Гелий: свойства, характеристики, применение. Resident (Резидент) играть на деньги или бесплатно без регистрации онлайн — игровой автомат Resident Кто обнаружил гелий

Не поддается законам классической механики. Ученые пытаются разгадать тайну гелия-4. Это легкий, не радиоактивный изотоп элемента. На него, собственно, приходятся 99,9% гелия на Земле.

Так вот, если 4-ый изотоп охладить до -271-го градуса Цельсия, получится жидкость. Только вот свойства ее для жидкости не типичны. Наблюдается, к примеру, сверхтекучесть.

Если поместить гелий в сосуд и поставить его вертикально, жидкость нарушит законы гравитации. Через несколько минут содержимое емкости вытечет из нее. Из сего же вытекает, что гелий – элемент любопытный, а любопытство надо удовлетворять. Начнем знакомство со свойств вещества.

Свойства гелия

Не. Это не частица отрицания, а обозначение 2-го элемента периодической системы , то есть, гелия . Газ в обычном состоянии, он сгущается лишь при минусовых температурах. Причем, минус этот должен быть в пару сотен градусов Цельсия.

При этом, в свойства газа гелия вписана нерастворимость в воде. То есть, если сам не , то его молекулы находятся в одной фазе, не переходя в другие. Между тем, именно смена фаз вещества является определением образования раствора.

Гелий – инертный газ . Его инертность проявляется не только в отсутствии «желания» растворяться в воде. Вещество не спешит вступать и в прочие реакции. Причина: — стабильная внешняя оболочка атома.

На ней находятся 2 электрона. Разбить крепкую пару, то есть, удалить одну из частиц с оболочки атома, сложно. Поэтому, открыли гелий не в ходе химических опытов, а при спектроскопическом исследовании протуберанцев .

Произошло это во второй половине 19-го века. Прочие инертные газы, а их 6, открыли еще позже. Примерно в это же время, то есть, в начале 20-го века, удалось перевести гелий в жидкую форму.

Гелий – одноатомный газ без , вкуса и запаха. Это тоже выражение инертности элемента. Связывается он лишь с тремя «коллегами» по таблице Менделеева, — , и . Сама реакция не запустится.

Нужен ультрафиолет, или разряды тока. Зато, чтобы гелий «убежал» из пробирки, или другого объемного и тела, усилий не нужно. У 2-го элемента самая малая адсорбция, то есть, способность концентрироваться на плоскости или в объеме.

Хранят газ гелий в баллонах . Они должны быть абсолютно герметичными. Иначе, адсорбция сыграет с поставщиками злую шутку. Вещество просочится через малейшие щели. А будь баллоны из пористого материала, гелий уйдет сквозь него.

Плотность газа гелия в 7 раз уступает кислороду. Показатель последнего – 1,3 килограмма на кубический метр. У гелия же плотность равна всего 0,2 кило. Соответственно герой легок. Молярная масса гелия равна 4-ем граммам на моль.

Для сравнения у воздуха в целом показатель равен 29-ти граммам. Становится ясно, почему популярен гелий для шаров . Разница в массах 2-го элемента и воздуха тратится на подъем грузов. Вспомним, что моль равен 22-ум литрам. Получается, что 22 литра гелия способны поднять 25-граммовый груз. Кубометр газа потянет уже более килограмма.

Напоследок заметим, что у гелия отличная электропроводность. По крайней мере, это касается газов. Среди них 2-ой уже не на втором, а на первом месте. А вот по содержанию на Земле гелий – не передовик. В атмосфере планеты героя статьи миллионные доли процента. Так откуда же тогда добывают газ. Выуживать его из атмосферы нецелесообразно.

Добыча гелия

Формула гелия является составной не только атмосферы, но и природного . В разных месторождениях разнится и содержание 2-го элемента. В , к примеру, наиболее богаты гелием залежи Дальнего Востока и востока Сибири.

Однако, месторождения газа в этих регионах плохо освоены. Подстегивает к их разработке 0,2-0,8-процентное содержание гелия. Пока же, его добывают лишь на одном месторождении страны. Оно находится в Оренбурге, признано бедным на гелий. Тем не менее, 5 000 000 кубов газа в год добывают.

Общемировое производство гелия в год равно 175 000 000 кубических метров. При этом, запасы газа – 41 миллиард кубов. Большая часть из них скрыта в недрах Алжира, Катара и США. тоже входит в список.

Из природного газа гелий получают путем низкотемпературной конденсации. Получается концентрат 2-го элемента с его содержанием не менее 80%. Еще 20% приходятся на аргон, неон, метан, и азот. Какой газ гелию мешает? Никакой. Но, людям примеси мешают. Поэтому, концентрат очищают, превращая 80% 2-го элемента в 100%.

Проблема состоит в том, что у есть так же, 100-процентная уверенность, что планету ждет дефицит гелия. Уже к 2030-му году мировое потребление газа должно достигнуть 300 000 000 кубометров.

Производство гелия через 10 лет не сможет перешагнуть планку в 240 000 000 из-за дефицита сырья. Оно является невосполнимым ресурсом. Второй выделяется по крупицам при распаде радиоактивных пород.

Скорости природного производства не угнаться за нуждами людей. Поэтому, специалисты прочат резкий скачок на гелий. Пока, низкую обесценивает распродажа резервного фонда США, который стране стало невыгодно содержать.

Национальный запас создали в начале прошлого века, дабы наполнять военные дирижабли и коммерческие воздушные суда. Хранилище расположено в штате Техас.

Применение гелия

Найти гелий можно в топливных баках ракет. Там 2-ой соседствует с жидким водородом. Лишь гелий, при этом, способен оставаться газообразным, а значит, создавать в баках двигателей нужное давление.

Наполнение аэростатов, — еще одно дело, в котором пригождается газ гелий. Углекислый, к примеру, не подойдет, поскольку тяжел. Легче гелия лишь один газ , это водород. Только вот, он взрывоопасен.

В начале прошлого века водородом наполнили дирижабль «Гинденбург» и лицезрели, как тот воспламенился во время полета. С тех пор сделан в пользу инертного, хоть и чуть более тяжелого, гелия.

Популярен гелий и как охлаждающий агент. Применение связано со способностью газа порождать сверхнизкие температуры. Гелий закупают для адронных коллайдеров и спектрометров ядерного магнитного резонанса. Пользуются 2-ым элементом так же, в аппаратах МРТ. Там гелий закачивают в сверхпроводящие .

МРТ проходили многие. Близки массовому потребителя и сканеры на кассах, считывающие штрих-коды. Так вот, в магазинские лазеры закачены гелий и неон. Отдельно гелий помещают в ионные микроскопы. Они дают лучшую картинку, чем электронные, можно сказать, тоже считывают данные.

В системах кондиционирования воздуха 2-ой нужен для диагностики утечек. Пригождается сверхпроницаемость героя статьи. Если он находит куда просочиться, значит, могут «утечь» и прочие компоненты.

Речь о системах кондиционирования автомобилей. Кстати, подушки безопасности тоже заполняются гелием. Он просачивается в спасительные емкости быстрее иных газов.

Цена гелия

Пока, на газ гелий цена равна примерно 1 300 рублям за полтора куба. В них вмещаются 10 литров 2-го элемента. Есть баллоны и по 40 литров. Это почти 6 кубов гелия. Ценник на 40-литровые упаковки равен примерно 4 500 .

