Искусственный ультрафиолет. Ультрафиолетовое излучение: применение, польза и вред

Ультрафиолетовое излучение Подготовил ученик 11 класса Юмаев Вячеслав

Ультрафиолетовое излучение - невидимое глазом электромагнитное излучение, занимающее область между нижней границей видимого спектра и верхней границей рентгеновского излучения. Длина волны УФ - излучения лежит в пределах от 100 до 400 нм (1 нм = 10 м). По классификации Международной комиссии по освещению (CIE) спектр УФ - излучения делится на три диапазона: UV-A - длинноволновое (315 - 400 нм.) UV-B - средневолновое (280 - 315 нм.) UV-C - коротковолновое (100 - 280 нм.) Вся область УФИ условно делится на: - ближнюю (400-200нм); - далёкую или вакуумную (200-10 нм).

Свойства: Высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека: загар, УФ- лучи инициируют процесс образования витамина Д, который необходим для усвоения организмом кальция и обеспечения нормального развития костного скелета, ультрафиолет активно влияет на синтез гормонов, отвечающих за суточный биологический ритм; но в больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза.

Спектр УФ излучения: линейчатое (атомы, ионы и легкие молекулы); состоит из полос (тяжёлые молекулы); Непрерывный спектр (возникает при торможении и рекомбинации электронов).

Открытие УФ излучения: Ближнее УФ излучение открыто в 1801 немецким учёным Н. Риттером и английским учёным У. Волластоном по фотохимическому действию этого излучения на хлористое серебро. Вакуумное УФ излучение обнаружено немецким учёным В. Шуманом при помощи построенного им вакуумного спектрографа с флюоритовой призмой и безжелатиновых фотопластинок. Он получил возможность регистрировать коротковолновое излучение до 130 нм. Н. Риттер У. Волластон

Особенности УФ излучения До 90 % этого излучения поглощается озоном атмосферы. С каждым увеличением высоты на 1000 м уровень УФ возрастает на 12 %

Применение: Медицина: применение УФ - излучения в медицине связано с тем, что оно обладает бактерицидным, мутагенным, терапевтическим (лечебным), антимитотическим, профилактическим действиями, дезинфекция; лазерная биомедицина Шоу-бизнес: Освещение, световые эффекты

Косметология: В косметологии ультрафиолетовое облучение широко применяется в соляриях для получения ровного красивого загара. Дефицит УФ лучей ведет к авитаминозу, снижению иммунитета, слабой работе нервной системы, появлению психической неустойчивости. Ультрафиолетовое излучение оказывает существенное воздействие на фосфорно- кальциевый обмен, стимулирует образование витамина D и улучшает все метаболические процессы в организме.

Пищевая промышленность: Обеззараживания воды, воздуха, помещений, тары и упаковки УФ излучением. Следует подчеркнуть, что использование УФИ как физического фактора воздействия на микроорганизмы может обеспечить обеззараживание среды обитания в очень высокой степени, например до 99,9%.

Криминалистика: Ученые разработали технологию, позволяющую обнаруживать малейшие дозы взрывчатых веществ. В приборе для обнаружения следов взрывчатых веществ используется тончайшая нить (она в две тысячи раз тоньше человеческого волоса), которая светится под воздействием ультрафиолетового излучения, но всякий контакт со взрывчаткой: тринитротолуолом или иными используемыми в бомбах взрывчатыми веществами, прекращает ее свечение. Прибор определяет наличие взрывчатых веществ в воздухе, в воде, на ткани и на коже подозреваемых в преступлении. Использование невидимых УФ-красок для защиты банковских карт и денежных знаков от подделки. На карту наносят невидимые в обычном свете изображения, элементы дизайна или делают светящейся в УФ-лучах всю карту.

Источники УФ излучения: излучается всеми твердыми телами, у которых t >1000 С, а также светящимися парами ртути; звезды (в т.ч. Солнце); лазерные установки; газоразрядные лампы с трубками из кварца (кварцевые лампы), ртутные; ртутные выпрямители

Защита от УФ излучения: Применение противосолнечных экранов: - химические (химические вещества и покровные кремы); - физические (различные преграды, отражающие, поглощающие или рассеивающие лучи). Специальная одежда (например, изготовленная из поплина). Для защиты глаз в производственных условиях используют светофильтры (очки, шлемы) из тёмно-зелёного стекла. Полную защиту от УФИ всех длин волн обеспечивает флинтглас (стекло, содержащее окись свинца) толщиной 2 мм.

Спаибо за внимание!

Солнце, как и другие звезды, излучает не только видимый свет - оно производит целый спектр электромагнитных волн, отличающихся частотой, длиной и количеством переносимой энергии. Этот спектр делится на диапазоны от радиации до радиоволн, и самым важным среди них является ультрафиолет, без которого невозможна жизнь. В зависимости от различных факторов УФ-излучение может приносить как пользу, так и вред.

Ультрафиолет - это участок электромагнитного спектра, находящийся между видимым и рентгеновским излучением и имеющий длину волны от 10 до 400 нм. Такое название он получил как раз из-за своего расположения - сразу за диапазоном, который воспринимается человеческим глазом как фиолетовый цвет.

Ультрафиолетовый диапазон измеряется в нанометрах и делится на подгруппы в соответствии с международным стандартом ISO:

  • ближний (длинноволновой) - 300−400 нм;
  • средний (средневолновой) - 200−300 нм;
  • дальний (коротковолновый) - 122−200 нм;
  • экстремальный - длина волны равна 10−121 нм.

