Из чего состоит ядерный реактор. Типы ядерных реакторов

Ядерный (атомный) реактор
Nuclear reactor

Ядерный (атомный) реактор – установка, в которой осуществляется самоподдерживающаяся управляемая цепная ядерная реакция деления. Ядерные реакторы используются в атомной энергетике и в исследовательских целях. Основная часть реактора – его активная зона, где происходит деление ядер и выделяется ядерная энергия. Активная зона, имеющая обычно форму цилиндра объёмом от долей литра до многих кубометров, содержит делящееся вещество (ядерное топливо) в количестве, превышающем критическую массу. Ядерное топливо (уран, плутоний) размещается, как правило, внутри тепловыделяющих элементов (ТВЭЛов), количество которых в активной зоне может достигать десятков тысяч. ТВЭЛы сгруппированы в пакеты по несколько десятков или сотен штук. Активная зона в большинстве случаев представляет собой совокупность ТВЭЛов погружённых в замедляющую среду (замедлитель) – вещество, за счёт упругих соударений с атомами которого энергия нейтронов, вызывающих и сопровождающих деление, снижается до энергий теплового равновесия со средой. Такие “тепловые” нейтроны обладают повышенной способностью вызывать деление. В качестве замедлителя обычно используется вода (в том числе и тяжёлая, D 2 О) и графит. Активную зону реактора окружает отражатель из материалов, способных хорошо рассеивать нейтроны. Этот слой возвращает вылетающие из активной зоны нейтроны обратно в эту зону, повышая скорость протекания цепной реакции и снижая критическую массу. Вокруг отражателя размещают радиационную биологическую защиту из бетона и других материалов для снижения излучения за пределами реактора до допустимого уровня.
В активной зоне в результате деления освобождается в виде тепла огромная энергия. Она выводится из активной зоны с помощью газа, воды или другого вещества (теплоносителя), которое постоянно прокачивается через активную зону, омывая ТВЭЛы. Это тепло может быть использовано для создания горячего пара, вращающего турбину электростанции.
Для управления скоростью протекания цепной реакции деления применяют регулирующие стержни из материалов, сильно поглощающих нейтроны. Введение их в активную зону снижает скорость цепной реакции и при необходимости полностью останавливает её, несмотря на то, что масса ядерного топлива превышает критическую. По мере извлечения регулирующих стержней из активной зоны поглощение нейтронов уменьшается, и цепная реакция может быть доведена до стадии самоподдерживающейся.
Первый реактор был пущен в США в 1942 г. В Европе первый реактор был пущен в 1946 г. в СССР.

Атомная электроэнергетика – современный и быстро развивающийся способ добычи электричества. А вы знаете, как устроены атомные станции? Каков принцип работы АЭС? Какие типы ядерных реакторов сегодня существуют? Постараемся детально рассмотреть схему работы АЭС, вникнуть в устройство ядерного реактора и узнать о том, насколько безопасен атомный способ добычи электроэнергии.

Любая станция – это закрытая зона вдалеке от жилого массива. На ее территории находятся несколько зданий. Самое главное сооружение – здание реактора, рядом с ним расположен машинный зал, из которого реактором управляют, и здание безопасности.

Схема невозможна без ядерного реактора. Атомный (ядерный) реактор – это устройство АЭС, которое призвано организовать цепную реакцию деления нейтронов с обязательным выделением энергии при этом процессе. Но каков принцип работы АЭС?

Вся реакторная установка помещается в здание реактора, большую бетонную башню, которая скрывает реактор и в случае аварии удержит в себе все продукты ядерной реакции. Эту большую башню называют контейнтмент, герметичная оболочка или гермозона.

Гермозона в новых реакторах имеет 2 толстые бетонные стенки – оболочки.
Внешняя оболочка толщиной в 80 см обеспечивает защиту гермозоны от внешних воздействий.

Внутренняя оболочка толщиной в 1 метр 20 см имеет в своем устройстве специальные стальные тросы, которые увеличивают прочность бетона почти в три раза и не дадут конструкции рассыпаться. С внутренней стороны она выложена тонким листом специальной стали, которая призвана служить дополнительной защитой контейнтмента и в случае аварии не выпустить содержимое реактора за пределы гермозоны.

Такое устройство атомной станции позволяет выдержать падение самолета весом до 200 тонн, 8 бальное землетрясение, торнадо и цунами.