Кстати, для пущей герметичности, на баллоны с газом надевают защитные чехлы. Они тоже стоят , обычно, около 300-от рублей для 40-литровой тары и 150-ти рублей для баллонов на 10 литров.

18 августа 1868 года французский ученый Пьер Жансен, находясь во время полного солнечного затмения в индийском городе Гунтур, впервые исследовал хромосферу Солнца — его внешнюю оболочку. Жансену удалось настроить спектроскоп таким образом, чтобы спектр короны Солнца можно было наблюдать не только при затмении, но и в обычные дни. Уже на следующий день, изучая протуберанцы (массы относительно холодного вещества, которые поднимаются и удерживаются над поверхностью Солнца магнитным полем), в результатах спектроскопии Жансен обнаружил не только синюю, зелено-голубую и красную линии водорода, но и очень яркую желтую, которую астроном и его коллеги первоначально приняли за линию натрия.

Спустя два месяца, 20 октября, английский астроном Норман Локьер, не зная о разработках французского коллеги, также провел исследования солнечного спектра.

Обнаружив неизвестную желтую линию с длиной волны 588 нм, он обозначил ее D3.

Письма Жансена и Локьера об открытии новой линии солнечного спектра поступили во Французскую в один день — 24 октября 1868 года, однако письмо Локьера, написанное им четырьмя днями ранее, пришло на несколько часов раньше. На следующий день оба письма были зачитаны на заседании Академии. В честь нового метода исследования протуберанцев Французская академия решила отчеканить медаль. На одной стороне медали были выбиты портреты Жансена и Локьера над скрещенными ветвями лавра, а на другой — изображение мифологического бога света Аполлона, правящего в колеснице четверкой коней, скачущей во весь опор.

Локьер пытался воссоздать новые спектральные линии в лабораторных условиях, но все его попытки заканчивались неудачей. Тогда он понял, что обнаружил новый химический элемент. Локьер назвал его гелием, от греческого helios — «Солнце».

Отношение ученых к открытию гелия было противоречивым. Одни предполагали, что при интерпретации спектров протуберанцев была допущена ошибка, однако эта точка зрения получала все меньше сторонников, поскольку все большему количеству астрономов удавалось наблюдать линии Локьера. Другие утверждали, что на Солнце есть элементы, которых нет на Земле, что противоречило идее о том, что все известные нам в настоящее время законы природы действовали и будут действовать всегда и во всех точках Вселенной. Третьи (их было меньшинство) считали, что когда-нибудь гелий будет найден и на Земле.

Однако именно они и оказались правы. В 1895 году шотландский химик Уильям Рамзай, исследуя образец газа, полученного при разложении минерала клевеита, обнаружил в его спектре неизвестные линии и послал образцы нескольким коллегам для анализа. Получив образец, Локьер сразу же узнал линии, которые более четверти века назад он наблюдал в солнечном свете. Загадка гелия была решена: газ, несомненно, находится на Солнце, но он существует также и здесь, на Земле.

Гелий — второй по распространенности элемент во Вселенной, на его долю приходится 23% всей космической массы.

Тем не менее, на Земле он встречается редко. Этот элемент — один из продуктов ядерного распада, поэтому его источник — руды радиоактивных элементов.

К началу ХХ века была окончательно доказано присутствие гелия в атмосфере Земли. В 1906 году физикам удалось получить жидкий гелий, а в 1926 — добиться его кристаллизации. В 1938 году советский физик открыл явление сверхтекучести жидкого гелия-II, которое заключается в резком снижении коэффициента вязкости, вследствие чего гелий течет практически без трения.

В промышленности гелий получают из гелийсодержащих природных газов. От других газов гелий отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов.

Впервые гелий применили в Германии. В 1915 году немцы стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий газ стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 1930-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Сегодня гелий используется в пищевой промышленности как пропеллент и упаковочный газ, в качестве хладагента для получения сверхнизких температур, для наполнения воздушных шариков и оболочек метеорологических зондов, для наполнения колб филаментных светодиодных ламп, что позволяет эффективно отводить тепло от светодиодных нитей, для поиска утечек в трубопроводах и котлах, в качестве носителя в газовой хроматографии и во многих других сферах.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения - при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Гелиокислородные смеси стали надежным средством профилактики кессонной болезни и дали большой выигрыш по времени при подъеме водолазов.

Растворимость газов в жидкостях, при прочих равных данных, прямо пропорциональна давлению. У водолазов, работающих под большим давлением, в крови растворено азота гораздо больше в сравнении с нормальными условиями, существующими на поверхности воды. При подъеме с глубины, когда давление приближается к нормальному, растворимость азота понижается, и его избыток начинает выделяться. Если подъем совершается быстро, выделение избытка растворенных газов происходит столь бурно, что кровь и богатые водой ткани организма, насыщенные газом, буквально вспениваются от массы пузырьков азота.

Образование пузырьков азота в кровеносных сосудах нарушает работу сердца, появление их в мозгу нарушает его функции, все это ведет к тяжелым расстройствам жизнедеятельности организма и в итоге — к смерти. Для того, чтобы предупредить развитие описанных явлений, подъем водолазов происходит очень медленно.

При этом избыток растворенных газов выделяется постепенно, и никаких болезненных расстройств не происходит. С применением искусственного воздуха, в котором азот заменяется менее растворимым гелием, возможность вредных расстройств устраняется почти полностью. Это позволяет увеличивать глубину опускания водолазов (до 100 и более метров) и время пребывания под водой.

«Гелиевый» воздух имеет плотность в три раза меньше плотности обычного воздуха. Поэтому дышать таким воздухом легче, чем обычным (уменьшается работа дыхательных мышц). Это обстоятельство имеет важное значение при заболевании органов дыхания. Поэтому «гелиевый» воздух применяется также в медицине при лечении астмы, удушья и других болезней.

Кроме того, гелий — удобный индикатор для геологов.

При помощи гелиевой съемки можно определять на поверхности Земли расположение глубинных разломов. Гелий как продукт распада радиоактивных элементов, насыщающих верхний слой земной коры, просачивается по трещинам, поднимается в атмосферу. Около таких трещин и особенно в местах их пересечения концентрация гелия более высокая. Эта закономерность используется для исследования глубинного строения Земли и поиска руд цветных и редких металлов.


(первый электрон)

Гелий — второй порядковый элемент периодической системы химических элементов Д. И. Менделеева, с атомным номером 2. Расположен в главной подгруппе восьмой группы, первом периоде периодической системы. Возглавляет группу инертных газов в периодической таблице. Обозначается символом He (Helium ). Простое вещество гелий (CAS-номер: 7440-59-7) — инертный одноатомный газ без цвета, вкуса и запаха.

Гелий — один из наиболее распространённых элементов во Вселенной , он занимает второе место после водорода . Также гелий является вторым по лёгкости (после водорода) химическим элементом.

Гелий добывается из природного газа процессом низкотемпературного разделения — так называемой фракционной перегонкой (см. Фракционная дистилляция в статье Дистилляция).