В зависимости от того, к какой группе относится ультрафиолетовое излучение, свойства его могут изменяться. Так, подавляющая часть диапазона является невидимой для человека, но ближний ультрафиолет можно увидеть, если он имеет длину волны 400 нм. Такой фиолетовый свет испускают, например, диоды.

Поскольку разные диапазоны света отличаются количеством переносимой энергии и частотой, подгруппы значительно отличаются проникающей способностью. Например, при воздействии на человека ближние УФ-лучи блокируются кожей, а средневолновое излучение может проникнуть в клетки и вызвать мутации ДНК. Это свойство используется в биотехнологии для получения генномодифицированных организмов.

Как правило, на Земле можно встретиться только с ближним и средним ультрафиолетом: такое излучение поступает от Солнца, не блокируясь атмосферой, а также генерируется искусственным путем. Именно лучи 200−400 нм играют большую роль в развитии жизни, ведь с их помощью растения вырабатывают кислород из углекислого газа. Опасное же для живых организмов жесткое коротковолновое излучение не попадает к поверхности планеты благодаря озоновому слою, который частично отражает и поглощает фотоны.

Источники ультрафиолета

Природными генераторами электромагнитного излучения являются звезды: в процессе термоядерного синтеза, происходящего в центре звезды, создается полный спектр лучей. Соответственно, основная часть ультрафиолета на Земле поступает от Солнца. Интенсивность излучения, достигающего поверхности планеты, зависит от многих факторов:

  • толщина озонового слоя;
  • высота Солнца над горизонтом;
  • высота над уровнем моря;
  • состав атмосферы;
  • погодные условия;
  • коэффициент отражения излучения от поверхности Земли.

С солнечным ультрафиолетом связано множество мифов. Так, считается, что в пасмурную погоду нельзя загореть, однако, хоть облачность и влияет на интенсивность УФ-излучения, большая его часть способна проникать сквозь облака. В горах и зимой на уровне моря может показаться, что риск вреда от ультрафиолета минимален, но на самом деле он даже возрастает: на большой высоте интенсивность излучения увеличивается из-за разреженности воздуха, а снежный покров становится косвенным источником ультрафиолета, так как до 80% лучей отражаются от него.

Особенно осторожным нужно быть в солнечный, но холодный день: даже если тепло от Солнца не чувствуется, ультрафиолет есть всегда. Тепло и УФ-лучи находятся на противоположных концах видимого спектра и имеют разную длину волны. Когда инфракрасное излучение зимой проходит по касательной к Земле и отражается, ультрафиолет всегда достигает поверхности.

Естественное УФ-излучение имеет существенный недостаток - его невозможно контролировать. Поэтому для использования в медицине, санитарии, химии, косметологии и других сферах разрабатываются искусственные источники ультрафиолетового излучения. Необходимый диапазон электромагнитного спектра генерируется в них путем нагрева газов электрическим разрядом. Как правило, лучи испускаются парами ртути. Таким принципом действия характеризуются разные виды ламп:

  • люминесцентные - дополнительно производят видимый свет вследствие эффекта фотолюминесценции;
  • ртутно-кварцевые - излучают волны с длиной от 185 нм (жесткий ультрафиолет) до 578 нм (оранжевый цвет);
  • бактерицидные - имеют колбу из специального стекла, блокирующего лучи короче 200 нм, что не дает образовываться токсичному озону;
  • эксилампы - не имеют ртути, ультрафиолет излучается в общем диапазоне;
  • - благодаря эффекту электролюминесценции могут работать в любом узком диапазоне от до ультрафиолетового.

В научных исследованиях, экспериментах, биотехнологии используются специальные ультрафиолетовые . Источником излучения в них могут служить инертные газы, кристаллы или свободные электроны.

Таким образом, разные искусственные источники ультрафиолета генерируют излучение разных подтипов, что определяет их сферу применения. Лампы, работающие в диапазоне >300 нм, используются в медицине, <200 - для обеззараживания и т. д.

Сферы применения

Ультрафиолет способен ускорять некоторые химические процессы, например, синтез витамина D в коже человека, деградацию молекул ДНК и полимерных соединений. Кроме того, он вызывает эффект фотолюминесценции в некоторых веществах. Благодаря таким свойствам искусственные источники этого излучения широко применяются в самых разных сферах.

Медицина

В первую очередь в медицине нашло применение бактерицидное свойство ультрафиолетовой радиации. С помощью УФ-лучей подавляется рост патогенных микроорганизмов при ранениях, обморожениях, ожогах. Облучение крови применяется при отравлениях алкоголем, наркотическими веществами и медикаментами, воспалении поджелудочной железы, сепсисе, тяжелых инфекционных заболеваниях.

Облучение УФ-лампой улучшает состояние пациента при заболеваниях разных систем организма:

  • эндокринная - дефицит витамина D, или рахит, сахарный диабет;
  • нервная - невралгии разной этиологии;
  • опорно-двигательная - миозит, остеомиелит, остеопороз, артрит и другие заболевания суставов;
  • мочеполовая - аднексит;
  • респираторная;
  • болезни кожи - псориаз, витилиго, экзема.

Следует учитывать, что ультрафиолет не является основным средством лечения перечисленных заболеваний: облучение им используется как физиотерапевтическая процедура, положительно сказывающаяся на самочувствии больного. Она имеет ряд противопоказаний, поэтому применять ультрафиолетовую лампу без консультации с врачом нельзя.

