Импульс, закон сохранения импульса. Школьная энциклопедия

Простые наблюдения и опыты доказывают, что покой и движение относительны, скорость тела зависит от выбора системы отсчета; по второму закону Ньютона независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движения может происходить только под действием силы, т. е. в результате взаимодействия с другими телами. Однако существуют величины, которые могут сохраняться при взаимодействии тел. Такими величинами являются энергия и импульс .

Импульсом тела называют векторную физиче¬скую величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается . Импульс тела равен произведению массы тела на его скорость: . Направление вектора импульса р совпадает с направлением вектора скорости тела . Единица импульса - .

Для импульса системы тел выполняется закон сохранения, который справедлив только для замкнутых физических систем. В общем случае замкнутой называют систему, которая не обменивается энергией и массой с телами и полями, не входящими в нее. В механике замкнутой называют систему, на которую не действуют внешние силы или действие этих сил скомпенсировано. В этом случае , где - начальный импульс системы, а - конечный. В случае двух тел, входящих в систему, это выражение имеет вид , где - массы тел, а - скорости до взаимодействия, - скорости после взаимодействия (рис. 4). Эта формула и является математическим выражением закона сохранения импульса: импульс замкнутой физической системы сохраняется при любых взаимодействиях, происходящих внутри этой системы. Другими словами: в замкнутой физической системе геометрическая сумма импульсов тел до взаимодействия равна геометрической сумме импульсов этих тел после взаимодействия . В случае незамкнутой системы импульс тел системы не сохраняется. Однако если и системе существует направление, по которому внешние силы не действуют или их действие скомпенсировано, то сохраняется проекция импульса на это направление. Кроме того, если время взаимодействия мало (выстрел, взрыв, удар), то за это время даже в случае незамкнутой системы внешние силы незначительно изменяют импульсы взаимодействующих тел. Поэтому для практических расчетов в этом случае тоже можно применять закон сохранения импульса.

Экспериментальные исследования взаимодействий различных тел - от планет и звезд до атомов и элементарных частиц - показали, что в любой системе взаимодействующих тел при отсутствии действия со стороны других тел, не входящих в систему, или равенстве нулю суммы действующих сил геометрическая сумма импульсов тел действительно остается неизменной.

В механике закон сохранения импульса и законы Ньютона связаны между собой. Если на тело массой в течение времени действует сила и скорость его движения изменяется от до , то ускорение движения а тела равно . На основании второго закона Ньютона для силы можно записать , отсюда следует

. - векторная физическая величина, характеризующая действие на тело силы за некоторый промежуток времени и равная произведению силы на время ее действия, называется импульсом силы . Единица импульса силы - .

Закон сохранения импульса лежит в основе реактивного движения. Реактивное движение - это такое движение тела, которое возникает после отделения от тела его части.

Пусть тело массой покоилось. От тела отделилась какая-то его часть массой со скоростью Тогда оставшаяся часть придет в движение в противоположную сторону со скоростью , масса оставшейся части . Действительно, сумма импульсов обеих частей тела до отделения была равна нулю и после разделения будет равна нулю:

Отсюда .

Большая заслуга в развитии теории реактивного движения принадлежит К. Э. Циолковскому.

Он разработал теорию полета тела переменной массы (ракеты) в однородном поле тяготения и рассчитал запасы топлива, необходимые для преодоления силы земного притяжения; основы теории жид¬костного реактивного двигателя, а также элементы его конструкции; теорию многоступенчатых ракет, причем предложил два варианта: параллельный (несколько реактивных двигателей работают одновременно) и последовательный (реактивные двигатели работают друг за другом). К. Э. Циолковский строго научно доказал возможность полета в космос с помощью ракет с жидкостным реактивным двигателем, предложил специальные траектории посадки космических аппаратов на Землю, выдвинул идею создания межпланетных орбитальных станций и подробно рассмотрел условия жизни и жизнеобеспечения на них. Технические идеи Циолковского находят применение при создании современной ракетно-космической техники. Движение с помощью реактивной струи по закону сохранения импульса лежит в основе гидрореактивного двигателя. В основе движения многих морских моллюсков (осьминогов, медуз, кальмаров, каракатиц) также лежит реактивный принцип.

Распространенные ошибки

1. Встречались абитуриенты, допускавшие грубую ошибку при объяснении принципа действия реактивного двигателя. Они утверждали, что движение реактивного самолета обусловлено взаимодействием выбрасываемых газов и воздуха: самолет действует на воздух, а воздух, согласно третьему закону Ньютона,- на самолет, в результате чего он движется. Это, конечно, неверно. ДЕйствительной причиной движения реактивного самолета является взаимодействие истекающих из сопла газов, которые образуются при сгорании топлива. За счет большого давления в камере сгорания эти газы приобретают некоторый импульс, поэтому, согласно закону сохранения импуьса, самолет получает такой же по модулю, но противоположный по направлению импульс. Так что самолет не отталкивается от воздуха. Напротив, атмосферный воздух является лишь помехой движению самолета.

2. Некоторый учащиеся не могут дать полный и правильный ответ на вопрос: в какиз случаях можно применять закон сохранения импульса. Полезно запомнить следующие критерии его применимости:

  1. система тел замкнута, т.е. на тела этой системы не действуют внешние силы;
  2. на тела системы действуют внешние силы, но их векторная сумма равна нулю
  3. система не замкнута, но сумма проекций всех внешних сил на какую-либо координатную ось равна нулю; тогда остается постоянной и сумма проекций импульсов всех тел системы на эту ось.
  4. время взаимодействия тел мало (например, время удара, выстрела, взрыва); в этом случае импульсаом внешних сил можно пренебречь и рассматривать систему как замкнутую.