История открытия Гелия

18 августа 1868 года французский учёный Пьер Жансен, находясь во время полного солнечного затмения в индийском городе Гунтур, впервые исследовал хромосферу Солнца. Жансену удалось настроить спектроскоп таким образом, чтобы спектр короны Солнца можно было наблюдать не только при затмении, но и в обычные дни. На следующий же день спектроскопия солнечных протуберанцев наряду с линиями водорода — синей, зелено-голубой и красной — выявила очень яркую жёлтую линию, первоначально принятую Жансеном и другими наблюдавшими её астрономами за линию D натрия . Жансен немедленно написал об этом во Французскую Академию наук. Впоследствии было установлено, что ярко-жёлтая линия в солнечном спектре не совпадает с линией натрия и не принадлежит ни одному из ранее известных химических элементов.

Спустя два месяца 20 октября английский астроном Норман Локьер, не зная о разработках французского коллеги, также провёл исследования солнечного спектра. Обнаружив неизвестную жёлтую линию с длиной волны 588 нм (более точно 587,56 нм), он обозначил её D 3 , так как она была очень близко расположена к Фраунгоферовым линиям D 1 (589,59 нм) и D 2 (588,99 нм) натрия. Спустя два года Локьер, совместно с английским химиком Эдвардом Франкландом, в сотрудничестве с которым он работал, предложил дать новому элементу название «гелий» (ήλιος — «солнце»).

Интересно, что письма Жансена и Локьера пришли во Французскую Академию наук в один день — 24 октября 1868 года, однако письмо Локьера, написанное им четырьмя днями ранее, пришло на несколько часов раньше. На следующий день оба письма были зачитаны на заседании Академии. В честь нового метода исследования протуберанцев Французская академия решила отчеканить медаль. На одной строне медали были выбиты портреты Жансена и Локьера над скрещенными ветвями лавра, а на другой — изображение мифического бога Солнца Аполлона, правящего в колеснице четверкой коней, скачущей во весь опор

В 1881 году итальянец Луиджи Пальмиери опубликовал сообщение об открытии им гелия в вулканических газах (фумаролах). Он исследовал светло-желтое маслянистое вещество, оседавшее из газовых струй на краях кратера Везувия. Пальмиери прокаливал этот вулканический продукт в пламени бунзеновской горелки и наблюдал спектр выделявшихся при этом газов. Ученые круги встретили это сообщение с недоверием, так как свой опыт Пальмиери описал неясно. Спустя многие годы в составе фумарол действительно были найдены небольшие количества гелия и аргона

Только через 27 лет после своего первоначального открытия гелий был обнаружен на Земле — в 1895 году шотландский химик Уильям Рамзай, исследуя образец газа, полученного при разложении минерала клевеита, обнаружил в его спектре ту же ярко-жёлтую линию, найденную ранее в солнечном спектре. Образец был направлен для дополнительного исследования известному английскому ученому-спектроскописту Уильяму Круксу, который подтвердил, что наблюдаемая в спектре образца жёлтая линия совпадает с линией D 3 гелия. 23 марта 1895 года Рамзай отправил сообщение об открытии им гелия на Земле в Лондонское королевское общество, а также во Французскую академию через известного химика Марселена Бертло.

Шведские химики П. Клеве и Н. Ленгле смогли выделить из клевеита достаточно газа, чтобы установить атомный вес нового элемента.

В 1896 году Генрих Кайзер, Зигберт Фридлендер, а еще через два года Эдвард Бэли окончательно доказали присутствие гелия в атмосфере.

Еще до Рамзая гелий выделил также американский химик Фрэнсис Хиллебранд, однако он ошибочно полагал, что получил азот и в письме Рамзаю признал за ним приоритет открытия.

Исследуя различные вещества и минералы, Рамзай обнаружил, что гелий в них сопутствует урану и торию . Но только значительно позже, в 1906 году, Резерфорд и Ройдс установили, что альфа-частицы радиоактивных элементов представляют собой ядра гелия. Эти исследования положили начало современной теории строения атома .

График зависимости теплоёмкости жидкого гелия от температуры

Только в 1908 году нидерландскому физику Хейке Камерлинг-Оннесу удалось получить жидкий гелий дросселированием (Эффект Джоуля — Томсона), после того как как газ был предварительно охлажден в кипевшем под вакуумом жидком водороде. Попытки получить твёрдый гелий еще долго оставались безуспешными даже при температуре в 0,71 , которых достиг ученик Камерлинг-Оннеса — немецкий физик Виллем Хендрик Кеезом. Лишь в 1926 году, применив давление выше 35 атм и охладив сжатый гелий в кипящем под разрежением жидком гелии, ему удалось выделить кристаллы.

В 1932 году Кеезом исследовал характер изменения теплоёмкости жидкого гелия с температурой. Он обнаружил, что около 2,19 медленный и плавный подъём теплоёмкости сменяется резким падением и кривая теплоёмкости приобретает форму греческой буквы λ (лямбда). Отсюда температуре, при которой происходит скачок теплоёмкости, присвоено условное название «λ-точка». Более точное значение температуры в этой точке, установленное позднее — 2,172 . В λ-точке происходят глубокие и скачкообразные изменения фундаментальных свойств жидкого гелия — одна фаза жидкого гелия сменяется в этой точке на другую, причем без выделения скрытой теплоты; имеет место фазовый переход II рода. Выше температуры λ-точки существует так называемый гелий-I , а ниже её — гелий-II .

В 1938 году советский физик Пётр Леонидович Капица открыл явление сверхтекучести жидкого гелия-II , которое заключается в резком снижении коэффициента вязкости, вследствие чего гелий течёт практически без трения. Вот что он писал в одном из своих докладов про открытие этого явления:
… такое количество тепла, которое фактически переносилось, лежит за пределами физических возможностей, что тело ни по каким физическим законам не может переносить больше тепла, чем его тепловая энергия, помноженная на скорость звука. С помощью обычного механизма теплопроводности тепло не могло переноситься в таком масштабе, как это наблюдалось. Надо было искать другое объяснение.
И вместо того, чтобы объяснить перенос тепла теплопроводностью, то есть передачей энергии от одного атома к другому, можно было объяснить его более тривиально — конвекцией, переносом тепла в самой материи. Не происходит ли дело так, что нагретый гелий движется вверх, а холодный опускается вниз, благодаря разности скоростей возникают конвекционные токи, и таким образом происходит перенос тепла. Но для этого надо было предположить, что гелий при своем движении течет без всякого сопротивления. У нас уже был случай, когда электричество двигалось без всякого сопротивления по проводнику. И я решил, что гелий так же движется без всякого сопротивления, что он является не сверхтеплопроводным веществом, а сверхтекучим. …
… Если вязкость воды равняется 10 −2 П, то это в миллиард раз более текучая жидкость, чем вода …

Происхождение названия

От ἥλιος — «Солнце» (Гелиос). Любопытен тот факт, что в названии элемента было использовано характерное для металлов окончание «-ий» (по лат. «-um» — «Helium»), так как Локьер предполагал, что открытый им элемент является металлом. По аналогии с другими благородными газами логично было бы дать ему имя «гелион» («Helion»). В современной науке название «гелион» закрепилось за ядром лёгкого изотопа гелия — гелия-3.

Распространённость

Во Вселенной

Гелий занимает второе место по распространённости во Вселенной после водорода — около 23 % по массе. Однако на Земле гелий редок. Практически весь гелий Вселенной образовался в первые несколько минут после Большого Взрыва, во время первичного нуклеосинтеза. В современной Вселенной почти весь новый гелий образуется в результате термоядерного синтеза из водорода в недрах звёзд (см. протон-протонный цикл, углеродно-азотный цикл). На Земле он образуется в результате альфа-распада тяжёлых элементов (альфа-частицы, излучаемые при альфа-распаде — это ядра гелия-4). Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается природным газом, концентрация гелия в котором может достигать 7 % от объёма и выше.