Впервые герметичная оболочка была сооружена на американской АЭС Коннектикут Янки в 1968 году.

Полная высота гермозоны – 50-60 метров.

Из чего состоит атомный реактор?

Чтобы понять принцип работы ядерного реактора, а значит и принцип работы АЭС, нужно разобраться в составляющих реактора.

  • Активная зона. Это зона, куда помещается ядерное топливо (тепловыделитель) и замедлитель. Атомы топлива (чаще всего топливом выступает уран) совершают цепную реакцию деления. Замедлитель призван контролировать процесс деления, и позволяет провести нужную по скорости и силе реакцию.
  • Отражатель нейтронов. Отражатель окружает активную зону. Состоит он из того же материала, что и замедлитель. По сути это короб, главное назначение которого – не дать нейтронам выйти из активной зоны и попасть в окружающую среду.
  • Теплоноситель. Теплоноситель должен вобрать в себя тепло, которое выделилось при делении атомов топлива, и передать его другим веществам. Теплоноситель во многом определяет то, как устроена АЭС. Самый популярный теплоноситель на сегодня – вода.
    Система управления реактором. Датчики и механизмы, которые приводят реактор АЭС в действие.

Топливо для АЭС

На чем работает АЭС? Топливо для АЭС – это химические элементы, обладающие радиоактивными свойствами. На всех атомных станциях таким элементом выступает уран.

Устройство станций подразумевает, что АЭС работают на сложном составном топливе, а не на чистом химическом элементе. И чтобы из природного урана добыть урановое топливо, которое загружается в ядерный реактор, нужно провести множество манипуляций.

Обогащенный уран

Уран состоит из двух изотопов, то есть в его составе есть ядра с разной массой. Назвали их по количеству протонов и нейтронов изотоп -235 и изотоп-238. Исследователи 20 века начали добывать из руды 235й уран, т.к. его легче было разлагать и преобразовывать. Выяснилось, что такого урана в природе всего 0,7 % (остальные проценты достались 238му изотопу).

Что делать в этом случае? Уран решили обогащать. Обогащение урана это процесс, когда в нем остается много нужных 235х изотопов и мало ненужных 238х. Задача обогатителей урана – из 0.7% сделать почти 100% урана-235.

Обогатить уран можно с помощью двух технологий – газодиффузионной или газоцентрифужной. Для их использования уран, добытый из руды, переводят в газообразное состояние. В виде газа его и обогащают.

Урановый порошок

Обогащенный урановый газ переводят в твердое состояние – диоксид урана. Такой чистый твердый 235й уран выглядит как большие белые кристаллы, которые позже дробят в урановый порошок.

Урановые таблетки

Урановые таблетки – это твердые металлические шайбы, длиной в пару сантиметров. Чтобы из уранового порошка слепить такие таблетки, его перемешивают с веществом – пластификатором, он улучшает качество прессования таблеток.

Прессованные шайбы запекают при температуре 1200 градусов по Цельсию более суток, чтобы придать таблеткам особую прочность и устойчивость к высоким температурам. То, как работает АЭС, напрямую зависит от того, насколько хорошо спрессовали и запекли урановое топливо.

Запекают таблетки в молибденовых ящиках, т.к. только этот металл способен не расплавиться при «адских» температурах свыше полутора тысяч градусов. После этого урановое топливо для АЭС считается готовым.

Что такое ТВЭЛ и ТВС?

Активная зона реактора внешне выглядит как огромный диск или труба с дырками в стенках (в зависимости от типа реактора), раз в 5 больше человеческого тела. В этих дырках находится урановое топливо, атомы которого и проводят нужную реакцию.

Просто так закинуть топливо в реактор невозможно, ну, если вы не хотите получить взрыв всей станции и аварию с последствиями на пару близлежащих государств. Поэтому урановое топливо помещается в ТВЭЛы, а потом собирается в ТВС. Что значат эти аббревиатуры?

  • ТВЭЛ – тепловыделяющий элемент (не путать с одноименным названием российской компании, которая их производит). По сути это тонкая и длинная циркониевая трубка, сделанная из сплавов циркония, в которую помещаются урановые таблетки. Именно в ТВЭЛах атомы урана начинают взаимодействовать друг с другом, выделяя тепло при реакции.

Цирконий выбран материалом для производства ТВЭЛов благодаря его тугоплавкости и антикоррозийности.