На этом уроке все желающие смогут изучить тему «Импульс. Закон сохранения импульса». Вначале мы дадим определение понятию импульса. Затем определим, в чём заключается закон сохранения импульса - один из главных законов, соблюдение которого необходимо, чтобы ракета могла двигаться, летать. Рассмотрим, как он записывается для двух тел и какие буквы и выражения используются в записи. Также обсудим его применение на практике.

Тема: Законы взаимодействия и движения тел

Урок 24. Импульс. Закон сохранения импульса

Ерюткин Евгений Сергеевич

Урок посвящен теме «Импульс и «закон сохранения импульса». Чтобы запускать спутники, нужно строить ракеты. Чтобы ракеты двигались, летали, мы должны совершенно точно соблюдать законы, по которым эти тела будут двигаться. Самым главным законом в этом смысле является закон сохранения импульса. Чтобы перейти непосредственно к закону сохранения импульса, давайте сначала определимся с тем, что такое импульс .

называют произведение массы тела на его скорость: . Импульс - векторная величина, направлен он всегда в ту сторону, в которую направлена скорость. Само слово «импульс» латинское и переводится на русский язык как «толкать», «двигать». Импульс обозначается маленькой буквой , а единицей измерения импульса является .

Первым человеком, который использовал понятие импульс, был . Импульс он попытался использовать как величину, заменяющую силу. Причина такого подхода очевидна: измерять силу достаточно сложно, а измерение массы и скорости - вещь достаточно простая. Именно поэтому часто говорят, что импульс - это количество движения. А раз измерение импульса является альтернативой измерения силы, значит, нужно связать эти две величины.

Рис. 1. Рене Декарт

Эти величины - импульс и силу - связывает между собой понятие . Импульс силы записывается как произведение силы на время, в течение которого эта сила действует: импульс силы . Специального обозначения для импульса силы нет.

Давайте рассмотрим взаимосвязь импульса и импульса силы. Рассмотрим такую величину, как изменение импульса тела, . Именно изменение импульса тела равно импульсу силы. Таким образом, мы можем записать: .

Теперь перейдем к следующему важному вопросу - закону сохранения импульса . Этот закон справедлив для замкнутой изолированной системы.

Определение: замкнутой изолированной системой называют такую, в которой тела взаимодействуют только друг с другом и не взаимодействуют с внешними телами.

Для замкнутой системы справедлив закон сохранения импульса: в замкнутой системе импульс всех тел остается величиной постоянной.

Обратимся к тому, как записывается закон сохранения импульса для системы из двух тел: .

Эту же формулу мы можем записать следующим образом: .

Рис. 2. Суммарный импульс системы из двух шариков сохраняется после их столкновения

Обратите внимание: данный закон дает возможность, избегая рассмотрения действия сил, определять скорость и направление движения тел. Этот закон дает возможность говорить о таком важном явлении, как реактивное движение.

Вывод второго закона Ньютона

С помощью закона сохранения импульса и взаимосвязи импульса силы и импульса тела можно получить второй и третий законы Ньютона. Импульс силы равен изменению импульса тела: . Затем массу выносим за скобки, в скобках остается . Перенесем время из левой части уравнения в правую и запишем уравнение следующим образом: .

Вспомните, что ускорение определяется как отношение изменения скорости ко времени, в течение которого это изменение произошло. Если теперь вместо выражения подставить символ ускорения , то мы получаем выражение: - второй закон Ньютона.

Вывод третьего закона Ньютона

Запишем закон сохранения импульса: . Перенесем все величины, связанные с m 1 , в левую часть уравнения, а с m 2 - в правую часть: .

Вынесем массу за скобки: . Взаимодействие тел происходило не мгновенно, а за определенный промежуток. И этот промежуток времени для первого и для второго тел в замкнутой системе был величиной одинаковой: .

Разделив правую и левую часть на время t, мы получаем отношение изменения скорости ко времени - это будет ускорение первого и второго тела соответственно. Исходя из этого, перепишем уравнение следующим образом: . Это и есть хорошо известный нам третий закон Ньютона: . Два тела взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.

Список дополнительной литературы:

А так ли хорошо знакомо вам количество движения? // Квант. — 1991. — №6. — С. 40-41. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. школы. — М.: Просвещение, 1990. — С. 110-118 Кикоин А.К. Импульс и кинетическая энергия // Квант. — 1985. — № 5. — С. 28-29. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. - М.: Дрофа, 2002. - C. 284-307.

ВВЕДЕНИЕ

Данное учебное пособие имеет целью оказать учащимся помощь в систематизации, обобщении и углублении знаний по физике, освоении методов и приемов решения задач при подготовке к итоговой аттестации.

Данное пособие включает:

· перечень рассматриваемых вопросов;

· систематизированное изложение основного теоретического материала (ориентирует учащихся на усвоение понятий, законов, закономерностей и т.д.);

· вопросы и задания для самоконтроля (они подобраны и сформулированы так, чтобы учащиеся могли проверить уровень своих знаний и умений по теме; вопросы и задания постепенно усложняются, что требует от учащихся для ответа и решения глубокого понимания физических законов, явлений и процессов, привлечения знаний из различных разделов физики);

· методические рекомендации по решению задач (последовательность действий, которые необходимо выполнить при решении задач, - от анализа условия задачи (его краткой записи, выполнение рисунка, схемы, чертежа, поясняющих условие задачи) до анализа и оценки полученного ответа);

· примеры решения задач (на примере решения наиболее типовых задач демонстрируется процесс построения и использования алгоритма решения задач на основе методических рекомендаций).