Используется УФ-излучение и в психиатрии для лечения «зимней депрессии», при которой из-за уменьшения уровня естественного солнечного света снижается синтез мелатонина и серотонина в организме, что сказывается на работе ЦНС. Для этого применяются специальные люминесцентные лампы, излучающие полный спектр света от ультрафиолетового до инфракрасного диапазона.

Санитария

Наиболее полезным является применение ультрафиолетового излучения с целью дезинфекции. Для обеззараживания воды, воздуха и твердых поверхностей используются ртутно-кварцевые лампы низкого давления, генерирующие лучи с длиной волны 205−315 нм. Такая радиация лучше всего поглощается молекулами ДНК, что приводит к нарушению структуры генов микроорганизмов, из-за чего они перестают размножаться и быстро вымирают.

Ультрафиолетовое обеззараживание отличается отсутствием продолжительного действия: сразу после завершения обработки эффект спадает, и микроорганизмы вновь начинают размножаться. С одной стороны, это делает дезинфекцию менее эффективной, с другой - лишает ее способности негативно воздействовать на человека. УФ-облучение не может использоваться для полной обработки питьевой воды или жидкостей для хозяйственных нужд, но может служить дополнением к хлорированию.

Облучение средневолновым ультрафиолетом часто комбинируется с обработкой жестким излучением с длиной волны 185 нм. В этом случае кислород превращается в , ядовитый для патогенных организмов. Такой метод дезинфекции называется озонированием, и он имеет в несколько раз большую эффективность, чем обычное освещение УФ-лампой.

Химический анализ

Благодаря тому, что свет с разной длиной волны поглощается материей в разной степени, УФ-лучи могут использоваться для спектрометрии - метод определения состава вещества. Образец облучается генератором ультрафиолета с изменяющейся длиной волны, поглощает и отражает часть лучей, на основании чего строится график-спектр, уникальный для каждого вещества.

Эффект фотолюминесценции используется при анализе минералов, в состав которых входят вещества, способные светиться при облучении ультрафиолетом. Этот же эффект применяется для защиты документов: они помечаются специальной краской, которая испускает видимый свет под лампой черного света. Также при помощи люминесцентной краски можно определить наличие УФ-излучения.

Помимо прочего, УФ-излучатели используются в косметологии, например, для создания загара, сушки и в других процедурах, в полиграфии и реставрации, энтомологии, генной инженерии и т. д.

Негативное воздействие УФ-лучей на человека

Хотя УФ-лучи широко применяются для лечения заболеваний и обладают оздоровительным эффектом, возможно и вредное влияние ультрафиолетового излучения на организм человека. Все зависит от того, сколько энергии будет перенесено в живые клетки солнечной радиацией.

Наибольшей энергией обладают коротковолновые лучи (тип UVC); кроме того, они обладают наибольшей проникающей способностью и могут разрушить ДНК даже в глубоких тканях организма. Однако такое излучение полностью поглощается атмосферой. Среди лучей, достигающих поверхности, 90% приходится на длинноволновое (UVA) и 10% - на средневолновое (UVB) излучение.

Длительное воздействие лучей UVA или кратковременное облучение ультрафиолетом UVB приводит к получению достаточно большой дозы радиации, влекущей за собой печальные последствия:

  • ожоги кожи разной степени тяжести;
  • мутации клеток кожи, приводящие к ускорению старения и меланоме;
  • катаракту;
  • ожог роговой оболочки глаза.

Отсроченные повреждения - рак кожи и катаракта - могут развиваться в течение долгого времени; при этом излучение типа UVA может действовать в любое время года и в любую погоду. Поэтому защищаться от солнца следует всегда, в особенности людям с повышенной фоточувствительностью.

Защита от ультрафиолета

У человека есть естественная защита от ультрафиолетового излучения - меланин, содержащийся в клетках кожи, волосах, радужной оболочке глаза. Этот белок поглощает большую часть ультрафиолета, не давая ему воздействовать на другие структуры организма. Эффективность защиты зависит от цвета кожи, именно поэтому лучи UVA способствуют возникновению загара.

Однако при чрезмерном воздействии меланин перестает справляться с УФ-лучами. Чтобы солнечный свет не нанес вред, следует:

  • стараться оставаться в тени;
  • носить закрытую одежду;
  • защищать глаза специальными очками или контактными линзами, блокирующими УФ-излучение, но прозрачными для видимого света;
  • пользоваться защитными кремами, в состав которых входят минеральные или органические вещества, отражающие УФ-лучи.

Конечно, необязательно всегда использовать полный набор защитных средств. Следует ориентироваться на ультрафиолетовый индекс, описывающий наличие избыточного УФ-излучения у поверхности земли. Он может принимать значения от 1 до 11, а активная защита требуется при 8 баллах и более. Информацию об этом индексе можно узнать из прогноза погоды.

Таким образом, ультрафиолет - это тип электромагнитного излучения, который может приносить как пользу, так и вред. Важно помнить, что солнечные ванны оздоровляют и омолаживают организм только при умеренном применении; избыточное воздействие света может привести к серьезным проблемам со здоровьем.

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века в его труде. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть невооружённым глазом.

Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета.В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также актиническим излучением. Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля , Македонио Меллони и др.

Подтипы

Деградация полимеров и красителей

Сфера применения

Чёрный свет

Химический анализ

УФ - спектрометрия

УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс - длина волны, образует спектр . Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

Анализ минералов

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так: «Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала - флюорит и циркон - не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон - лимонно-жёлтым.» (с. 11).

