Функция является четной если. Четные и нечетные функции

Как вставить математические формулы на сайт?

Если нужно когда-никогда добавлять одну-две математические формулы на веб-страницу, то проще всего сделать это, как описано в статье : математические формулы легко вставляются на сайт в виде картинок, которые автоматически генерирует Вольфрам Альфа. Кроме простоты, этот универсальный способ поможет улучшить видимость сайта в поисковых системах. Он работает давно (и, думаю, будет работать вечно), но морально уже устарел.

Если же вы постоянно используете математические формулы на своем сайте, то я рекомендую вам использовать MathJax - специальную библиотеку JavaScript, которая отображает математические обозначения в веб-браузерах с использованием разметки MathML, LaTeX или ASCIIMathML.

Есть два способа, как начать использовать MathJax: (1) при помощи простого кода можно быстро подключить к вашему сайту скрипт MathJax, который будет в нужный момент автоматически подгружаться с удаленного сервера (список серверов ); (2) закачать скрипт MathJax с удаленного сервера на свой сервер и подключить ко всем страницам своего сайта. Второй способ - более более сложный и долгий - позволит ускорить загрузку страниц вашего сайта, и если родительский сервер MathJax по каким-то причинам станет временно недоступен, это никак не повлияет на ваш собственный сайт. Несмотря на эти преимущества, я выбрал первый способ, как более простой, быстрый и не требующий технических навыков. Следуйте моему примеру, и уже через 5 минут вы сможете использовать все возможности MathJax на своем сайте.

Подключить скрипт библиотеки MathJax с удаленного сервера можно при помощи двух вариантов кода, взятого на главном сайте MathJax или же на странице документации :

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Любой фрактал строится по определенному правилу, которое последовательно применяется неограниченное количество раз. Каждый такой раз называется итерацией.

Итеративный алгоритм построения губки Менгера достаточно простой: исходный куб со стороной 1 делится плоскостями, параллельными его граням, на 27 равных кубов. Из него удаляются один центральный куб и 6 прилежащих к нему по граням кубов. Получается множество, состоящее из 20 оставшихся меньших кубов. Поступая так же с каждым из этих кубов, получим множество, состоящее уже из 400 меньших кубов. Продолжая этот процесс бесконечно, получим губку Менгера.

Четность и нечетность функции являются одним из основных ее свойств, и на четность занимает внушительную часть школьного курса по математике. Она во много определяет характер поведения функции и значительно облегчает построение соответствующего графика.

Определим четность функции. Вообще говоря, исследуемую функцию считают четной, если для противоположных значений независимой переменной (x), находящихся в ее области определения, соответствующие значения y (функции) окажутся равными.

Дадим более строгое определение. Рассмотрим некоторую функцию f (x), которая задана в области D. Она будет четной, если для любой точки x, находящейся в области определения:

  • -x (противоположная точка) также лежит в данной области определения,
  • f (-x) = f (x).

Из приведенного определения следует условие, необходимое для области определения подобной функции, а именно, симметричность относительно точки О, являющейся началом координат, поскольку если некоторая точка b содержится в области определения четной функции, то соответствующая точка - b тоже лежит в этой области. Из вышесказанного, таким образом, вытекает вывод: четная функция имеет симметричный по отношению к оси ординат (Oy) вид.

Как на практике определить четность функции?

Пусть задается с помощью формулы h(x)=11^x+11^(-x). Следуя алгоритму, вытекающему непосредственно из определения, исследуем прежде всего ее область определения. Очевидно, что она определена для всех значений аргумента, то есть первое условие выполнено.

Следующим шагом подставим вместо аргумента (x) его противоположное значение (-x).
Получаем:
h(-x) = 11^(-x) + 11^x.
Поскольку сложение удовлетворяет коммутативному (переместительному) закону, то очевидно, h(-x) = h(x) и заданная функциональная зависимость - четная.

Проверим четность функции h(x)=11^x-11^(-x). Следуя тому же алгоритму, получаем, что h(-x) = 11^(-x) -11^x. Вынеся минус, в итоге, имеем
h(-x)=-(11^x-11^(-x))=- h(x). Следовательно, h(x) - нечетная.

Кстати, следует напомнить, что есть функции, которые невозможно классифицировать по этим признакам, их называют ни четными, ни нечетными.

Четные функции обладают рядом интересных свойств:

  • в результате сложения подобных функций получают четную;
  • в результате вычитания таких функций получают четную;
  • четной, также четная;
  • в результате умножения двух таких функций получают четную;
  • в результате умножения нечетной и четной функций получают нечетную;
  • в результате деления нечетной и четной функций получают нечетную;
  • производная такой функции - нечетная;
  • если возвести нечетную функцию в квадрат, получим четную.

Четность функции можно использовать при решении уравнений.

Чтобы решить уравнение типа g(x) = 0, где левая часть уравнения представляет из себя четную функцию, будет вполне достаточно найти ее решения для неотрицательных значений переменной. Полученные корни уравнения необходимо объединить с противоположными числами. Один из них подлежит проверке.