В приложении приведены тест и вариант контрольной работы, которую учащиеся выполняют самостоятельно.

Роль законов сохранения в механике и в других разделах физики огромна. Во-первых, они позволяют сравнительно простым путем, не рассматривая действующие на тела силы, решать ряд практически важных задач. Законы сохранения позволяют по первоначальному состоянию системы, не зная подробностей взаимодействия тел, определить ее конечное состояние, например, зная скорости тел до взаимодействия, определить скорости этих тел после взаимодействия. Во-вторых, и это главное, открытые в механике законы сохранения играют в природе огромную роль, далеко выходящую за рамки самой механики. Даже в тех условиях, когда законы механики Ньютона применять нельзя, законы сохранения импульса, энергии и момента импульса не теряют значения. Они применимы как к телам обычных размеров, так и к космическим телам и элементарным частицам. Именно всеобщность законов сохранения, их применимость ко всем явлениям природы, а не только к механическим делает эти законы столь значительными.


ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ

Импульс тела. Импульс силы. Закон сохранения импульса. Реактив­ное движение. К. Э. Циолковский - основоположник учения о реактивном движении.

Механическая работа. Работа силы тяжести, силы упругости, силы трения. Мощность.

Механическая энергия. Кинетическая и потенциальная энергия. Потенциальная энергия тел при гравитационном взаимодействии. Потенциальная энергия упруго деформированного тела. Закон сохранения энергии в механике. Изменение энергии в незамкнутых системах. Закон сохранения и превращения энергии. Упругие и неупругие соударения тел.

Импульс тела

Импульсом тела (количеством движения) называется векторная физическая величина, равная произведению массы тела т на его скорость и направленная так же, как и скорость (рис. 1.1):

Рисунок 1.1 Импульс тела.

Единицей импульса тела в СИ является килограмм-метр на секунду

Пусть скорость тела под действием силы F изменяется за время Δt от v 0 до v. Согласно основному уравнению динамики

Учитывая, что

Произведение силы на время ее действия называется импульсом силы . Единицей импульса силы является ньютон-секунда (Н с).

Формула (1.2) выражает второй закон Ньютона, который может быть сформулирован следующим образом: изменение импульса тела равно им пульсу равнодействующей сил, действующих на данное тело.

Отсюда видно, что импульс тела изменяется под действием данной силы одинаково у тел любой массы, если только время действия сил одинаково .

Импульс тела, как и скорость, зависит от выбора системы отсчета. Ускорение движения тела одинаково во всех инерциальных системах отсчета. Следовательно, сила, а значит, согласно (1.2) и изменение импульса тела не зависит от выбора системы отсчета. В любой инерциальной системе отсчета изменение импульса тела одинаково.

Закон сохранения импульса

Рассмотрим систему трех тел (рис. 2.1).

На тела действуют внешние силы F 1 , F 2 , F 3 . Силы F l2 , F 21 ,F 13 ,F 31 , F 23 , F 32 - внутренние силы.

Рисунок 2.1. Система трех тел.

Запишем для каждого тела основное уравнение динамики:

Просуммировав эти уравнения и учитывая, что согласно третьему закону Ньютона

где - импульс системы тел.

Импульс системы тел равен геометрической сумме импульсов тел системы. Таким образом, импульс системы тел могут изменить только внешние силы. Если система замкнута, то

Равенство (2.1) выражает закон сохранения импульса (ЗСИ): импульс замкнутой системы тел сохраняется при любых взаимодействиях этих тел.

В случае незамкнутой системы ЗСИ используется, если:

а) геометрическая сумма внешних сил равна нулю;

б) проекция равнодействующей внешних сил на некоторое направление равна нулю, т.е. вдоль этого направления импульссистемы сохраняется;

в) время взаимодействия мало (выстрел, взрыв, удар и т.п.).

С помощью ЗСИ можно вычислять скорости тел, не зная значения сил, действующих на них. ЗСИ является всеобщим законом: он применим как к телам обычных размеров, так и к космическим телам и элементарным частицам.

Реактивное движение

Под реактивным движением понимают движение тела, возникающее при отделении от тела его части с некоторой относительно тела скоростью.

При этом появляется так называемая реактивная сила, толкающая тело в сторону, противоположную направлению движения отделяющейся от него части тела.

Реактивное движение совершает ракета (рис. 3.1). Основной частью реактивного двигателя является камера сгорания. В одной из ее стенок имеется отверстие - реактивное сопло, предназначенное для выхода газа, образующегося при сгорании топлива. Высокая температура и давление газа определяют большую скорость истечения его из сопла.

До работы двигателя импульс ракеты и горючего был равен нулю, следовательно, и после включения двигателей геометрическая сумма импульсов ракеты и истекающих газов равна нулю:

где m и - масса и скорость выбрасываемых газов, М и - масса и скорость ракеты.

Рисунок 3.1. Реактивное движение.

В проекции на ось Оу:

Скорость ракеты.

Эта формула справедлива при условии небольшого изменения массы ракеты.

Конечная скорость ракеты находится в соответствии с формулой Циолковского:

(3.1)

Где – отношение начальной и конечной масс ракеты.

Из нее следует, что конечная скорость ракеты может превышать относительную скорость истечения газов. Следовательно, ракета может быть разогнана до больших скоростей, необходимых для космических полетов. Но это может быть достигнуто только путем расхода значительной массы топлива, составляющей большую долю первоначальной массы ракеты. Например, для достижения первой космической скорости υ=7,9·10 3 м/с при =3·10 3 м/с (скорости истечения газов при сгорании топлива бывают порядка 2–4км/с) стартовая масса одноступенчатой ракеты должна примерно в 14раз превышать конечную массу. Для достижения конечной скорости υ 2 =4 отношение М 0 /М должно быть равно 50.