Земная кора

В рамках восьмой группы гелий по содержанию в земной коре занимает второе место (после аргона).

Среднее содержание гелия в земном веществе — 3 г/т. Наибольшая концентрация гелия наблюдается в минералах, содержащих уран, торий и самарий : клевеите, фергюсоните, самарските, гадолините, монаците (монацитовые пески в Индии и Бразилии), торианите. Содержание гелия в этих минералах составляет 0,8 — 3,5 л/кг, а в торианите оно достигает 10,5 л/кг.

Определение Гелия

Качественно гелий определяют с помощью анализа спектров испускания (характеристические линии 587,56 нм и 388,86 нм), количественно — масс-спектрометрическими и хроматографическими методами анализа, а также методами, основанными на измерении физических свойств (плотности, теплопроводности и др.).

Физические свойства Гелия

Гелий — практически инертный химический элемент.

Простое вещество гелий — нетоксично, не имеет цвета, запаха и вкуса. При нормальных условиях представляет собой одноатомный газ. Его точка кипения (T = 4,215 для 4 He) наименьшая среди всех простых веществ; твёрдый гелий получен лишь при давлениях выше 25 атмосфер — при атмосферном давлении он не переходит в твёрдую фазу даже при крайне близких к абсолютному нулю температурах. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при нормальных условиях.

Свойства в газовой фазе

Спектральные линии гелия

При нормальных условиях гелий ведёт себя практически как идеальный газ. Фактически при всех условиях гелий моноатомный. Плотность 0,17847 кг/м³. Он обладает теплопроводностью (0,1437 Вт/(м·К) при н.у.) большей, чем у других газов, кроме водорода, и его удельная теплоёмкость чрезвычайно высока (с р = 5,23 кДж/(кг·К) при н.у., для сравнения — 14,23 кДж/(кг·К) для Н 2).

Символ элемента, выполненный из газоразрядных трубок, наполненных гелием

При пропускании тока через заполненную гелием трубку наблюдаются разряды различных цветов, зависящих главным образом от давления газа в трубке. Обычно видимый свет спектра гелия имеет жёлтую окраску. По мере уменьшения давления происходит смена цветов — розового, оранжевого, жёлтого, ярко-жёлтого, жёлто-зелёного и зелёного. Это связано с присутствием в спектре гелия нескольких серий линий, расположенных в диапазоне между инфракрасной и ультрафиолетовой частями спектра, важнейшие линии гелия в видимой части спектра лежат между 706,52 нм и 447,14 нм. Уменьшение давления приводит к увеличению длины свободного пробега электрона, то есть к возрастанию его энергии при столкновении с атомами гелия. Это приводит к переводу атомов в возбуждённое состояние с большей энергией, в результате чего и происходит смещение спектральных линий от инфракрасного к ультрафиолетовому краю.

Гелий менее растворим в воде, чем любой другой известный газ. В 1 л воды при 20 °C растворяется около 8,8 мл (9,78 при 0 °C, 10,10 при 80 °C), в этаноле — 2,8 (15 °C), 3,2 (25 °C). Скорость его диффузии сквозь твёрдые материалы в три раза выше, чем у воздуха , и приблизительно на 65 % выше, чем у водорода.

Коэффициент преломления гелия ближе к единице, чем у любого другого газа. Этот газ имеет отрицательный коэффициент Джоуля-Томсона при нормальной температуре среды, то есть он нагревается, когда ему дают возможность свободно увеличиваться в объёме. Только ниже температуры инверсии Джоуля-Томсона (приблизительно 40 К при нормальном давлении) он остывает во время свободного расширения. После охлаждения ниже этой температуры гелий может быть превращён в жидкость при расширительном охлаждении. Такое охлаждение производится при помощи детандера.

Свойства конденсированных фаз

В 1908 году Х.Камерлинг-Оннес впервые смог получить жидкий гелий. Твёрдый гелий удалось получить лишь под давлением 25 атмосфер при температуре около 1 К (В. Кеезом, 1926). Кеезом также открыл наличие фазового перехода гелия-4 (4 He) при температуре 2,17K; назвал фазы гелий-I и гелий-II (ниже 2,17K). В 1938 году П. Л. Капица обнаружил, что у гелия-II отсутствует вязкость (явление сверхтекучести). В гелии-3 сверхтекучесть возникает лишь при температурах ниже 0,0026 К. Сверхтекучий гелий относится к классу так называемых квантовых жидкостей, макроскопическое поведение которых может быть описано только с помощью квантовой механики. В 2004 году появилось сообщение об открытии сверхтекучести твёрдого гелия, однако интерпретация этого явления не до конца понятна.

Химические свойства Гелия

Гелий — наименее химически активный элемент восьмой группы (Инертные газы) таблицы Менделеева . Многие соединения гелия существуют только в газовой фазе в виде так называемых эксимерных молекул, у которых устойчивы возбуждённые электронные состояния и неустойчиво основное состояние. Гелий образует двухатомные молекулы He 2 , фторид HeF, хлорид HeCl (эксимерные молекулы образуются при действии электрического разряда или УФ излучения на смесь гелия газа и фтора (хлора)).

Известно химическое соединение гелия LiHe. (возможно, имелось ввиду соединение LiHe 7)

Изотопы Гелия

Природный гелий состоит из двух стабильных изотопов : 4 He (изотопная распространённость — 99,99986 %) и гораздо более редкого 3 He (0,00014 %; содержание гелия-3 в разных природных источниках может варьировать в довольно широких пределах). Известны ещё шесть искусственных радиоактивных изотопов гелия.

Получение Гелия

Промышленность — химический элемент гелий получают из гелийсодержащих природных газов (в настоящее время эксплуатируются главным образом месторождения, содержащие > 0,1 % гелия). От других газов гелий отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов. Охлаждение производят дросселированием в несколько стадий очищая его CO 2 и углеводородов. В результате получается смесь гелия, неона и водорода. Сырой гелий (70-90 % по объёму гелий) очищают от водорода (4-5 %) с помощью CuO при 650—800 К. Окончательная очистка достигается охлаждением сырого гелий кипящим под вакуумом N 2 и адсорбцией примесей на активном угле в адсорберах, также охлаждаемых жидким N 2 . Производят гелий технической чистоты (99,80 % по объёму гелий) и высокой чистоты (99,985 %).

В России газообразный гелий получают из природного и нефтяного газов. В настоящее время гелий извлекается на гелиевом заводе ООО «Газпром добыча Оренбург» в Оренбурге из газа с низким содержанием гелия (до 0,055 % об.), поэтому российский гелий имеет высокую себестоимость. Актуальной проблемой является освоение и комплексная переработка природных газов крупных месторождений Восточной Сибири с высоким содержанием гелия (от 0,15 до 1 %), что позволит намного снизить его себестоимость.

Для перевозки жидкого гелия применяются специальные транспортные сосуды типа СТГ-10, СТГ-25 и СТГ-40 светло-серого цвета объёмом 10, 25 и 40 литров, соответственно. При выполнении определённых правил транспортировки может использоваться железнодорожный, автомобильный и другие виды транспорта. Сосуды с жидким гелием обязательно должны храниться в вертикальном положении.