Качественный хроматографический анализ

Хроматограммы, полученные методом ТСХ , нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

Ловля насекомых

Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Искусственный загар и «Горное солнце»

При определённых дозировках искусственный загар позволяет улучшить состояние и внешний вид кожи человека, способствует образованию витамина D . В настоящее время популярны фотарии, которые в быту часто называют соляриями .

Ультрафиолет в реставрации

Один из главных инструментов экспертов - ультрафиолетовое, рентгеновское и инфракрасное излучение. Ультрафиолетовые лучи позволяют определить старение лаковой пленки - более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более темными пятнами проступают отреставрированные участки и кустарно переписанные подписи. Рентгеновские лучи задерживаются наиболее тяжелыми элементами. В человеческом теле это костная ткань, а на картине - белила. Основой белил в большинстве случаев является свинец, в XIX веке стали применять цинк, а в XX-м - титан. Все это тяжелые металлы. В конечном счете, на пленке мы получаем изображение белильного подмалевка. Подмалевок - это индивидуальный «почерк» художника, элемент его собственной уникальной техники. Для анализа подмалевка используются базы рентгенограмм картин великих мастеров. Также эти снимки применяются для распознания подлинности картины.

Примечания

  1. ISO 21348 Process for Determining Solar Irradiances . Архивировано из первоисточника 23 июня 2012.
  2. Бобух, Евгений О зрении животных . Архивировано из первоисточника 7 ноября 2012. Проверено 6 ноября 2012.
  3. Советская энциклопедия
  4. В. К. Попов // УФН . - 1985. - Т. 147. - С. 587-604.
  5. А. К. Шуаибов, В. С. Шевера Ультрафиолетовый азотный лазер на 337,1 нм в режиме частых повторений // Украинский физический журнал . - 1977. - Т. 22. - № 1. - С. 157-158.
  6. А. Г. Молчанов

И фиолетовый), ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн λ 400-10 нм. Вся область ультрафиолетового излучения условно делится на ближнюю (400-200 нм) и далёкую, или вакуумную (200-10 нм); последнее название обусловлено тем, что ультрафиолетовое излучение этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.

Ближнее ультрафиолетовое излучение открыто в 1801 году немецким учёным Н. Риттером и английским учёным У. Волластоном по фотохимическому действию этого излучения на хлористое серебро. Вакуумное ультрафиолетовое излучение обнаружено немецким учёным В. Шуманом при помощи построенного им вакуумного спектрографа с флюоритовой призмой (1885-1903) и безжелатиновых фотопластинок. Он получил возможность регистрировать коротковолновое излучение до 130 нм. Английский учёный Т. Лайман, впервые построив вакуумный спектрограф с вогнутой дифракционной решёткой, регистрировал ультрафиолетовое излучение с длиной волны до 25 нм (1924). К 1927 году был изучен весь промежуток между вакуумным ультрафиолетовым излучением и рентгеновским излучением.

Спектр ультрафиолетового излучения может быть линейчатым, непрерывным или состоять из полос в зависимости от природы источника ультрафиолетового излучения (см. Спектры оптические). Линейчатым спектром обладает УФ-излучение атомов, ионов или лёгких молекул (например, H 2). Для спектров тяжёлых молекул характерны полосы, обусловленные электронно-колебательно-вращательными переходами молекул (см. Молекулярные спектры). Непрерывный спектр возникает при торможении и рекомбинации электронов (см. Тормозное излучение).

Оптические свойства веществ.

Оптические свойства веществ в ультрафиолетовой области спектра значительно отличаются от их оптических свойств в видимой области. Характерной чертой является уменьшение прозрачности (увеличение коэффициента поглощения) большинства тел, прозрачных в видимой области. Например, обычное стекло непрозрачно при λ < 320 нм; в более коротковолновой области прозрачны лишь увиолевое стекло, сапфир, фтористый магний, кварц, флюорит, фтористый литий и некоторые другие материалы. Наиболее далёкую границу прозрачности (105 нм) имеет фтористый литий. Для λ < 105 нм прозрачных материалов практически нет. Из газообразных веществ наибольшую прозрачность имеют инертные газы, граница прозрачности которых определяется величиной их ионизационного потенциала. Самую коротковолновую границу прозрачности имеет гелий - 50,4 нм. Воздух непрозрачен практически при λ < 185 нм из-за поглощения кислородом.

Коэффициент отражения всех материалов (в том числе металлов) уменьшается с уменьшением длины волны излучения. Например, коэффициент отражения свеженапылённого алюминия, одного из лучших материалов для отражающих покрытий в видимой области спектра, резко уменьшается при λ < 90 нм (рис. 1) . Отражение алюминия значительно уменьшается также вследствие окисления поверхности. Для защиты поверхности алюминия от окисления применяются покрытия из фтористого лития или фтористого магния. В области λ < 80 нм некоторые материалы имеют коэффициент отражения 10-30% (золото, платина, радий, вольфрам и др.), однако при λ < 40 нм и их коэффициент отражения снижается до 1% и меньше.

Источники ультрафиолетового излучения.