Значительное снижение стартовой массы ракеты может быть достигнуто при использовании многоступенчатых ракет , когда ступени ракеты отделяются по мере выгорания топлива. Из процесса последующего разгона ракеты исключаются массы контейнеров, в которых находилось топливо, отработавшие двигатели, системы управления ит.д. Именно по пути создания экономичных многоступенчатых ракет развивается современное ракетостроение.

Главная особенность реактивного движения состоит в том, что ракета может как ускоряться, так и тормозиться и поворачиваться без какого-либо взаимодействия с другими телами в отличие от всех других транспортных средств.

По принципу реактивного движения передвигаются осьминоги, кальмары, каракатицы, медузы.

Большая заслуга в развитии теории реактивного движения принадлежит К. Э. Циолковскому. Он разработал теорию полета тела переменной массы (ракеты) в однородном поле тяготения и рассчитал запасы топлива, необходимые для преодоления силы земного притяжения, основы теории жидкостного реактивного двигателя, а также элементы его конструкции, теорию многоступенчатых ракет, причем предложил два варианта: параллельный (несколько реактивных двигателей работает одновременно) и последовательный (реактивные двигатели работают друг за другом). К. Э. Циолковский строго научно доказал возможность полета в космос с помощью ракет с жидкостным реактивным двигателем, предложил специальные траектории посадки космических аппаратов на Землю, выдвинул идею создания межпланетных орбитальных станций, предложил идею автоматического управления ракетой.

Труды К. Э. Циолковского явились теоретической базой для развития современной ракетной техники.

Механическая работа

Действие силы, связанное с перемещением тела, характеризуется механической работой.

Механическая работа - это скалярная физическая величина, которая характеризует процесс перемещения тела под действием силы и равна произведению модуля силы на модуль перемещения и на косинус угла между ними:

В СИ единицей работы является джоуль (Дж).

Здесь F = const и а = const на всем перемещении (рис. 4.1).

Рисунок 4.1. Работа при перемещении тела.

Работа - величина скалярная и может быть как положительной, так и отрицательной (рисунок 4.2).

Рисунок 4.2. Зависимость работы от направления действия силы.

В общем случае сила переменна, путь криволинеен, угол α изменяется произвольно. Тогда для определения работы нужно мысленно разбитьвсе перемещение на такие малые перемещения , на которых можно считать силу и угол неизменными, и найти элементарные работы по формуле

Работа на всем перемещении будет равна алгебраической сумме элементарных работ и тем точнее, чем меньше каждое перемещение и чем больше их число:

и в пределе при Δг→0

Работа силы F на всей траектории выражается интегралом, вычисляемым вдоль траектории, где 1 и 2 - радиус-векторы начальной и конечной точек траектории.

Для вычисления этого интеграла надо знать зависимость F(r) вдоль траектории. Для определения работы можно воспользоваться графическим методом (рис. 4.3, а, б, в).

Рисунок 4.3. Графический метод для определения работы.

На графике F x = f(x) работа на перемещении Δr х = Δx численно равна площади заштрихованной фигуры. Работу можно представить как произведение средней силы на перемещение:

А = Δг.

В частности, если сила изменяется линейно от F 1 до F 2 на данном перемещении, то ее среднее значение

Если к движущемуся телу приложено несколько сил, то каждая из них совершает работу, а общая работа равна алгебраической сумме работ, совершаемых отдельными силами.

Работа силы тяжести

Пусть тело перемещается вертикально вниз из положения 1 в положение 2, определяемые соответственно высотами h 1 иh 2 над нулевым уровнем (рис. 5.1).

Рисунок 5.1. Работа силы тяжести.

Работа силы тяжести

При перемещении тела из положения 1 в положение 2 по траектории 1-3-2 работа силы тяжести

А = А 13 + А 32 .

A l 3 = mgΔr 1 cosα, A 32 = mgΔr 2 cos90° = 0.

Из рисунка 5.1 видно, что

Δr 1 cosα=h 1 -h 2 =>A=mg(h l ~h 2).

Это значит, что работа силы тяжести не зависит от формы траектории движения тела, а зависит только от перемещения центра тяжести тела по вертикали. На замкнутой траектории работа силы тяжести равна нулю.

Силы, работа которых не зависит от формы траектории, а на замкнутой траектории равна нулю, называются консервативными. Следовательно, сила тяжести - консервативная сила.

Работа силы упругости

Пусть тело, прикрепленное к пружине и находящееся на гладком стержне, перемещается из положения 1 в положение 2 (рис. 6.1).

Рисунок 6.1. Движение тела на пружине.

Сила упругости, действующая на тело со стороны деформированной пружины, не остается постоянной, а изменяется согласно закону Гука пропорционально абсолютному удлинению:

F 1 =kx 1 и F 2 = kx 2 .

Найдем работу силы упругости на этом перемещении по формуле

Более строгий вывод формулы для расчета работы силы упругости можно сделать, использовав метод интегрирования:

Можно показать, что работа силы упругости не зависит от формы траектории и на замкнутой траектории равна нулю. Она зависит только от взаимного положения частей тела. Сила упругости тоже консервативная сила.

Работа силы трения

Так как сила трения направлена противоположно перемещению (рис. 7.1), то работа силы трения будет

А тр = F TP Δг cos 180° = -F TP Δr.