Тип ТВЭЛов зависит от типа и строения реактора. Как правило, строение и назначение ТВЭЛов не меняется, разными могут быть длина и ширина трубки.

В одну циркониевую трубку автомат загружает более 200 урановых таблеток. Всего в реакторе одновременно работают около 10 миллионов урановых таблеток.
ТВС – тепловыделяющая сборка. Работники АЭС называют ТВС пучками.

По сути это несколько ТВЭЛов, скрепленных между собой. ТВС – это готовое атомное топливо, то, на чем работает АЭС. Именно ТВС загружаются в ядерный реактор. В один реактор помещаются около 150 – 400 ТВС.
В зависимости от того, в каком реакторе ТВС будет работать, они бывают разной формы. Иногда пучки складываются в кубическую, иногда в цилиндрическую, иногда в шестиугольную форму.

Одна ТВС за 4 года эксплуатации вырабатывает столько же энергии как при сжигании 670 вагонов угля, 730 цистерн с природным газом или 900 цистерн, груженных нефтью.
Сегодня ТВС производят в основном на заводах России, Франции, США и Японии.

Чтобы доставить топливо для АЭС в другие страны, ТВС запечатывают в длинные и широкие металлические трубы, из труб выкачивают воздух и специальными машинами доставляют на борта грузовых самолетов.

Весит ядерное топливо для АЭС запредельно много, т.к. уран – один из самых тяжелых металлов на планете. Его удельный вес в 2,5 раза больше, чем у стали.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

ВАЖНО ЗНАТЬ:

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так:
После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Типы ядерных реакторов

То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов:
Реактор на медленных нейтронах, его также называют тепловым.

Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство.
Реактор на быстрых нейтронах.

За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.

Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.

Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.

Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.


С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.

Несколько фактов об атомных реакторах…

Интересно, что один реактор АЭС строят не менее 3х лет!
Для постройки реактора необходимо оборудование, которое работает на электрическом токе в 210 кило Ампер, что в миллион раз превышает силу тока, которая способна убить человека.

Одна обечайка (элемент конструкции) ядерного реактора весит 150 тонн. В одном реакторе таких элементов 6.

Водо-водяной реактор

Как работает АЭС в целом, мы уже выяснили, чтобы все «разложить по полочкам» посмотрим, как работает наиболее популярный водо-водяной ядерный реактор.
Во всем мире сегодня используют водо-водяные реакторы поколения 3+. Они считаются самыми надежными и безопасными.

Все водо-водяные реакторы в мире за все годы их эксплуатации в сумме уже успели набрать более 1000 лет безаварийной работы и ни разу не давали серьезных отклонений.

Структура АЭС на водо-водяных реакторах, подразумевает, что между ТВЭЛами циркулирует дистиллированная вода, нагретая до 320 градусов. Чтобы не дать ей перейти в парообразное состояние ее держат под давлением в 160 атмосфер. Схема АЭС называет ее водой первого контура.

Нагретая вода попадает в парогенератор и отдает свое тепло воде второго контура, после чего снова «возвращается» в реактор. Внешне это выглядит так, что трубки воды первого контура соприкасаются с другими трубками – воды второго контура, они передают тепло друг другу, но воды не контактируют. Контактируют трубки.

Таким образом, исключена возможность попадания радиации в воду второго контура, которая будет далее участвовать в процессе добычи электричества.

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности.
Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

  • Первый барьер – прочность урановых таблеток. Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления. Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
  • Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
  • Третий барьер – прочный стальной корпус реактор а, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
  • Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.

В истории создания ядерных реакторов можно проследить три этапа. На первом этапе определились необходимые и достаточные условия протекания самоподдерживающейся цепной ядерной реакции деления. На втором этапе были установлены все физические эффекты, способствующие и препятствующие протеканию самоподдерживающейся цепной ядерной реакции деления, т.е. ускоряющие и замедляющие этот процесс. И, наконец, были проведены количественные расчеты, касающиеся конструкции реактора и протекающих в нем процессов.

Создание ядерных реакторов было решением одной из составных задач общей атомной проблемы.

Первый в мире реактор СР-1 (Chicago Physics) был спроектирован и сконструирован Э.Ферми в сотрудничестве с Андерсоном, Цинном, Л. Вудс и Дж. Вайлем и размещался в теннисном зале под трибунами стадиона Чикагского университета. Реактор начал работать 2 декабря 1942 г. при расчетной начальной мощности 0,5 Вт. В первый урановый реактор СР-1 было загружено 6 т металлического урана и некоторое количество (точно не известно) окиси урана из-за недостатка урана в чистом виде.