Излучение накалённых до 3000 К твёрдых тел содержит заметную долю ультрафиолетового излучения непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощное ультрафиолетовое излучение испускает плазма газового разряда. При этом в зависимости от разрядных условий и рабочего вещества может испускаться как непрерывный, так и линейчатый спектр. Для различных применений ультрафиолетового излучения промышленность выпускает ртутные, водородные, ксеноновые и другие газоразрядные лампы, окна которых (либо целиком колбы) изготовляют из прозрачных для ультрафиолетового излучения материалов (чаще из кварца). Любая высокотемпературная плазма (плазма электрических искр и дуг, плазма, образующаяся при фокусировке мощного лазерного излучения в газах или на поверхности твёрдых тел, и так далее) является мощным источником ультрафиолетового излучения. Интенсивное ультрафиолетовое излучение непрерывного спектра испускают электроны, ускоренные в синхротроне (синхротронное излучение). Для ультрафиолетовой области спектра разработаны также оптические квантовые генераторы (лазеры). Наименьшую длину волны имеет водородный лазер (109,8 нм).

Естественные источники ультрафиолетового излучения - Солнце, звёзды, туманности и другие космические объекты. Однако лишь длинноволновая часть ультрафиолетового излучения (λ > 290 нм) достигает земной поверхности. Более коротковолновое ультрафиолетовое излучение поглощается озоном, кислородом и другими компонентами атмосферы на высоте 30-200 км от поверхности Земли, что играет большую роль в атмосферных процессах. Ультрафиолетовое излучение звёзд и других космических тел, кроме поглощения в земной атмосфере, в интервале 91,2-20 нм практически полностью поглощается межзвёздным водородом.

Приёмники ультрафиолетового излучения.

Для регистрации ультрафиолетового излучения при λ > 230 нм используются обычные фотоматериалы. В более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приёмники, использующие способность ультрафиолетового излучения вызывать ионизацию и фотоэффект: фотодиоды, ионизационные камеры, счётчики фотонов, фотоумножители и др. Разработан также особый вид фотоумножителей - каналовые электронные умножители, позволяющие создавать микроканаловые пластины. В таких пластинах каждая ячейка является каналовым электронным умножителем размером до 10 мкм. Микроканаловые пластины позволяют получать фотоэлектрические изображения в ультрафиолетовом излучении и объединяют преимущества фотографических и фотоэлектрических методов регистрации излучения. При исследовании ультрафиолетового излучения также используют различные люминесцирующие вещества, преобразующие ультрафиолетовое излучение в видимое. На этой основе созданы приборы для визуализации изображений в ультрафиолетовом излучении.

Применение ультрафиолетового излучения.

Изучение спектров испускания, поглощения и отражения в УФ-области позволяет определять электронную структуру атомов, ионов, молекул, а также твёрдых тел. УФ-спектры Солнца, звёзд и др. несут информацию о физических процессах, происходящих в горячих областях этих космических объектов (см. Ультрафиолетовая спектроскопия, Вакуумная спектроскопия). На фотоэффекте, вызываемом ультрафиолетовым излучением, основана фотоэлектронная спектроскопия. Ультрафиолетовое излучение может нарушать химические связи в молекулах, в результате чего могут происходить различные химические реакции (окисление, восстановление, разложение, полимеризация и так далее, см. Фотохимия). Люминесценция под действием ультрафиолетового излучения используется при создании люминесцентных ламп, светящихся красок, в люминесцентном анализе и люминесцентной дефектоскопии. Ультрафиолетовое излучение применяется в криминалистике для установления идентичности красителей, подлинности документов и тому подобное. В искусствоведении ультрафиолетовое излучение позволяет обнаружить на картинах не видимые глазом следы реставраций (рис. 2) . Способность многих веществ к избирательному поглощению ультрафиолетового излучения используется для обнаружения в атмосфере вредных примесей, а также в ультрафиолетовой микроскопии.

Мейер А., Зейтц Э., Ультрафиолетовое излучение, пер. с нем., М., 1952; Лазарев Д. Н., Ультрафиолетовая радиация и ее применение, Л. - М., 1950; Samson I. A. R., Techniques of vacuum ultraviolet spectroscopy, N. Y. - L. - Sydney, ; Зайдель А. Н., Шрейдер Е. Я., Спектроскопия вакуумного ультрафиолета, М., 1967; Столяров К. П., Химический анализ в ультрафиолетовых лучах, М. - Л., 1965; Бейкер А., Беттеридж Д., Фотоэлектронная спектроскопия, пер. с англ., М., 1975.

Рис. 1. Зависимости коэффициента отражения r слоя алюминия от длины волны.

Рис. 2. Спектры действия ультр. изл. на биообъекты.

Рис. 3. Выживаемость бактерий в зависимости от дозы ультрафиолетового излучения.

Биологическое действие ультрафиолетового излучения.

При действии на живые организмы ультрафиолетовое излучение поглощается верхними слоями тканей растений или кожи человека и животных. В основе биологического действия ультрафиолетового излучения лежат химические изменения молекул биополимеров. Эти изменения вызываются как непосредственным поглощением ими квантов излучения, так и (в меньшей степени) образующимися при облучении радикалами воды и других низкомолекулярных соединений.

На человека и животных малые дозы ультрафиолетового излучения оказывают благотворное действие - способствуют образованию витаминов группы D (см. Кальциферолы), улучшают иммунобиологические свойства организма. Характерной реакцией кожи на ультрафиолетовое излучение является специфическое покраснение - эритема (максимальным эритемным действием обладает ультрафиолетовое излучение с λ = 296,7 нм и λ = 253,7 нм), которая обычно переходит в защитную пигментацию (загар). Большие дозы ультрафиолетового излучения могут вызывать повреждения глаз (фотоофтальмию) и ожог кожи. Частые и чрезмерные дозы ультрафиолетового излучения в некоторых случаях могут оказывать канцерогенное действие на кожу.