Рисунок 7.1. Сила трения направлена противоположно движению тела.

Пусть тело перемещается из точки 1 в точку 2 по разным траекториям. Так как модули перемещений Δг 1 и (Δг 2 + Δг 3) неодинаковы (рис. 7.2), то сила трения совершает разные работы.

Рисунок 7.2. Перемещение тела по разным траекториям.

Таким образом, в отличие от силы тяжести и силы упругости работа силы трения зависит от формы траектории, по которой движется тело, и на замкнутой траектории не равна нулю. Работа силы трения необратимо превращает механическое движение тела в тепловое движение атомов и молекул.

Мощность

Различные машины и механизмы, выполняющие одинаковую работу, могут отличаться мощностью. Мощность характеризует быстроту совершения работы. Очевидно, что чем меньшее время требуется для выполнения данной работы, тем эффективнее работает машина, механизм и др.

При движении любого тела на него в общем случае действует несколько сил. Каждая сила совершает работу, и, следовательно, для каждой силы мы можем вычислить мощность.

Средняя мощность силы - скалярная физическая величина N, равная отношению работы А, совершаемой силой, к промежутку времени Δt, в течение которого она совершается:

В СИ единицей мощности является ватт (Вт).

Если тело движется прямолинейно и на него действует постоянная сила, то она совершает работу А = FΔrcosα. Поэтому мощность этой силы

где - проекция силы на направление движения.

По этой формуле можно рассчитывать и среднюю, и мгновенную мощности, подставляя значения средней или мгновенной скорости.

Мгновенная мощность - это мощность силы в данный момент времени.

Любой двигатель или механизм предназначены для выполнения определенной механической работы, которую называют полезной работой А п. Но любой машине приходится совершать большую работу, так как вследствие действия сил трения часть подводимой к машине энергии не может быть преобразована в механическую работу. Поэтому эффективность работы машины характеризуют коэффициентом полезного действия (КПД).

Коэффициент полезного действия η - это отношение полезной рабо­ты Ап, совершенной машиной, ко всей затраченной работе А 3 (подведенной энергии W):

где N n , N 3 - полезная и затраченная мощности соответственно.

КПД обычно выражают в процентах.

Механическая энергия

Механическое состояние тела (системы тел) определяется его положением относительно других тел (координатами) и его скоростью.

Если изменяется хотя бы одна из этих величин, то говорят об изменении механического состояния тела.

Состояние данной системы тел обязательно изменяется, если внешние силы совершают отличную от нуля работу.

Количественно механическое состояние системы и его изменение характеризуется механической энергией W.

Механическая энергия - это физическая величина, являющаяся функцией состояния системы и характеризующая способность системы совершать работу.

Изменение механической энергии ΔW равно работе приложенных к системе внешних сил:

Значение энергии системы в данном состоянии не зависит от пути перехода ее в это состояние.

Кинетическая энергия

Найдем, как энергия тел зависит от их скорости.

Пусть на тело массой m действуетсила F (это может быть одна сила или равнодействующая нескольких сил), направленная вдоль перемещения, и скорость тела изменяется от до (рис. 10.1).

Рисунок 10.1. Движение тела под действием силы.

Работа этой силы A = FΔr.

По второму закону Ньютона F = ma.

При равноускоренном движении

Следовательно,

Физическая величина

называется кинетической энергией.

Энергия, которой обладает тело вследствие своего движения, называется кинетической энергией .

A = W k 2 -W k 1 =A

теорема о кинетической энергии :

изменение кинетической энергии тела равно работе равнодействующей всех сил, действующих на тело.

Эта теорема справедлива независимо от того, какие силы действуют на тело: сила упругости, сила трения или сила тяжести.

Таким образом, кинетическая энергия тела равна работе, которую необходимо совершить, чтобы покоящемуся телу сообщить скорость.

Кинетическая энергия зависит от выбора системы отсчета.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16

Цели урока:

  1. образовательные : формирование понятий “импульс тела”, “импульс силы”; умения применять их к анализу явления взаимодействия тел в простейших случаях; добиться усвоения учащимися формулировки и вывода закона сохранения импульса;
  2. развивающие : формировать умения анализировать, устанавливать связи между элементами содержания ранее изученного материала по основам механики, навыки поисковой познавательной деятельности, способность к самоанализу;
  3. воспитательные : развитие эстетического вкуса учащихся, вызвать желание постоянно пополнять свои знания; поддерживать интерес к предмету.

Оборудование: металлические шарики на нитях, тележки демонстрационные, грузы.

Средства обучения: карточки с тестами.

Ход урока

1. Организационный этап (1мин)

2. Повторение изученного материала. (10 мин)

Учитель: Тему урока вы узнаете, разгадав небольшой кроссворд, ключевым словом, которого и будет тема нашего урока. (Разгадываем слева на право, слова записываем по очереди вертикально).

  1. Явление сохранения скорости постоянной при отсутствии внешних воздействий или при их компенсации.
  2. Явление изменения объема или формы тела.
  3. Сила, возникающая при деформации, стремящая вернуть тело в первоначальное положение.
  4. Английский ученый, современник Ньютона, установил зависимость силы упругости от деформации.
  5. Единица массы.
  6. Английский ученый, открывший основные законы механики.
  7. Векторная физическая величина, численно равная изменению скорости за единицу времени.
  8. Сила, с которой Земля притягивает к себе все тела.
  9. Сила, возникающая благодаря существованию сил взаимодействия между молекулами и атомами соприкасающихся тел.
  10. Мера взаимодействия тел.
  11. Раздел механики, в которой изучают закономерности механического движения материальных тел под действием приложенных к ним сил.