Применение гелия

Уникальные свойства гелия широко используются в промышленности и народном хозяйстве:
— в металлургии в качестве защитного инертного газа для выплавки чистых металлов
— в пищевой промышленности зарегистрирован в качестве пищевой добавки E939 , в качестве пропеллента и упаковочного газа
— используется в качестве хладагента для получения сверхнизких температур (в частности, для перевода металлов в сверхпроводящее состояние)
— для наполнения воздухоплавающих судов (дирижабли)
— в дыхательных смесях для глубоководного погружения (Баллон для дайвинга)
— для наполнения воздушных шариков и оболочек метеорологических зондов
— для заполнения газоразрядных трубок
— в качестве теплоносителя в некоторых типах ядерных реакторов
— в качестве носителя в газовой хроматографии
— для поиска утечек в трубопроводах и котлах (см. Гелиевый течеискатель)
— как компонент рабочего тела в гелий-неоновых лазерах
— нуклид 3 He активно используется в технике нейтронного рассеяния в качестве поляризатора и наполнителя для позиционно-чувствительных нейтронных детекторов
— нуклид 3 He является перспективным топливом для термоядерной энергетики
— для изменения тембра голосовых связок (эффект повышенной тональности голоса) за счет различия плотности обычной воздушной смеси и гелия (аналогично гексафториду серы)

Биологическая роль гелия

Гелий не играет никакой биологической роли.

Физиологическое действие

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотическое воздействие гелия (и неона) при нормальном давлении в опытах не регистрируется, в то время как при повышении давления раньше возникают симптомы «нервного синдрома высокого давления» (НСВД)

В 2000 г. цены частных компаний на газообразный гелий находились в пределах 1,5 — 1,8 $/м³
В 2009 году цены на газообразный гелий находились в пределах 1.800-2.500 рублей за 6 м³ (40-литровый баллон) (Санкт-Петербург).

Дополнительная информация по гелию

Гелий-3 — лёгкий, нерадиоактивный изотоп гелия.
Эффект Померанчука — аномальный характер плавления (или затвердевания) лёгкого изотопа гелия 3 He

Гелий, Helium, Не (2)
В 1868 г. французский астроном Жансен наблюдал в Индии полное солнечное затмение и спектроскопически исследовал хромосферу солнца. Он обнаружил в спектре солнца яркую желтую линию, обозначенную им D3, которая не совпадала с желтой линией D натрия. Одновременно с ним эту же линию в спектре солнца увидел английский астроном Локьер, который понял, что она принадлежит неизвестному элементу. Локьер совместно с Франкландом, у которого он тогда работал, решил назвать новый элемент гелием (от греч.- гелиос, солнце). Затем новая желтая линия была обнаружена другими исследователями в спектрах «земных» продуктов; так, в 1881 г. итальянец Пальмиери обнаружил ее при исследовании пробы газа, отобранного в кратере Везувия.

Bсследуя урановые минералы химик Гиллебранд, установил, что они при действии крепкой серной кислоты выделяют газы. Сам Гиллебранд считал, что это азот. Рамзай, обративший внимание на сообщение Гиллебранда, подверг спектроскопическому анализу газы, выделяемые при обработке кислотой минерала клевеита. Он обнаружил, что в газах содержатся азот, аргон, а также неизвестный газ, дающий яркую желтую линию. Не имея в своем распоряжении достаточно хорошего спектроскопа, Рамзай послал пробы нового газа Круксу и Локьеру, которые вскоре идентифицировали газ как гелий. В том же 1895 г. Рамзай выделил гелий из смеси газов; он оказался химически инертным, подобно аргону. Вскоре после этого Локьер, Рунге и Пашен выступили с заявлением, что гелий состоит из смеси двух газов — ортогелий и парагелий; один из них дает желтую линию спектра, другой зеленую. Этот второй газ они предложили назвать астерием (Asterium) от греч.- звездный. Совместно с Траверсом Рамзай проверил это утверждение и доказал, что оно ошибочно, так как цвет линии гелия зависит от давления газа.


Гелий — практически инертный химический элемент. Простое вещество гелий — нетоксично, не имеет цвета, запаха и вкуса. При нормальных условиях представляет собой одноатомный газ. Его точка кипения наименьшая среди всех простых веществ; твёрдый гелий получен лишь при давлениях выше 25 атмосфер — при атмосферном давлении он не переходит в твёрдую фазу даже при крайне близких к абсолютному нулю температурах. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при нормальных условиях. Название этого элемента происходит от греч. ἥλιος — «Солнце». Любопытен тот факт, что в названии элемента было использовано характерное для металлов окончание «-ий» (по лат. «-um» — «Helium»), так как Локьер предполагал, что открытый им элемент является металлом. По аналогии с другими благородными газами логично было бы дать ему имя «гелион» («Helion»). В современной науке название «гелион» закрепилось за ядром лёгкого изотопа гелия — гелия-3.

По легкости этот газ уступает только водороду, воздух в 7,25 раза тяжелее гелия.

Гелий почти нерастворим в воде и других жидкостях. И точно так же в жидком гелии заметно не растворяется ни одно вещество.

Твердый гелий нельзя получить ни при каких температурах, если не повышать давление.

В истории открытия, исследования и применения этого элемента встречаются имена многих крупных физиков и химиков разных стран. Гелием интересовались, с гелием работали: Жансен (Франция), Локьер, Крукс, (Англия), Пальмиери (Италия), Кеезом, (Голландия), (США), Кикоин, (Советский Союз) и многие другие крупные ученые.

Неповторимость облика атома гелия определяется сочетанием в нем двух удивительных природных конструкций - абсолютных чемпионов по компактности и прочности. В ядре гелия, гелия-4, насыщены обе внутриядерные оболочки - и протонная, и нейтронная. Электронный дублет, обрамляющий это ядро, тоже насыщенный. В этих конструкциях - ключ к пониманию свойств гелия. Отсюда проистекают и его феноменальная химическая инертность и рекордно малые размеры его атома.

Огромна роль ядра атома гелия - альфа частицы в истории становления и развития ядерной физики. Если помните, именно изучение рассеяния альфа частиц привело Резерфорда к открытию атомного ядра. При бомбардировке азота альфа частицами было впервые осуществлено взаимопревращение элементов - то, о чем веками мечтали многие поколения алхимиков. Правда, в этой реакции не ртуть превратилась в , а азот в кислород, но это сделать почти так же трудно. Те же альфа частицы оказались причастны к открытию нейтрона и получению первого искусственного изотопа. Позже с помощью альфа частиц были синтезированы кюрий, берклий, калифорний, менделевий.

Мы перечислили эти факты лишь с одной целью - показать, что элемент №2 - элемент весьма необычный.

Земной гелий

Гелий - элемент необычный, и история его необычна. Он был открыт в атмосфере Солнца на 13 лет раньше, чем на Земле. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая линия D, а что за ней скрывалось, стало достоверно известно лишь после того, как гелий извлекли из земных минералов, содержащих радиоактивные элементы.

Гелий на Солнце открыли француз Ж. Жансен, проводивший свои наблюдения в Индии 19 августа 1868 г., и англичанин Дж.H. Локьер - 20 октября того же года. Письма обоих ученых пришли в Париж в один день и были зачитаны на заседании Парижской Академии наук 26 октября с интервалом в несколько минут. Академики, пораженные столь странным совпадением, приняли постановление выбить в честь этого события золотую медаль.