В растениях ультрафиолетовое излучение изменяет активность ферментов и гормонов, влияет на синтез пигментов, интенсивность фотосинтеза и фотопериодической реакции. Не установлено, полезны ли и тем более необходимы ли для прорастания семян, развития проростков и нормальной жизнедеятельности высших растений малые дозы ультрафиолетового излучения. Большие дозы ультрафиолетового излучения, несомненно, неблагоприятны для растений, о чём свидетельствуют и существующие у них защитные приспособления (например, накопление определённых пигментов, клеточные механизмы восстановления от повреждений).

На микроорганизмы и культивируемые клетки высших животных и растений ультрафиолетовое излучение оказывает губительное и мутагенное действие (наиболее эффективно ультрафиолетовое излучения с λ в пределах 280-240 нм). Обычно спектр летального и мутагенного действия ультрафиолетового излучения примерно совпадает со спектром поглощения нуклеиновых кислот - ДНК и РНК (рис. 3, А) , в некоторых случаях спектр биологического действия близок к спектру поглощения белков (рис. 3, Б) . Основная роль в действии ультрафиолетового излучения на клетки принадлежит, по-видимому, химическим изменениям ДНК: входящие в её состав пиримидиновые основания (главным образом тимин) при поглощении квантов ультрафиолетовое излучение образуют димеры, которые препятствуют нормальному удвоению (репликации) ДНК при подготовке клетки к делению. Это может приводить к гибели клеток или изменению их наследственных свойств (мутациям). Определённое значение в летальном действии ультрафиолетового излучения на клетки имеют также повреждение биолеских мембран и нарушение синтеза различных компонентов мембран и клеточной оболочки.

Большинство живых клеток может восстанавливаться от вызываемых ультрафиолетовым излучением повреждений благодаря наличию у них систем репарации. Способность восстанавливаться от повреждений, вызываемых ультрафиолетовым излучением, возникла, вероятно, на ранних этапах эволюции и играла важную роль в выживании первичных организмов, подвергавшихся интенсивному солнечному ультрафиолетовому облучению.

По чувствительности к ультрафиолетовому излучению биологические объекты различаются очень сильно. Например, доза ультрафиолетового излучения, вызывающая гибель 90% клеток, для разных штаммов кишечной палочки равна 10, 100 и 800 эрг/мм 2 , а для бактерий Micrococcus radiodurans - 7000 эрг/мм 2 (рис. 4, А и Б) . Чувствительность клеток к ультрафиолетовому излучению в большой степени зависит также от их физиологического состояния и условий культивирования до и после облучения (температура, состав питательной среды и др.). Сильно влияют на чувствительность клеток к ультрафиолетовому излучению мутации некоторых генов. У бактерий и дрожжей известно около 20 генов, мутации которых повышают чувствительность к ультрафиолетовому излучению. В ряде случаев такие гены ответственны за восстановление клеток от лучевых повреждений. Мутации других генов нарушают синтез белка и строение клеточных мембран, тем самым повышая радиочувствительность негенетических компонентов клетки. Мутации, повышающие чувствительность к ультрафиолетовому излучению, известны и у высших организмов, в том числе у человека. Так, наследственное заболевание - пигментная ксеродерма обусловлено мутациями генов, контролирующих темновую репарацию.

Генетические последствия облучения ультрафиолетовым излучением пыльцы высших растений, клеток растений и животных, а также микроорганизмов выражаются в повышении частот мутирования генов, хромосом и плазмид. Частота мутирования отдельных генов, при действии высоких доз ультрафиолетового излучения, может повышаться в тысячи раз по сравнению с естественным уровнем и достигает нескольких процентов. В отличие от генетического действия ионизирующих излучений, мутации генов под влиянием ультрафиолетового излучения возникают относительно чаще, чем мутации хромосом. Благодаря сильному мутагенному эффекту ультрафиолетовое излучение широко используют как в генетических исследованиях, так и в селекции растений и промышленных микроорганизмов, являющихся продуцентами антибиотиков, аминокислот, витаминов и белковой биомассы. Генетическое действие ультрафиолетового излучения могло играть существенную роль в эволюции живых организмов. О применении ультрафиолетового излучения в медицине см. Светолечение.

Самойлова К. А., Действие ультрафиолетовой радиации на клетку, Л., 1967; Дубров А. П, Генетические и физиологические эффекты действия ультрафиолетовой радиации на высшие растения, М., 1968; Галанин Н. Ф., Лучистая энергия и ее гигиеническое значение, Л., 1969; Смит К., Хэнеуолт Ф., Молекулярная фотобиология, пер. с англ., М., 1972; Шульгин И. А., Растение и солнце, Л., 1973; Мясник М. Н., Генетический контроль радиочувствительности бактерий, М., 1974.


Ультрафиолет поражает именно живые клетки, не оказывая воздействие на химический состав воды и воздуха, что исключительно выгодно отличает его от всех химических способов дезинфекции и обеззараживания воды.

Достижения последних лет в светотехнике и электротехнике позволяют обеспечить высокую степень надежности обеззараживания воды ультрафиолетовыми лучами.

Что это за излучение

Ультрафиолетовое излучение, ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн 400-10 нм. Вся область УФ-излучения условно делится на ближнюю (400-200 нм) и далёкую, или вакуумную (200-10 нм); последнее название обусловлено тем, что УФ-излучение этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.