3. Изучение нового материала. (18 мин)

Ребята тема нашего урока “Импульс тела. Закон сохранения импульса”

Цели урока : усвоить понятие импульса тела, понятие замкнутой системы, изучить закон сохранения импульса, научится решать задачи на закон сохранения.

Сегодня на уроке мы с вами не только будем ставить опыты, но и доказывать их математически.

Зная основные законы механики, в первую очередь три закона Ньютона, казалось бы, можно решить любую задачу о движении тел. Ребята, я вам продемонстрирую опыты, а вы подумайте, можно ли в этих случаях используя только законы Ньютона решить задачи?

Проблемный эксперимент.

Опыт №1.Скатывание легкоподвижной тележки с наклонной плоскости. Она сдвигает тело, находящееся на ее пути.

Можно ли найти силу взаимодействия тележки и тела? (нет, так как столкновение тележки и тела кратковременное и силу их взаимодействия определить трудно).

Опыт №2. Скатывание нагруженной тележки. Сдвигает тело дальше.

Можно ли в данном случае найти силу взаимодействия тележки и тела?

Сделайте вывод: с помощью каких физических величин можно охарактеризовать движение тела?

Вывод: Законы Ньютона позволяют решать задачи связанные с нахождением ускорения движущегося тела, если известны все действующие на тело силы, т.е. равнодействующая всех сил. Но часто бывает очень сложно определить равнодействующую силу, как это было в наших случаях.

Если на вас катится игрушечная тележка, вы можете остановить ее носком ноги, а если на вас катится грузовик?

Вывод : для характеристики движения надо знать массу тела и его скорость.

Поэтому для решения задач используют еще одну важнейшую физическую величину - импульс тела.

Понятие импульса было введено в физику французским ученым Рене Декартом (1596-1650 г.), который назвал эту величину “количеством движения”: “Я принимаю, что во вселенной… есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает”.

Найдем взаимосвязь между действующей на тело силой, временем ее действия, и изменением скорости тела.

Пусть на тело массой m начинает действовать сила F. Тогда из второго закона Ньютона ускорение этого тела будет а .

Вспомните как читается 2 закон Ньютона?

Запишем закон в виде

С другой стороны:

Или Получили формулу второго закона Ньютона в импульсной форме.

Обозначим произведение через р:

Произведение массы тела на его скорость называется импульсом тела.

Импульс р – векторная величина. Он всегда совпадает по направлению с вектором скорости тела. Любое тело, которое движется, обладает импульсом.

Определение: импульс тела – это векторная физическая величина, равная произведению массы тела на его скорость и имеющая направление скорости.

Как любая физическая величина, импульс измеряется в определенных единицах.

Кто желает вывести единицу измерения для импульса? (Ученик у доски делает записи).

(р) = (кг м/с)

Вернемся к нашему равенству . В физике произведение силы на время действия называют импульсом силы.

Импульс силы показывает, как изменяется импульс тела за данное время.

Декарт установил закон сохранения количества движения, однако он не ясно представлял себе, что количество движения является векторной величиной. Понятие количества движения уточнил голландский физик и математик Гюйгенс, который, исследуя удар шаров, доказал, что при их соударении сохраняется не арифметическая сумма, а векторная сумма количества движения.

Эксперимент (на нитях подвешиваются два шарика)

Правый отклоняют и отпускают. Вернувшись в прежнее положение и ударившись о неподвижный шарик, он останавливается. При этом левый шарик приходит в движение и отклоняется практически на тот же угол, что и отклоняли правый шар.

Импульс обладает интересным свойством, которое есть лишь у немногих физических величин. Это свойство сохранения. Но закон сохранения импульса выполняется только в замкнутой системе.

Система тел называется замкнутой, если взаимодействующие между собой тела, не взаимодействуют с другими телами.

Импульс каждого из тел, составляющих замкнутую систему, может меняться в результате их взаимодействия друг с другом.

Векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел.

В этом заключается закон сохранения импульса.

Примеры: ружье и пуля в его стволе, пушка и снаряд, оболочка ракеты и топливо в ней.

Закон сохранения импульса.

Закон сохранения импульса выводится из второго и третьего законов Ньютона.

Рассмотрим замкнутую систему, состоящую из двух тел – шаров с массами m 1 и m 2 , которые движутся вдоль прямой в одном направлении со скоростью? 1 и? 2 . С небольшим приближением можно считать, что шары представляют собой замкнутую систему.

Из опыта видно, что второй шар движется с большей скоростью (вектор изображен более длинной стрелочкой). Поэтому он нагонит первый шар и они столкнуться. (Просмотр эксперимента с комментариями учителя).

Математический вывод закона сохранения

А сейчас мы с вами побудим “полководцами”, используя законы математики и физики сделаем математический вывод закона сохранения импульса.

5) При каких условиях выполняется этот закон?

6) Какую систему называют замкнутой?

7) Почему происходит отдача при выстреле из ружья?

5. Решение задач (10мин.)

№ 323 (Рымкевич).

Два неупругих тела, массы которых 2 и 6 кг, движутся навстечу друг другу со скоростями 2 м/с каждое. С какой скоростью и в каком направлении будут двигаться эти тела после удара?

Учитель комментирует рисунок к задаче.

7. Подведение итогов урока; домашнее задание (2 мин)

Домашнее задание: § 41, 42 упр. 8 (1, 2).