Это же успешно применяют для решения нестандартных задач с параметром.

Например, есть ли какое-либо значение параметра a, при котором уравнение 2x^6-x^4-ax^2=1 будет иметь три корня?

Если учесть, что переменная входит в уравнение в четных степенях, то понятно, что замена х на - х заданное уравнение не изменит. Отсюда следует, что если некоторое число является его корнем, то им же является и противоположное число. Вывод очевиден: корни уравнения, отличные от нуля, входят в множество его решений «парами».

Ясно, что само число 0 не является, то есть число корней подобного уравнения может быть только четным и, естественно, ни при каком значении параметра оно не может иметь трех корней.

А вот число корней уравнения 2^x+ 2^(-x)=ax^4+2x^2+2 может быть нечетным, причем для любого значения параметра. Действительно, легко проверить, что множество корней данного уравнения содержит решения «парами». Проверим, является ли 0 корнем. При подстановке его в уравнение, получаем 2=2 . Таким образом, кроме «парных» 0 также является корнем, что и доказывает их нечетное количество.

Преобразование графиков.

Словесное описание функции.

Графический способ.

Графический способ задания функции является наиболее наглядным и часто применяется в технике. В математическом анализе графический способ задания функций используется в качестве иллюстрации.

Графиком функции f называют множество всех точек (x;y) координатной плоскости, где y=f(x), а x «пробегает» всю область определения данной функции.

Подмножество координатной плоскости является графиком какой-либо функции, если оно имеет не более одной общей точки с любой прямой, параллельной оси Оу.

Пример. Является ли графиками функций фигуры, изображенные ниже?

Преимуществом графического задания является его наглядность. Сразу видно, как ведёт себя функция, где возрастает, где убывает. По графику сразу можно узнать некоторые важные характеристики функции.

Вообще, аналитический и графический способы задания функции идут рука об руку. Работа с формулой помогает построить график. А график частенько подсказывает решения, которые в формуле и не заметишь.

Почти любой ученик знает три способа задания функции, которые мы только что рассмотрели.

Попытаемся ответить на вопрос: "А существуют ли другие способы задания функции?"

Такой способ есть.

Функцию можно вполне однозначно задать словами.

Например, функцию у=2х можно задать следующим словесным описанием: каждому действительному значению аргумента х ставится в соответствие его удвоенное значение. Правило установлено, функция задана.

Более того, словесно можно задать функцию, которую формулой задать крайне затруднительно, а то и невозможно.

Например: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х. Например, если х=3, то у=3. Если х=257, то у=2+5+7=14. И так далее. Формулой это записать проблематично. А вот табличку легко составить.

Способ словесного описания - достаточно редко используемый способ. Но иногда встречается.

Если есть закон однозначного соответствия между х и у - значит, есть функция. Какой закон, в какой форме он выражен - формулой, табличкой, графиком, словами – сути дела не меняет.

Рассмотрим функции, области определения которых симметричны относительно начала координат, т.е. для любого х из области определения число (-х ) также принадлежит области определения. Среди таких функций выделяют четные и нечетные .

Определение. Функция f называется четной , если для любого х из ее области определения

Пример. Рассмотрим функцию

Она является четной. Проверим это.



Для любого х выполнены равенства

Таким образом, у нас выполняются оба условия, значит функция четная. Ниже представлен график этой функции.

Определение. Функция f называется нечетной , если для любого х из ее области определения

Пример. Рассмотрим функцию

Она является нечетной. Проверим это.

Область определения вся числовая ось, а значит, она симметрична относительно точки (0;0).

Для любого х выполнены равенства

Таким образом, у нас выполняются оба условия, значит функция нечетная. Ниже представлен график этой функции.

Графики, изображенные на первом и третьем рисунках симметричны относительно оси ординат, а графики, изображенные на втором и четвертом рисункам симметричны относительно начала координат.

Какие из функций, графики которых изображены на рисунках являются четными, а какие нечетными?

Которые в той или иной степени были вам знакомы. Там же было замечено, что запас свойств функций будет постепенно пополняться. О двух новых свойствах и пойдет речь в настоящем параграфе.

Определение 1.

Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х).

Определение 2.

Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х).

Доказать, что у = х 4 - четная функция.

Решение. Имеем: f(х) = х 4 , f(-х) = (-х) 4 . Но (-х) 4 = х 4 . Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной.

Аналогично можно доказать, что функции у - х 2 ,у = х 6 ,у - х 8 являются четными.

Доказать, что у = х 3 ~ нечетная функция.

Решение. Имеем: f(х) = х 3 , f(-х) = (-х) 3 . Но (-х) 3 = -х 3 . Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной.

Аналогично можно доказать, что функции у = х, у = х 5 , у = х 7 являются нечетными.

Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у - х 3 , у = х 5 , у = х 7 - нечетные функции, тогда как у = х 2 , у = х 4 , у = х 6 - четные функции. И вообще для любой функции вида у = х" (ниже мы специально займемся изучением этих функций), где n - натуральное число , можно сделать вывод: если n - нечетное число, то функция у = х" - нечетная; если же n - четное число, то функция у = хn - четная.

Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х).

Итак, функция может быть четной, нечетной, а также ни той ни другой.

Изучение вопроса о том, является ли заданная функция четной или нечетной, обычно называют исследованием функции на четность.

В определениях 1 и 2 речь идет о значениях функции в точках х и -х. Тем самым предполагается, что функция определена и в точке х, и в точке -х. Это значит, что точка -х принадлежит области определения функции одновременно с точкой х. Если числовое множество X вместе с каждым своим элементом х содержит и противоположный элемент -х, то X называют симметричным множеством. Скажем, (-2, 2), [-5, 5], (-оо, +оо) - симметричные множества, в то время как \) .

Так как \(x^2\geqslant 0\) , то левая часть уравнения (*) больше или равна \(0+ \mathrm{tg}^2\,1\) .

Таким образом, равенство (*) может выполняться только тогда, когда обе части уравнения равны \(\mathrm{tg}^2\,1\) . А это значит, что \[\begin{cases} 2x^2+\mathrm{tg}^2\,1=\mathrm{tg}^2\,1 \\ \mathrm{tg}\,1\cdot \mathrm{tg}\,(\cos x)=\mathrm{tg}^2\,1 \end{cases} \quad\Leftrightarrow\quad \begin{cases} x=0\\ \mathrm{tg}\,(\cos x)=\mathrm{tg}\,1 \end{cases}\quad\Leftrightarrow\quad x=0\] Следовательно, значение \(a=-\mathrm{tg}\,1\) нам подходит.

Ответ:

\(a\in \{-\mathrm{tg}\,1;0\}\)

Задание 2 #3923

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых график функции \

симметричен относительно начала координат.

Если график функции симметричен относительно начала координат, то такая функция является нечетной, то есть выполнено \(f(-x)=-f(x)\) для любого \(x\) из области определения функции. Таким образом, требуется найти те значения параметра, при которых выполнено \(f(-x)=-f(x).\)

\[\begin{aligned} &3\mathrm{tg}\,\left(-\dfrac{ax}5\right)+2\sin \dfrac{8\pi a+3x}4= -\left(3\mathrm{tg}\,\left(\dfrac{ax}5\right)+2\sin \dfrac{8\pi a-3x}4\right)\quad \Rightarrow\quad -3\mathrm{tg}\,\dfrac{ax}5+2\sin \dfrac{8\pi a+3x}4= -\left(3\mathrm{tg}\,\left(\dfrac{ax}5\right)+2\sin \dfrac{8\pi a-3x}4\right) \quad \Rightarrow\\ \Rightarrow\quad &\sin \dfrac{8\pi a+3x}4+\sin \dfrac{8\pi a-3x}4=0 \quad \Rightarrow \quad2\sin \dfrac12\left(\dfrac{8\pi a+3x}4+\dfrac{8\pi a-3x}4\right)\cdot \cos \dfrac12 \left(\dfrac{8\pi a+3x}4-\dfrac{8\pi a-3x}4\right)=0 \quad \Rightarrow\quad \sin (2\pi a)\cdot \cos \frac34 x=0 \end{aligned}\]

Последнее уравнение должно быть выполнено для всех \(x\) из области определения \(f(x)\) , следовательно, \(\sin(2\pi a)=0 \Rightarrow a=\dfrac n2, n\in\mathbb{Z}\) .

Ответ:

\(\dfrac n2, n\in\mathbb{Z}\)

Задание 3 #3069

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \ имеет 4 решения, где \(f\) – четная периодическая с периодом \(T=\dfrac{16}3\) функция, определенная на всей числовой прямой, причем \(f(x)=ax^2\) при \(0\leqslant x\leqslant \dfrac83.\)

(Задача от подписчиков)

Так как \(f(x)\) – четная функция, то ее график симметричен относительно оси ординат, следовательно, при \(-\dfrac83\leqslant x\leqslant 0\) \(f(x)=ax^2\) . Таким образом, при \(-\dfrac83\leqslant x\leqslant \dfrac83\) , а это отрезок длиной \(\dfrac{16}3\) , функция \(f(x)=ax^2\) .

1) Пусть \(a>0\) . Тогда график функции \(f(x)\) будет выглядеть следующим образом:


Тогда для того, чтобы уравнение имело 4 решения, нужно, чтобы график \(g(x)=|a+2|\cdot \sqrtx\) проходил через точку \(A\) :


Следовательно, \[\dfrac{64}9a=|a+2|\cdot \sqrt8 \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &9(a+2)=32a\\ &9(a+2)=-32a \end{aligned} \end{gathered}\right. \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &a=\dfrac{18}{23}\\ &a=-\dfrac{18}{41} \end{aligned} \end{gathered}\right.\] Так как \(a>0\) , то подходит \(a=\dfrac{18}{23}\) .

2) Пусть \(a0\) ). Если произведение двух корней положительное и сумма их положительная, то и сами корни будут положительными. Следовательно, нужно: \[\begin{cases} 12-a>0\\-(a-10)>0\end{cases}\quad\Leftrightarrow\quad a