Естественные источники УФ-излучения - Солнце, звёзды, туманности и др. космические объекты. Однако лишь длинноволновая часть УФ-излучения - 290 нм достигает земной поверхности. Более коротковолновое УФ-излучение поглощается озоном, кислородом и др. компонентами атмосферы на высоте 30-200 км от поверхности Земли, что играет большую роль в атмосферных процессах.

Искусственные источники УФ-излучения. Для различных применений УФ-излучения промышленность выпускает ртутные, водородные, ксеноновые и др. газоразрядные лампы, окна которых (либо целиком колбы) изготовляют из прозрачных для УФ-излучения материалов (чаще из кварца). Любая высокотемпературная плазма (плазма электрических искр и дуг, плазма, образующаяся при фокусировке мощного лазерного излучения в газах или на поверхности твёрдых тел, и т.д.) является мощным источником УФ-излучения.

Несмотря на то, что ультрафиолет нам дан самой природой, он небезопасен

Ультрафиолет бывает трех типов: «А»; «B»; «С». Озоновый слой предотвращает попадание на поверхность земли Ультрафиолета «С». Свет в спектре ультрафиолета «А» имеет длину волн от 320 до 400 нм, свет в спектре ультрафиолет «В» имеет длину волн от 290 до 320 нм. УФ-излучение обладает энергией, достаточной для воздействия на химические связи, в том числе и в живых клетках.

Энергия ультрафиолетовой компоненты солнечного света вызывает повреждения микроорганизмов на клеточном и генетическом уровнях, тот же самый ущерб наносится людям, но он ограничен кожей и глазами. Солнечные ожоги вызываются воздействием ультрафиолета «В». Ультрафиолет «А» проникает гораздо глубже, чем ультрафиолет «В» и способствует преждевременному старению кожи. Кроме того, воздействие ультрафиолета «А» и «В» приводит к раку кожи.

Из истории ультрафиолетовых лучей

Бактерицидное действие ультрафиолетовых лучей было обнаружено около 100 лет назад. Первые лабораторные испытания УФИ в 1920х годах были настолько многообещающими, что полное уничтожение воздушно-капельных инфекций казалось возможным в самое ближайшее время. УФИ стало активно применяться с 1930х годов и в 1936 г. было впервые использовано для стерилизации воздуха в хирургической операционной комнате. В 1937 г. первое применение УФИ в вентиляционной системе одной из американских школ впечатляюще снизило уровень заболеваемости учащихся корью и другими инфекциями. Тогда казалось, что найдено замечательное средство для борьбы с воздушно-капельными инфекциями. Однако, дальнейшее изучение УФИ и опасных побочных действий серьезно сузило возможности его использования в присутствии людей.

Сила проникновения ультрафиолетовых лучей невелика и распространяются они только по прямой, т.е. в любом рабочем помещении образуется множество затенённых зон, которые не подвержены бактерицидной обработке. По мере удаления от источника ультрафиолетого излучения биоцидность его действия резко снижается. Действие лучей ограничивается поверхностью облучаемого предмета, и его чистота имеет большое значение.

Бактерицидное действие ультрафиолета

Обеззараживающий эффект УФ излучения, в основном, обусловлен фотохимическими реакциями, в результате которых происходят необратимые повреждения ДНК. Помимо ДНК ультрафиолет действует и на другие структуры клеток, в частности, на РНК и клеточные мембраны. Ультрафиолет как высокоточное оружие поражает именно живые клетки, не оказывая воздействие на химический состав среды, что имеет место для химических дезинфектантов. Последнее свойство исключительно выгодно отличает его от всех химических способов дезинфекции.

Применение ультрафиолета

Ультрафиолет используется в настоящее время в различных областях: медицинских учреждениях (больницы, поликлиники, госпитали); пищевой промышленности (продукты, напитки); фармацевтической промышленности; ветеринарии; для обеззараживания питьевой, оборотной и сточной воды.

Современные достижения свето- и электротехники обеспечили условия для создания крупных комплексов УФ-обеззараживания. Широкое внедрение УФ-технологии в муниципальные и промышленные системы водоснабжения позволяют обеспечить эффективное обеззараживание (дезинфекцию) как питьевой воды перед подачей в сети горводопровода, так и сточных вод перед их выпуском в водоемы. Это позволяет исключить применение токсичного хлора, существенно повысить надежность и безопасность систем водоснабжения и канализации в целом.

Обеззараживание воды ультрафиолетом

Одной из актуальных задач при обеззараживании питьевой воды, а также промышленных и бытовых стоков после их осветления (биоочистки) является применение технологии, не использующей химические реагенты, т. е. технологии, не приводящей к образованию в процессе обеззараживания токсичных соединений (как в случае применения соединений хлора и озонирования) при одновременном полном уничтожении патогенной микрофлоры.

Различают три участка спектра ультрафиолетового излучения, имеющего различное биологическое воздействие. Слабое биологическое воздействие имеет ультрафиолетовое излучение с длиной волны 390-315 нм. Противорахитичным действием обладают УФ-лучи в диапазоне 315-280 нм, а ультрафиолетовое излучение с длиной волны 280-200 нм обладает способностью убивать микроорганизмы.