Литература:

  1. В. Я. Лыков. Эстетическое воспитание при обучении физике. Книга для учителя. -Москва “ПРОСВЯЩЕНИЕ”1986.
  2. В. А. Волков. Поурочные разработки по физике 10 класс. - Москва “ ВАКО”2006.
  3. Под редакцией профессора Б. И. Спасского. Хрестоматия по физике. -МОСКВА “ПРОСВЯЩЕНИЕ”1987.
  4. И. И. Мокрова. Поурочные планы по учебнику А. В. Перышкина “Физика. 9класс”. - Волгоград 2003.

Импульс тела – это векторная физическая величина, равная произведению массы тела на его скорость:

Обозначение – ​\(p \) ​, единицы измерения – (кг·м)/с .

Импульс тела – это количественная мера движения тела.
Направление импульса тела всегда совпадает с направлением скорости его движения.
Изменение импульса тела равно разности конечного и начального значений импульса тела:

где ​\(p_0 \) ​ – начальный импульс тела,
​\(p \) ​ – конечный импульс тела.

Если на тело действует нескомпенсированная сила, то его импульс изменяется. При этом изменение импульса тела равно импульсу подействовавшей на него силы.

Импульс силы – это количественная мера изменения импульса тела, на которое подействовала эта сила.

Обозначение – ​\(F\!\Delta t \) ​, единицы измерения - Н·с.
Импульс силы равен изменению импульса тела:

Направление импульса силы совпадает по направлению с изменением импульса тела.

Второй закон Ньютона (силовая форма):

Важно!
Следует всегда помнить, что совпадают направления векторов:

Силы и ускорения: ​\(\vec{F}\uparrow\uparrow\vec{a} \) ​;
импульса тела и скорости: \(\vec{p}\uparrow\uparrow\vec{v} \) ​;
изменения импульса тела и силы: \(\Delta\vec{p}\uparrow\uparrow\vec{F} \) ;
изменения импульса тела и ускорения: \(\Delta\vec{p}\uparrow\uparrow\vec{a} \) .

Импульс системы тел

Импульс системы тел равен векторной сумме импульсов тел, составляющих эту систему:

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которых мы изучаем, называется механической системой или просто системой .

Рассмотрим систему, состоящую из трех тел. На тела системы действуют внешние силы, а между телами действуют внутренние силы.
​\(F_1,F_2,F_3 \) ​ – внешние силы, действующие на тела;
\(F_{12}, F_{23}, F_{31}, F_{13}, F_{21}, F_{32} \) ​ – внутренние силы, действующие между телами.
Вследствие действия сил на тела системы их импульсы изменяются. Если за малый промежуток времени сила заметно не меняется, то для каждого тела системы можно записать изменение импульса в виде уравнения:

В левой части каждого уравнения стоит изменение импульса тела за малое время ​\(\Delta t \) ​.
Обозначим: ​\(v_0 \) ​ – начальные скорости тел, а ​\(v^{\prime} \) ​ – конечные скорости тел.
Сложим левые и правые части уравнений.

Но силы взаимодействия любой пары тел в сумме дают нуль.

Важно!
Импульс системы тел могут изменить только внешние силы, причем изменение импульса системы пропорционально сумме внешних сил и совпадает с ней по направлению. Внутренние силы, изменяя импульсы отдельных тел системы, не изменяют суммарный импульс системы.

Закон сохранения импульса

Закон сохранения импульса
Векторная сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы между собой:

Замкнутая система – это система, на которую не действуют внешние силы.
Абсолютно упругий удар – столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций.
При абсолютно упругом ударе взаимодействующие тела до и после взаимодействия движутся отдельно.

Закон сохранения импульса для абсолютно упругого удара:

Абсолютно неупругий удар – столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

Закон сохранения импульса для абсолютно неупругого удара:

Реактивное движение – это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-то его части.
Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.
Для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой, поэтому реактивное движение позволяет телу двигаться в безвоздушном пространстве.

Реактивные двигатели
Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Используются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолеты оснащены воздушно-ракетными двигателями.
Реактивные двигатели делятся на два класса:

  • ракетные;
  • воздушно-реактивные.

В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.

Ракетный двигатель на твердом топливе
При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Сила давления на переднюю стенку камеры больше, чем на заднюю, где находится сопло. Выходящие через сопло газы не встречают на своем пути стенку, на которую могли бы оказать давление. В результате появляется сила, толкающая ракету вперед.

Сопло – суженная часть камеры, служит для увеличения скорости истечения продуктов сгорания, что, в свою очередь, повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.

Ракетный двигатель на жидком топливе

В ракетных двигателях на жидком топливе в качестве горючего используют керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя – азотную кислоту, жидкий кислород, перекись водорода и пр.
Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания, где температура достигает 3000 0С и давление до 50 атм. В остальном работает так же, как и двигатель на твердом топливе.

Воздушно-реактивный двигатель

В носовой части находится компрессор, засасывающий и сжижающий воздух, который затем поступает в камеру сгорания. Жидкое горючее (керосин) попадает в камеру сгорания с помощью специальных форсунок. Раскаленные газы выходят через сопло, вращают газовую турбину, приводящую в движение компрессор.
Основное отличие воздушно-реактивных двигателей от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.

Алгоритм применения закона сохранения импульса к решению задач:

  1. Запишите краткое условие задачи.
  2. Определите характер движения и взаимодействия тел.
  3. Сделайте рисунок, на котором укажите направление векторов скоростей тел до и после взаимодействия.
  4. Выберите инерциальную систему отсчета с удобным для нахождения проекций векторов направлением координатных осей.
  5. Запишите закон сохранения импульса в векторной форме.
  6. Спроецируйте его на выбранные координатные оси (сколько осей, столько и уравнений в системе).
  7. Решите полученную систему уравнений относительно неизвестных величин.
  8. Выполните действия единицами измерения величин.
  9. Запишите ответ.