Реактор должен был иметь сферическую форму и составлялся из горизонтальных слоев блочного графита, которые располагались между подобными же слоями из перемежающихся блоков графита и урана, охлаждаемых воздухом. Критическое состояние реактора, при котором потеря нейтронов компенсировалась их производством (созданием), было достигнуто, когда сферу построили на три четверти, в результате чего реактор так и не получил окончательной формы правильного шара.

Через 12 дней мощность была доведена до 200 Вт и дальнейшее повышение мощности сочли рискованным из-за генерированного установкой опасного излучения. Реактор переместили за пределы города в Аргоннскую лабораторию, где он был снова смонтирован и снабжен защитным экраном.

Реактор регулировался вручную при помощи кадмиевых стержней, поглощающих избыток нейтронов и расположенных в специальных каналах. Кроме того, были предусмотрены два аварийных стержня и стержень автоматического управления.

Первая опытная установка позволила провести экспериментальное исследование процесса получения плутония, которое привело к заключению, что этот способ дает реальную возможность его изготовления в количествах, достаточных для создания атомной бомбы. В 1943 г. в Аргоннской национальной лаборатории для экспериментальных исследований был построен точно такой же реактор СР-2 (рис.17.1), но с критическим размером в форме куба, а в 1944 г. – еще один реактор СР-3 (рис. 17.2), в котором замедлителем служила тяжелая вода, что позволило значительно уменьшить размеры реактора по сравнению с предыдущими.

Из-за отсутствия системы охлаждения максимальная безопасная мощность реактора составляла 200 Вт, но на короткое время мощность можно было повышать до 100 кВт. В реакторе использовались пять управляющих стержней длиной 5,6 м из бронзы, покрытые кадмием. Три из этих стержней были аварийными, один стержень служил для грубой регулировки и еще один для точной регулировки потока нейтронов и мощности реактора.

В конце 1945 г. в Москве на территории Лаборатории № 2 АН СССР было начато строительство здания для физического реактора Ф-1, а в начале 1946 г. началось проектирование первого промышленного реактора и связанного с ним плутониевого комбината в Челябинске-40. В декабре 1946 г. на исследовательском уран-графитовом реакторе Ф-1 под руководством И.В. Курчатова была впервые в Европе осуществлена самоподдерживающая цепная реакция. Пуск реактора Ф-1, который до сих пор служит науке, дал возможность измерить необходимые ядерные константы, выбрать оптимальную конструкцию первого промышленного реактора, исследовать вопросы регулирования и радиационной безопасности.

В историю физики ХХ века вошел и первый в Европе ядерный реактор, созданный в СССР и испытанный лично И.В. Курчатовым в декабре 1946 года. Его мощность достигала уже 4000 кВт, что давало возможность на базе полученного опыта создавать промышленные реакторы. Сам реактор располагался в бетонированном котловане, на дно которого были уложены восемь слоев графитовых брусков. Над ними укладывались слои с отверстиями-гнездами, куда были вставлены блоки из урана. Были также сделаны три канала для кадмиевых стержней, обеспечивающих регулирование реакции и ее аварийную остановку, и ряд горизонтальных каналов различной формы и размеров для измерительной аппаратуры и экспериментальных целей. Общее число слоев из графитовых брусков составило шестьдесят два.

В 1947 году на этом реакторе удалось получить первые дозы не встречающегося в природе плутония, являющегося, подобно урану, ядерным горючим, притом в количествах, достаточных для изучения основных физических характеристик его ядра. Первый в СССР промышленный реактор для получения плутония был запущен Курчатовым в июне 1948 года.

В середине 40-х годов ХХ века в Лос-Аламосской научной лаборатории (США) была поставлена задача создания опытного быстрого реактора с плутониевым топливом, демонстрирующего возможность производства электроэнергии. Этот реактор под названием «Клементина» имел объём активной зоны, состоящей из металлического плутония, 2,5 л и охлаждался ртутью. Сборка реактора началась в 1946 г., критичность была достигнута в ноябре 1946 г. Энергетический пуск состоялся в марте 1949 г. Реактор работал на мощности 25 кВт (тепл.).