В 1881 г. об открытии гелия в вулканических газах сообщил итальянский ученый Пальмиери. Однако его сообщение, впоследствии подтвержденное, мало кто из ученых принял всерьез. Вторично земной гелий был открыт в 1895 г.

В земной коре насчитывается 29 изотопов, при радиоактивном распаде которых образуются альфа частицы - высокоактивные, обладающие большой энергией ядра атомов гелия.

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия - 4 Не, чьи атомы можно рассматривать как останки альфа частиц, захороненные в оболочке из двух спаренных электронов - в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия - половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико - несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.

Природные соединения, в составе которых есть альфа активные изотопы, - это только первоисточник, но не сырье для промышленного получения гелия. Правда, некоторые минералы, обладающие плотной структурой - самородные металлы, магнетит, гранат, апатит, циркон и другие, - прочно удерживают заключенный в них гелий. Однако большинство минералов с течением времени подвергаются процессам выветривания, перекристаллизации и т.д., и гелий из них уходит.

Высвободившиеся из кристаллических структур гелиевые пузырьки отправляются в путешествие по земной коре. Очень незначительная часть их растворяется в подземных водах. Для образования более или менее концентрированных растворов гелия нужны особые условия, прежде всего большие давления. Другая часть кочующего гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. Ловушками служат пласты рыхлых пород, пустоты которых заполняются газом. Ложем для таких газовых коллекторов обычно служат вода и нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Так как в земной коре странствуют и другие газы (главным образом метан, азот, углекислота), и притом в гораздо больших количествах, то чисто гелиевых скоплений не существует. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко - десятых долей процента. Большая (1,5...10%) гелиеносность метано-азотных месторождений - явление крайне редкое.

Природные газы оказались практически единственным источником сырья для промышленного получения гелия. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%.

Запасы гелия на Земле оцениваются в 5·10 14 м 3 ; судя же по вычислениям, его образовалось в земной коре за 4 млрд лет в десятки раз больше. Такое расхождение теории с практикой вполне объяснимо. Гелий - легкий газ и, подобно водороду (хотя и медленнее), он улетучивается из атмосферы в мировое пространство. Вероятно, за время существования Земли гелий нашей планеты неоднократно обновлялся - старый улетучивался в космос, а вместо него в атмосферу поступал свежий - «выдыхаемый» Землей.

В литосфере гелия по меньшей мере в 200 тыс. раз больше, чем в атмосфере; еще больше потенциального гелия хранится в «утробе» Земли - в альфа активных элементах. Но общее содержание этого элемента в Земле и атмосфере невелико. Гелий - редкий и рассеянный газ. На 1 кг земного материала приходится всего 0,003 мг гелия, а содержание его в воздухе - 0,00052 объемного процента. Столь малая концентрация не позволяет пока экономично извлекать гелий из воздуха.

Гелий во Вселенной

Недра и атмосфера нашей планеты бедны гелием. Но это не значит, что его мало повсюду во Вселенной. По современным подсчетам 76% космической массы приходится на водород и 23% на гелий; на все прочие элементы остается только 1%! Таким образом, мировую материю можно назвать водородно-гелиевой. Эти два элемента главенствуют в звездах, планетарных туманностях и межзвездном газе.


Рис. 1.
«Космическая» кривая отражает исключительную роль водорода и гелия в мироздании и особое значение гелиевой группировки в строении атомного ядра. Наибольшую относительную распространенность имеют те элементы и те их изотопы, массовое число которых делится на четыре: 16 О, 20 Ne, 24 Mg и т.д.

Вероятно, все планеты солнечной системы содержат радиогенный (образовавшийся при альфа распаде) гелий, а крупные - и реликтовый гелий из космоса. Гелий обильно представлен в атмосфере Юпитера: по одним данным его там 33%, по другим - 17%. Это открытие легло в основу сюжета одного из рассказов известного ученого и писателя-фантаста А. Азимова. В центре повествования - план (возможно, осуществимый в будущем) доставки гелия с Юпитера, а то и заброски на ближайший спутник этой планеты - Юпитер V - армады кибернетических машин на криотронах (о них - ниже). Погрузившись в жидкий гелий атмосферы Юпитера (сверхнизкие температуры и сверхпроводимость - необходимые условия для работы криотронов), эти машины превратят Юпитер V в мозговой центр Солнечной системы...

Происхождение звездного гелия было объяснено в 1938 г. немецкими физиками и Вейцзекером. Позже их теория получила экспериментальное подтверждение и уточнение с помощью ускорителей элементарных частиц. Суть ее в следующем.

Ядра гелия синтезируются при звездных температурах из протонов в результате термоядерных процессов, высвобождающих 175 млн киловатт-часов энергии на каждый килограмм гелия.

Разные циклы реакций могут привести к синтезу гелия.

В условиях не очень горячих звезд, таких, как наше Солнце, преобладает, по-видимому, протонно-протонный цикл. Он складывается из трех последовательно сменяющихся превращений. Вначале соединяются на огромных скоростях два протона с образованием дейтрона - конструкции из протона и нейтрона; при этом отделяются позитрон и нейтрино. Далее соединяются дейтрон с протоном в легкий гелий с испусканием гамма кванта. Наконец, реагируют два ядра 3 Не, преобразуясь в альфа частицу и два протона. Альфа-частица, обзаведясь двумя электронами, станет потом атомом гелия.

Тот же конечный результат дает более быстрый углеродно-азотный цикл, значение которого в условиях Солнца не очень велико, но на более горячих, чем Солнце, звездах роль этого цикла усиливается. Он складывается из шести ступеней - реакций. Углерод играет здесь роль катализатора процесса слияния протонов. Энергия, выделяемая в ходе этих превращений, такая же, как и при протонно-протонном цикле - 26,7 МэВ на один атом гелия.

Реакция синтеза гелия - основа энергетической деятельности звезд, их свечения. Следовательно, синтез гелия можно считать праотцом всех реакций в природе, первопричиной жизни, света, тепла и метеорологических явлений на Земле.

Гелий не всегда бывает конечным продуктом звездных синтезов. По теории профессора Д.А. Франк-Каменецкого, при последовательном слиянии ядер гелия образуются 3 Be, 12 C, 16 O, 20 Ne, 24 Mg, а захват этими ядрами протонов приводит к возникновению других ядер. Для синтеза ядер тяжелых элементов вплоть до трансурановых требуются исключительные сверхвысокие температуры, которые развиваются на неустойчивых «новых» и «сверхновых» звездах.

Известный советский химик А.Ф. Капустинский называл водород и гелий протоэлементами - элементами первичной материи. Не в этой ли первичности скрыто объяснение особого положения водорода и гелия в периодической системе элементов, в частности того факта, что первый период по существу лишен периодичности, характерной для прочих периодов?

Самый, самый...

Атом гелия (он же молекула) - прочнейшая из молекулярных конструкций. Орбиты двух его электронов совершенно одинаковы и проходят предельно близко от ядра. Чтобы оголить ядро гелия, нужно затратить рекордно большую энергию - 78,61 МэВ. Отсюда - феноменальная химическая пассивность гелия.