Работа силы

Механическая работа – это скалярная векторная величина, равная произведению модулей вектора силы, действующей на тело, вектора перемещения и косинуса угла между этими векторами.

Обозначение – ​\(A \) ​, единицы измерения – Дж (Джоуль).

1 Дж – это работа, которую совершает сила в 1 Н на пути в 1 м:

Механическая работа совершается, если под действием некоторой силы, направленной не перпендикулярно, тело перемещается на некоторое расстояние.

Зависимость механической работы от угла ​\(\alpha \) ​

  • \(\alpha=0^{\circ},\, \cos\alpha=1,\, A=FS,\,A>0; \)

  • \(0^{\circ}<\alpha<90^{\circ},\, A=FS\cos\alpha,\,A>0; \)

  • \(\alpha=90^{\circ},\, \cos\alpha=0,\, A=0; \)

  • \(90^{\circ}<\alpha<180^{\circ},\, A=FS\cos\alpha,\,A<0; \)


\(\alpha=180^{\circ},\, \cos\alpha=-1,\, A=-FS,\,A<0; \)

Геометрический смысл механической работы

На графике зависимости ​\(F=F(S) \) ​ работа силы численно равна площади фигуры, ограниченной графиком, осью перемещения и прямыми, параллельными оси силы.

Формулы для вычисления работы различных сил

Работа силы тяжести:

Работа силы упругости:

Коэффициент полезного действия механизма (КПД) - это физическая величина, равная отношению полезной работы, совершенной механизмом, ко всей затраченной при этом работе.
Обозначение – ​\(\eta \) ​, единицы измерения – %.

​\(A_{\mathit{пол.}} \) ​ – полезная работа – это та работа, которую нужно сделать;
​\(A_{\mathit{зат.}} \) – затраченная работа – это та работа, что приходится делать на самом деле.

Важно!
КПД любого механизма не может быть больше 100%.

Мощность

Мощность – это количественная мера быстроты совершения работы.

Обозначение – ​\(N \) ​, единицы измерения – Вт (Ватт).
Мощность равна отношению работы к времени, за которое она была совершена: .

1 Вт – это мощность, при которой за 1 с совершается работа в 1 Дж:

1 л. с. (лошадиная сила) = 735 Вт.

Связь между мощностью и скоростью равномерного движения:

Таким образом, мощность равна произведению модуля вектора силы на модуль вектора скорости и на косинус угла между направлениями этих векторов.

Важно!
Если интервал времени стремится к нулю, то выражение представляет собой мгновенную мощность, определяемую через мгновенную скорость.

Работа как мера изменения энергии

Если система тел может совершать работу, то она обладает энергией.

Работа и изменение кинетической энергии (теорема о кинетической энергии)

Если под действием силы тело совершило перемещение и вследствие этого его скорость изменилась, то работа силы равна изменению кинетической энергии.
Силы, работа которых не зависит от формы траектории, называются консервативными .

Работа и изменение потенциальной энергии тела, поднятого над землей

Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.

Работа и изменение потенциальной энергии упруго деформированного тела

Работа силы упругости равна изменению потенциальной энергии, взятому с противоположным знаком.

Кинетическая энергия

Кинетическая энергия – это энергия, которой обладает тело вследствие своего движения.

Обозначение – ​\(W_k (E_k) \) ​, единицы измерения – Дж.

Кинетическая энергия равна половине произведения массы тела на квадрат его скорости:

Важно!
Так как кинетическая энергия отдельного тела определяется его массой и скоростью, то она не зависит от того, взаимодействует ли это тело с другими телами или нет. Значение кинетической энергии зависит от выбора системы отсчета, как и значение скорости. Кинетическая энергия системы тел равна сумме кинетических энергий отдельных тел, входящих в эту систему.

Потенциальная энергия

Потенциальная энергия – это энергия взаимодействия тел или частей одного и того же тела.

Обозначение – ​\(W_p (E_p) \) ​, единицы измерения – Дж.

Потенциальная энергия тела, поднятого на некоторую высоту над землей, равна произведению массы тела, ускорения свободного падения и высоты, на которой он находится:

Потенциальная энергия упруго деформированного тела равна половине произведения жесткости на квадрат удлинения:

Важно!
Величина потенциальной энергии зависит от выбора нулевого уровня. Нулевым называется уровень, на котором потенциальная энергия равна нулю. Нулевой уровень выбирается произвольно, исходя из удобства решения задачи.

Полная механическая энергия – это энергия, равная сумме кинетической и потенциальной энергий.

Обозначение – ​\(W (E) \) ​, единицы измерения – Дж.

Закон сохранения механической энергии
В замкнутой системе тел, между которыми действуют только консервативные силы, механическая энергия сохраняется, т. е. не изменяется с течением времени:

Если между телами системы действуют кроме сил тяготения и упругости другие силы, например сила трения или сопротивления, действие которых приводит к превращению механической энергии в тепловую, то в такой системе тел закон сохранения механической энергии не выполняется.

Важно!
В случае, если кроме консервативных сил (тяжести, упругости, тяготения) существуют еще и неконсервативные силы, например сила трения, а также внешние силы, то

Теорема о кинетической энергии справедлива для сил любой природы:

Если на систему тел действуют неконсервативные и внешние силы, то изменение полной энергии равно сумме работ неконсервативных и внешних сил.

Закон сохранения и превращения энергии
Энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой или передается от одного тела к другому.

Основные формулы по теме «Законы сохранения в механике»