В рамках Манхэттенского проекта (секретного плана создания американской бомбы) вся работа по разделению изотопов урана была поручена лаборатории известного американского физика Э. Лоуренса. В своем докладе правительству США в июле 1941 г. Лоуренс писал: «Открылась новая чрезвычайно важная возможность для использования цепной реакции с неразделёнными изотопами [урана]. По-видимому, если бы цепная реакция была осуществлена, можно было бы вести её … в течение некоторого периода времени специально для производства элемента с атомным номером 94 [плутония]… Если бы имелись в распоряжении… большие количества этого элемента, то, вероятно, можно было бы осуществить цепную реакцию на быстрых нейтронах. В такой реакции энергия освобождалась бы со скоростью взрыва, и соответствующая система могла бы быть охарактеризована… как «сверхбомба»».

Реактор «Клементина» был первым реактором на быстрых нейтронах, а также первым, в котором в качестве топлива использовался плутоний-239. Активная зона в виде цилиндра высотой 15 см и диаметром 15 см состояла из вертикальных топливных стержней в стальной оболочке. Замедлитель, естественно, отсутствовал. Отражателем служили металлический уран и сталь. Ртутный теплоноситель обладал пренебрежимо малым сечением захвата медленных нейтронов. Управление реактором осуществлялось при помощи стержней, удаляющих некоторое количество урана из отражателя, так как бор или кадмий, используемые в реакторах на тепловых нейтронах, непригодны для реакторов на быстрых нейтронах.

В Аргоннской национальной лаборатории (США) независимо от описанных исследований проводились работы по созданию экспериментального реактора-размножителя EBR-1 на быстрых нейтронах. Главной целью этого проекта была проверка концепции атомной электростанции с реактором на быстрых нейтронах в качестве энергетического блока. К созданию реактора приступили в 1951 г., а критичность была достигнута в августе 1951 г. В декабре 1951 г. впервые за счёт ядерной энергии был получен электрический ток при мощности реактора 200 кВт (эл.). Топливные элементы реактора представляли собой трубки из нержавеющей стали, содержащие высокообогащенный металлический уран, охлаждение активной зоны осуществлялось прокачиванием через нее сплава натрия и калия (рис.17.3). Отражатель состоял из двух частей: нескольких стержней природного металлического урана, окружающих активную зону, и нескольких клинообразных блоков из того же материала. Управление реактором осуществлялось введением стержней металлического урана во внешний отражатель и выведением их из него.

Реактор одновременно вырабатывал энергию, выделяющуюся при делении под действием быстрых нейтронов, и воспроизводил делящийся материал. Строго говоря, реактор-размножитель должен использовать тот же делящийся материал, который в нем производится, например плутоний-239 в реакторах с ураном-238 в качестве сырья для производства вторичного топливного материала (плутония). Однако в настоящее время в качестве делящегося материала во многих реакторах на быстрых нейтронах используют уран-235. В реакторах на быстрых нейтронах теплоноситель не должен содержать элементов с малым массовым числом, так как они будут замедлять нейтроны. Интенсивный отвод тепла из активной зоны малого размера требует теплоносителя с исключительно высокими теплоотводящими свойствами.

Только одно вещество – жидкий натрий – удовлетворяет этим условиям.

Анализ топливных материалов отражателя реактора EBR-1 после его работы в течение некоторого времени показал, что достигнутый коэффициент воспроизводства, т.е. отношение количества полученного плутония-239 к количеству израсходованного урана-235, несколько превышает 100%. Поскольку условия в реакторе не были идеальными, то посчитали, что воспроизводство плутония-239 должно быть практически выгодно. Это было подтверждено в Великобритании экспериментами на реакторе на быстрых нейтронах очень малой мощности (2 Вт), в котором топливом служил плутоний-239. Было обнаружено, что на каждое разделившееся ядро плутония приходится примерно два вновь образовавшихся. Таким образом, выигрыш при воспроизводстве получается довольно значительным. В конечном счете таким реакторам должна принадлежать главная роль в программе развития ядерной энергетики.

Устройство и принцип работы

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер , для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни кельвинов , в случае же ядерных реакций - это минимум 10 7 из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Конструкция

Любой ядерный реактор состоит из следующих частей:

  • Активная зона с ядерным топливом и замедлителем ;
  • Отражатель нейтронов , окружающий активную зону;
  • Система регулирования цепной реакции , в том числе аварийная защита ;
  • Радиационная защита;
  • Система дистанционного управления.