Гелий уже давно потерял репутацию химически инертного элемента. К настоящему времени известно много как стабильных, так и метастабильных соединений, включающих гелий. Прежде всего, это молекулярные ионы He 2 (+), He 2 (2+) и HeH(+), образующиеся в высокотемпературной плазме. В возбуждённом состоянии экспериментально наблюдаются как нейтральная молекула He 2 , так и более сложные соединения, например, HHeF, HgHe, CsFHeO и другие. Причина того, что эти соединения неустойчивы и обнаруживаюся только в возбуждённом состоянии, довольно проста. Не - элемент с избытком электронов, поэтому в основном состоянии его соединения имеют заполненные разрыхляющие молекулярные орбитали, что делает химическую связь весьма непрочной. В возбуждённом состоянии часть электронов (или хотя бы один) покидают разрыхляющие орбитали, переходя на верхние связывающие; это приводит к упрочнению хим. связи. Из стабильных соединений гелия можно отметить сравнительно недавно синтезированные эндофуллерены, например, He@C 60 . В этих молекулах He находится внутри "шарообразной" конструкции С 60 .

Молекулы гелия неполярны. Силы межмолекулярного взаимодействия между ними крайне невелики - меньше, чем в любом другом веществе. Отсюда - самые низкие значения критических величин, наинизшая температура кипения, наименьшие теплоты испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее вообще нет. Жидкий гелий при сколь угодно близкой к абсолютному нулю температуре не затвердевает, если, помимо температуры, на него но действует давление в 25 или больше атмосфер. Второго такого вещества в природе нет.

Нет также другого газа, столь ничтожно растворимого в жидкостях, особенно полярных, и так мало склонного к адсорбции, как гелий. Это наилучший среди газов проводник электричества и второй, после , проводник тепла. Его теплоемкость очень велика, а вязкость мала.

Поразительно быстро проникает гелий сквозь тонкие перегородки из некоторых органических полимеров, фарфора, кварцевого и боросиликатного стекла. Любопытно, что сквозь мягкое стекло гелий диффундирует в 100 раз медленнее, чем сквозь боросиликатное. Гелий может проникать и через многие металлы. Полностью непроницаемы для него лишь и металлы платиновой группы, даже раскаленные.

На принципе избирательной проницаемости основан метод извлечения чистого гелия из природного газа.

Исключительный интерес проявляют ученые к жидкому гелию. Во-первых, это самая холодная жидкость, в которой к тому же не растворяется заметно ни одно вещество. Во-вторых, это самая легкая из жидкостей с минимальной величиной поверхностного натяжения.

При температуре 2,172°К происходит скачкообразное изменение свойств жидкого гелия. Образующаяся разновидность условно названа гелием II. Гелий II кипит совсем не так, как прочие жидкости, он не бурлит при кипении, поверхность его остается совершенно спокойной. Гелий II проводит тепло в 300 млн раз лучше, чем обычный жидкий гелий (гелий I). Вязкость гелия II практически равна нулю, она в тысячу раз меньше вязкости жидкого водорода. Поэтому гелий II обладает сверхтекучестью - способностью вытекать без трения через капилляры сколь угодно малого диаметра.

Другой стабильный изотоп гелия 3 Не переходит в сверхтекучее состояние при температуре, отстоящей от абсолютного пуля всего на сотые доли градусов. Сверхтекучие гелий-4 и гелий-3 называют квантовыми жидкостями: в них проявляются квантово-механические эффекты еще до их отвердевания. Этим объясняется весьма детальная изученность жидкого гелия. Да и производят его немало - сотни тысяч литров в год. А вот твердый гелий почти не изучен: велики экспериментальные трудности исследования этого самого холодного тела. Бесспорно, пробел этот будет заполнен, так как физики ждут много нового от познания свойств твердого гелия: ведь он тоже квантовое тело.

Инертный, но очень нужный

В конце прошлого века английский журнал «Панч» поместил карикатуру, на которой гелий был изображен хитро подмигивающим человечком - жителем Солнца. Текст под рисунком гласил: «Наконец-то меня изловили и на Земле! Это длилось достаточно долго! Интересно знать, сколько времени пройдет, пока они догадаются, что делать со мной?»

Действительно, прошло 34 года со дня открытия земного гелия (первое сообщение об этом было опубликовано в 1881 г.), прежде чем он нашел практическое применение. Определенную роль здесь сыграли оригинальные физико-технические, электрические и в меньшей мере химические свойства гелия, потребовавшие длительного изучения. Главными же препятствиями были рассеянность и высокая стоимость элемента №2.

Первыми гелий применили немцы. В 1915 г. они стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды; и нет для этих целей более подходящего газа, чем гелий.

Инертный, легкий, подвижный, хорошо проводящий тепло гелий - идеальное средство для передавливания из одной емкости в другую легко воспламеняемых жидкостей и порошков; именно эти функции выполняет он в ракетах и управляемых снарядах. В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов.

С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах и других системах, находящихся под давлением или вакуумом.

Последние годы ознаменованы повторным подъемом дирижаблестроения, теперь на более высокой научно-технической основе. В ряде стран построены и строятся дирижабли с гелиевым наполнением грузоподъемностью от 100 до 3000 т. Они экономичны, надежны и удобны для транспортировки крупногабаритных грузов, таких, как плети газопроводов, нефтеочистительные установки, опоры линий электропередач и т.п. Наполнение из 85% гелия и 15% водорода огнебезопасно и только на 7% снижает подъемную силу в сравнении с водородным наполнением.

Начали действовать высокотемпературные ядерные реакторы нового типа, в которых теплоносителем служит гелий.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения - при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тыс. эрстед) при ничтожных затратах энергии.

При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками. Сверхпроводниковые реле - криотроны все шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Конечно, этими примерами не исчерпывается роль гелия в современной технике. Но если бы не ограниченность природных ресурсов, не крайняя рассеянность гелия, он нашел бы еще множество применений. Известно, например, что при консервировании в среде гелия пищевые продукты сохраняют свой первоначальный вкус и аромат. Но «гелиевые» консервы пока остаются «вещью в себе», потому что гелия не хватает и применяют его лишь в самых важных отраслях промышленности и там, где без него никак не обойтись. Поэтому особенно обидно сознавать, что с горючим природным газом через аппараты химического синтеза, топки и печи проходят и уходят в атмосферу намного большие количества гелия, чем те, что добываются из гелиеносных источников.

Сейчас считается выгодным выделять гелий только в тех случаях, если его содержание в природном газе не меньше 0,05%. Запасы такого газа все время убывают, и не исключено, что они будут исчерпаны уже очень скоро. Однако, проблема «гелиевой недостаточности» к этому времени, вероятно, будет решена - частично за счет создания новых, более совершенных методов разделения газов, извлечения из них наиболее ценных, хотя и незначительных по объему фракций, и частично благодаря управляемому термоядерному синтезу. Гелий станет важным, хотя и побочным, продуктом деятельности «искусственных солнц».

Изотопы гелия

В природе существуют два стабильных изотопа гелия: гелий-3 и гелий-4. Легкий изотоп распространен на Земле в миллион раз меньше, чем тяжелый. Это самый редкий из стабильных изотопов, существующих на нашей планете. Искусственным путем получены еще три изотопа гелия. Все они радиоактивны. Период полураспада гелия-5 - 2,4·10 -21 секунды, гелия-6 - 0,807 секунды, гелия-8 - 0,119 секунды. Самый тяжелый изотоп, интересный тем, что в его ядрах на один протон приходится три нейтрона, впервые подучен в Дубне в 60-х годах. Период полураспада гелия-9 - 7(4)·10 −21 с. Период полураспада гелия-10 - 2,7(18)·10 −21 с.

