты. Кроме вреда, такая диета ничего не принесёт. Функционирование органов и систем при недостатке протеинов угнетается, что вызывает различные нарушения и заболевания. Каждую диету надо рассматривать с точки зрения потребности организма в белке.

Такие процессы как усвоение белков и применение их в энергетических потребностях, а также выведение продуктов белкового метаболизма, требует больше жидкости. Чтобы не получить обезвоживание, в день надо принимать около 2 литров воды.