Физические принципы работы

См. также основные статьи:

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ , которые связаны следующим соотношением:

Для этих величин характерны следующие значения:

  • k > 1 - цепная реакция нарастает во времени, реактор находится в надкритичном состоянии, его реактивность ρ > 0;
  • k < 1 - реакция затухает, реактор - подкритичен , ρ < 0;
  • k = 1, ρ = 0 - число делений ядер постоянно, реактор находится в стабильном критическом состоянии.

Условие критичности ядерного реактора:

, где

Обращение коэффициента размножения в единицу достигается сбалансированием размножения нейтронов с их потерями. Причин потерь фактически две: захват без деления и утечка нейтронов за пределы размножающей среды.

Очевидно, что k < k 0 , поскольку в конечном объёме вследствие утечки потери нейтронов обязательно больше, чем в бесконечном. Поэтому, если в веществе данного состава k 0 < 1, то цепная самоподдерживающаяся реакция невозможна как в бесконечном, так и в любом конечном объёме. Таким образом, k 0 определяет принципиальную способность среды размножать нейтроны.

k 0 для тепловых реакторов можно определить по так называемой «формуле 4-х сомножителей»:

, где
  • η - выход нейтронов на два поглощения.

Объёмы современных энергетических реакторов могут достигать сотен м³ и определяются главным образом не условиями критичности, а возможностями теплосъёма.

Критический объём ядерного реактора - объём активной зоны реактора в критическом состоянии. Критическая масса - масса делящегося вещества реактора, находящегося в критическом состоянии.

Наименьшей критической массой обладают реакторы, в которых топливом служат водные растворы солей чистых делящихся изотопов с водяным отражателем нейтронов. Для 235 U эта масса равна 0,8 кг, для 239 Pu - 0,5 кг. Широко известно, однако, что критическая масса для реактора LOPO (первый в мире реактор на обогащённом уране), имевшего отражатель из окиси бериллия, составляла 0,565 кг, несмотря на то, что степень обогащения по изотопу 235 была лишь немногим более 14 %. Теоретически, наименьшей критической массой обладает , для которого эта величина составляет всего 10 г.

С целью уменьшения утечки нейтронов, активной зоне придают сферическую или близкую к сферической форму, например короткого цилиндра или куба, так как эти фигуры обладают наименьшим отношением площади поверхности к объёму.

Несмотря на то, что величина (e - 1) обычно невелика, роль размножения на быстрых нейтронах достаточно велика, поскольку для больших ядерных реакторов (К ∞ - 1) << 1. Без этого процесса было бы невозможным создание первых графитовых реакторов на естественном уране.

Для начала цепной реакции обычно достаточно нейтронов, рождаемых при спонтанном делении ядер урана. Возможно также использование внешнего источника нейтронов для запуска реактора, например, смеси и , или других веществ.

Иодная яма

Основная статья: Иодная яма

Иодная яма - состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона . Этот процесс приводит к временному появлению значительной отрицательной реактивности , что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1-2 суток).

Классификация

По назначению

По характеру использования ядерные реакторы делятся на :

  • Энергетические реакторы , предназначенные для получения электрической и тепловой энергии, используемой в энергетике , а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях . Тепловая мощность современных энергетических реакторов достигает 5 ГВт . В отдельную группу выделяют:
    • Транспортные реакторы , предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения - морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике .
  • Экспериментальные реакторы , предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает нескольких кВт .
  • Исследовательские реакторы , в которых потоки нейтронов и гамма-квантов , создаваемые в активной зоне, используются для исследований в области ядерной физики , физики твёрдого тела , радиационной химии , биологии , для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 МВт. Выделяющаяся энергия, как правило, не используется.
  • Промышленные (оружейные, изотопные) реакторы , используемые для наработки изотопов , применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239 Pu . Также к промышленным относят реакторы, использующиеся для опреснения морской воды .

Часто реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми . Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

По спектру нейтронов

  • Реактор на тепловых (медленных) нейтронах («тепловой реактор»)
  • Реактор на быстрых нейтронах («быстрый реактор»)

По размещению топлива

  • Гетерогенные реакторы , где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;
  • Гомогенные реакторы , где топливо и замедлитель представляют однородную смесь (гомогенную систему).