Последний твердый газ

В жидкое и твердое состояние гелий был переведен самым последним из всех газов. Особые сложности сжижения и отверждения гелия объясняются строением его атома и некоторыми особенностями физических свойств. В частности, гелий, как и водород, при температуре выше - 250°C, расширяясь, не охлаждается, а нагревается. С другой стороны, критическая температура гелия крайне низка. Именно поэтому жидкий гелий впервые удалось получить лишь в 1908, а твердый - в 1926 г.

Гелиевый воздух

Воздух, в котором весь азот или большая его часть заменена гелием, сегодня уже не новость. Его широко используют на земле, под землей и под водой.

Гелиевый воздух втрое легче и намного подвижнее обычного воздуха. Он активнее ведет себя в легких - быстро подводит кислород и быстро эвакуирует углекислый газ. Вот почему гелиевый воздух дают больным при расстройствах дыхания и некоторых операциях. Он снимает удушья, лечит бронхиальную астму и заболевания гортани.

Дыхание гелиевым воздухом практически исключает азотную эмболию (кессонную болезнь), которой при переходе от повышенного давления к нормальному подвержены водолазы и специалисты других профессий, работа которых проходит в условиях повышенного давления. Причина этой болезни - довольно значительная, особенно при повышенном давлении, растворимость азота в крови. По мере уменьшения давления он выделяется в виде газовых пузырьков, которые могут закупорить кровеносные сосуды, повредить нервные узлы... В отличие от азота, гелий практически нерастворим в жидкостях организма, поэтому он не может быть причиной кессонной болезни. К тому же гелиевый воздух исключает возникновение «азотного наркоза», внешне сходного с алкогольным опьянением.

Рано или поздно человечеству придется научиться подолгу жить и работать на морском дне, чтобы всерьез воспользоваться минеральными и пищевыми ресурсами шельфа. А на больших глубинах, как показали опыты советских, французских и американских исследователей, гелиевый воздух пока незаменим. Биологи доказали, что длительное дыхание гелиевым воздухом не вызывает отрицательных сдвигов в человеческом организме и не грозит изменениями в генетическом аппарате: гелиевая атмосфера не влияет на развитие клеток и частоту мутаций. Известны работы, авторы которых считают гелиевый воздух оптимальной воздушной средой для космических кораблей, совершающих длительные полеты во Вселенную. Но пока за пределы земной атмосферы искусственный гелиевый воздух еще не поднимался.



По материалам: images-of-elements.com , n-t.ru

Как многие знают, самым распространенным и легким элементом на земле является водород , гелий же в нашем мире занимает второе место! Гелий — второй элемент периодической таблицы Менделеева является инертным одноатомным газом, не имеющим ни цвета, ни вкуса, ни запаха. Обладает самой низкой температурой кипения из всех веществ (-269 о С). Имеет 8 изотопов. Каждый из них уникален по своим свойствам.

История открытия

Первооткрывателем гелия по праву можно считать французского астронома, директора обсерватории в Медоне, Пьера Жюль Сезар Жансена. В 1868 году, при исследовании солнца, а именно хромосферы, астрономом была запечатлена линия ярко-желтого цвета, которую изначально и ошибочно отнесли к спектру натрия . Но, спустя несколько лет, в 1871 году Пьер, совместно с английским астрономом Джозефом Локьером, установили, что линия, найденная Жансеном, не принадлежит ни одному из известных на тот момент химических элементов. Название гелий получил, от слова «гелиос», что в переводе с греческого означает — солнце! В первую очередь, ученые предположили, что найденный элемент является металлом, но в наши дни, с уверенностью можно сказать — это было ложное предположение

Как многие знают, абсолютно все газы можно привести в жидкое состояние, но для этого, конечно, потребуются определенные условия. Сжиженный открыли только в 1908 году. Нидерландский физик Хейке Камерлинг-Оннес понижал давление газа с протеканием через дроссель, предварительно охладив гелий.

Твердый гелий, был получен только через 20 лет в 1926 году. Ученик Камерлинг-Оннеса, смог добиться получения кристаллов газа, увеличив давление гелия выше 35 атмосфер и охладив газ до предельно низкой температуры.

Начнем с того, что гелий не может вступать в химические реакции вовсе, а так же не имеет степеней окисления. Гелий – одноатомный газ, и имеет всего лишь один электронный уровень (оболочку), являясь крайне устойчивым газом, так как имеет полностью заполненный электронами первый уровень, что говорит о сильном воздействии ядра на электроны. Атомы гелия, не то, что не реагируют с другими веществами, более того, они не соединяются даже друг с другом.

Жидкий гелий имеет ряд абсолютно уникальных свойств. В 30 годах 20-го века, при еще меньших температурах было замечено крайне странное и невероятное явление – когда гелий охлаждается до температуры всего на 2 градуса превышающей абсолютный ноль, происходит его неожиданная трансформация. Поверхность жидкости становится абсолютно спокойной и гладкой, ни единого пузырька, ни малейшего бурления жидкости. Жидкий гелий превращается в сверхтекучую жидкость. Такой гелий может забраться по стенкам и «сбежать» из сосуда, в котором он хранится, это происходит из за нулевой вязкости сжиженного газа. Он может стать фонтаном, обладающим нулевым трением, а значит, такой фонтан может течь бесконечно. Несмотря на все теории, ученые установили, что сжиженный гелий это непросто жидкость. Например, начиная с 2He, оказалось, что сжиженный газ состоит из двух взаимопроникающих жидкостей: нормальной (вязкой) и сверхтекучей (нулевая вязкость) компоненты. Сверхтекучая компонента является идеальной и обладает нулевым трением, при протекании в любых сосудах и капиллярах.

Что же касается твердого гелия, то на данный момент, ученые проводят многочисленные опыты и эксперименты. Твердый 4He обладает квантовым эффектом, таким как кристаллизационная волна. Этот эффект основан на колебании границы раздела фаз в системе – «кристалл – жидкость». Достаточно немного качнуть такой гелий, и граница фаз между жидкостью и твердым веществом будет схожа с границей двух жидкостей!

Использование гелия в промышленности

В основном, гелий необходим для получения крайне низких температур, а так же в металлургии для выплавки чистых металлов. Так же 2He – это не только один из лучших теплоносителей, но и хороший пропеллент (Е939) в пищевой индустрии.

С помощью гелия можно определять местонахождение разломов в толще Земли, так как он выделяется при распаде радиоактивных элементов, которыми насыщена земная кора. Концентрация гелия на выходе из трещины, в 50 -100 раз больше, чем нормальная.

Более того, гелием наполняют воздушные суда, такие как дирижабли. Гелий намного легче чем воздух, поэтому подъемная сила таких судов очень высока. Да, водород легче, чем гелий. Так почему бы не использовать его? Водород – это горючий элемент, и заправлять им дирижабли крайне опасно.

Опасность

Любое превышение концентрации газа может быть опасным для здоровья человека. Вдыхание воздуха с высокой концентрацией гелия может вызвать потерю сознания, сильные, рвоту и даже смерть. Смерть наступает в результате кислородного голодания, связанного с тем что в легкие не попадает