Ультрафиолетовые лучи длиной волн 220-280 им действуют на бактерии губительно, причем максимум бактерицидного действия соответствует длине волн 264 нм. Данное обстоятельство используется в бактерицидных установках, предназначенных для обеззараживания в основном подземных вод. Источником ультрафиолетовых лучей является ртутно-аргонная или ртутно-кварцевая лампа, устанавливаемая в кварцевом чехле в центре металлического корпуса. Чехол защищает лампу от контакта с водой, но свободно пропускает ультрафиолетовые лучи. Обеззараживание происходит во время протекания воды в пространстве между корпусом и чехлом при непосредственном воздействии ультрафиолетовых лучей на микробы.

Оценка бактерицидного действия производится в единицах, называемых бактами (б). Для обеспечения бактерицидного эффекта ультрафиолетового облучения достаточно примерно 50 мкб мин/см2. УФ-облучение наиболее перспективный метод обеззараживания воды с высокой эффективностью по отношению к патогенным микроорганизмам, не приводящий к образованию вредных побочных продуктов, чем иногда грешит озонирование.

УФ-облучение идеально для обеззараживания артезианских вод

Точка зрения, что подземные воды считаются свободными от микробных загрязнений в результате фильтрации воды через почву, не совсем верна. Исследования показали, что подземные воды свободны от крупных микроорганизмов, таких как протоза или гельминты, но более мелкие микроорганизмы, например, вирусы, могут проникать сквозь почву в подземные источники воды. Даже если бактерии не обнаружены в воде, оборудование для обеззараживания должно служить барьером от сезонных или аварийных заражений.

УФ-облучение должно применяться для обеспечения обеззараживания воды до нормативного качества по микробиологическим показателям, при этом необходимые дозы выбираются на основании требуемого снижения концентрации патогенных и индикаторных микроорганизмов.

УФ-облучение не образует побочных продуктов реакции, его доза может быть увеличена до значений, обеспечивающих эпидемиологическую безопасность, как по бактериям, так и по вирусам. Известно, что УФ-излучение действует на вирусы намного эффективнее, чем хлор, поэтому применение ультрафиолета при подготовке питьевой воды позволяет, в частности, во многом решить проблему удаления вирусов гепатита А, которая не всегда решается при традиционной технологии хлорирования.

Использование УФ-облучения в качестве обеззараживания рекомендуется для воды, уже прошедшей очистку по цветности, мутности и содержанию железа. Эффект обеззараживания воды контролируют, определяя общее число бактерий в 1 см3 воды и количество индикаторных бактерий группы кишечной палочки в 1 л воды после ее обеззараживания.

На сегодняшний день широкое распространение получили УФ-лампы проточного типа. Основным элементом данной установки является блок облучателей состоящий из ламп УФ-спектра в количестве, определяемом необходимой производительностью по обработанной воде. Внутри лампа имеет полость для протока. Контакт с УФ-лучами происходит через специальные окошечки внутри лампы. Корпус установки выполнен из металла, защищающего от проникновения лучей в окружающую среду.

Вода, подающаяся на установку должна соответствовать следующим требованиям:


  • общее содержание железа – не более 0,3 мг/л, марганца – 0,1 мг/л;

  • содержание сероводорода – не более 0,05 мг/л;

  • мутность – не более 2 мг/л по каолину;

  • цветность – не более 35 град.

Метод ультрафиолетового обеззараживания имеет следующие преимущества по отношению к окислительным обеззараживающим методам (хлорирование, озонирование):


  • УФ облучение летально для большинства водных бактерий, вирусов, спор и протозоа. Оно уничтожает возбудителей таких инфекционных болезней, как тиф, холера, дизентерия, вирусный гепатит, полиомиелит и др. Применение ультрафиолета позволяет добиться более эффективного обеззараживания, чем хлорирование, особенно в отношении вирусов;

  • обеззараживание ультрафиолетом происходит за счет фотохимических реакций внутри микроорганизмов, поэтому на его эффективность изменение характеристик воды оказывает намного меньшее влияние, чем при обеззараживании химическими реагентами. В частности, на воздействие ультрафиолетового излучения на микроорганизмы не влияют рН и температура воды;

  • в обработанной ультрафиолетовым излучением воде не обнаруживаются токсичные и мутагенные соединения, оказывающие негативное влияние на биоценоз водоемов;

  • в отличие от окислительных технологий в случае передозировки отсутствуют отрицательные эффекты. Это позволяет значительно упростить контроль за процессом обеззараживания и не проводить анализы на определение содержания в воде остаточной концентрации дезинфектанта;

  • время обеззараживания при УФ облучении составляет 1-10 секунд в проточном режиме, поэтому отсутствует необходимость в создании контактных емкостей;

  • достижения последних лет в светотехнике и электротехнике позволяют обеспечить высокую степень надежности УФ комплексов. Современные УФ лампы и пускорегулирующая аппаратура к ним выпускаются серийно, имеют высокий эксплуатационный ресурс;

  • для обеззараживания ультрафиолетовым излучением характерны более низкие, чем при хлорировании и, тем более, озонировании эксплуатационные расходы. Это связано со сравнительно небольшими затратами электроэнергии (в 3-5 раз меньшими, чем при озонировании); отсутствием потребности в дорогостоящих реагентах: жидком хлоре, гипохлорите натрия или кальция, а также отсутствием необходимости в реагентах для дехлорирования;

  • отсутствует необходимость создания складов токсичных хлорсодержащих реагентов, требующих соблюдения специальных мер технической и экологической безопасности, что повышает надежность систем водоснабжения и канализации в целом;

  • ультрафиолетовое оборудование компактно, требует минимальных площадей, его внедрение возможно в действующие технологические процессы очистных сооружений без их остановки, с минимальными объемами строительно-монтажных работ.