В гетерогенном реакторе топливо и замедлитель могут быть пространственно разнесены, в частности, в полостном реакторе замедлитель-отражатель окружает полость с топливом, не содержащим замедлителя. С ядерно-физической точки зрения критерием гомогенности/гетерогенности является не конструктивное исполнение, а размещение блоков топлива на расстоянии, превышающем длину замедления нейтронов в данном замедлителе. Так, реакторы с так называемой «тесной решёткой» рассчитываются как гомогенные, хотя в них топливо обычно отделено от замедлителя.

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими сборками (ТВС), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки .

По виду топлива

  • изотопы урана 235, 238, 233 ( 235 U , 238 U , 233 U)
  • изотоп плутония 239 ( 239 Pu), также изотопы 239-242 Pu в виде смеси с 238 U (MOX-топливо)
  • изотоп тория 232 (232 Th) (посредством преобразования в 233 U)

По степени обогащения:

  • природный уран
  • слабо обогащённый уран
  • высоко обогащённый уран

По химическому составу:

  • металлический U
  • UC (карбид урана) и т. д.

По виду теплоносителя

  • Газ, (см. Графито-газовый реактор)
  • D 2 O (тяжёлая вода , см. Тяжеловодный ядерный реактор , CANDU)

По роду замедлителя

  • С (графит , см. Графито-газовый реактор , Графито-водный реактор)
  • H 2 O (вода, см. Легководный реактор , Водо-водяной реактор , ВВЭР)
  • D 2 O (тяжёлая вода, см. Тяжеловодный ядерный реактор , CANDU)
  • Гидриды металлов
  • Без замедлителя (см. Реактор на быстрых нейтронах)

По конструкции

По способу генерации пара

  • Реактор с внешним парогенератором (См. Водо-водяной реактор , ВВЭР)

Классификация МАГАТЭ

  • PWR (pressurized water reactors) - водо-водяной реактор (реактор с водой под давлением);
  • BWR (boiling water reactor) - кипящий реактор ;
  • FBR (fast breeder reactor) - реактор-размножитель на быстрых нейтронах ;
  • GCR (gas-cooled reactor) - газоохлаждаемый реактор;
  • LWGR (light water graphite reactor) - графито-водный реактор
  • PHWR (pressurised heavy water reactor) - тяжеловодный реактор

Наиболее распространёнными в мире являются водо-водяные (около 62 %) и кипящие (20 %) реакторы.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов , γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несущественен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для её сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом , тепловыделяющие кассеты - с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов . Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора - , обладающий наибольшим сечением поглощения нейтронов (2,6·10 6 барн). Период полураспада 135 Xe T 1/2 = 9,2 ч; выход при делении составляет 6-7 %. Основная часть 135 Xe образуется в результате распада (T 1/2 = 6,8 ч). При отравлении К эф изменяется на 1-3 %. Большое сечение поглощения 135 Xe и наличие промежуточного изотопа 135 I приводят к двум важным явлениям:

  1. К увеличению концентрации 135 Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность иодной ямы зависят от потока нейтронов Ф: при Ф = 5·10 18 нейтрон/(см²·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение К эф, вызванное отравлением 135 Xe.
  2. Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 10 18 нейтронов/(см²·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это ТВЭЛы разных «возрастов».

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, так как реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1-2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3 %, через 1 ч - 1 %, через сутки - 0,4 %, через год - 0,05 % от первоначальной мощности.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235 U называется коэффициентом конверсии K K . Величина K K увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 ГВт·сут/т K K = 0,55, а при небольших выгораниях (в этом случае K K называется начальным плутониевым коэффициентом ) K K = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства К В. В ядерных реакторах на тепловых нейтронах К В < 1, а для реакторов на быстрых нейтронах К В может достигать 1,4-1,5. Рост К В для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239 Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Управление ядерным реактором возможно только благодаря тому, что часть нейтронов при делении вылетает из осколков с запаздыванием , которое может составить от нескольких миллисекунд до нескольких минут.

Для управления реактором используют поглощающие стержни , вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (в основном , и некоторые др.) и/или раствор борной кислоты , в определённой концентрации добавляемый в теплоноситель (борное регулирование). Движение стержней управляется специальными механизмами, приводами, работающими по сигналам от оператора или аппаратуры автоматического регулирования нейтронного потока.

На случай различных аварийных ситуаций в каждом реакторе предусмотрено экстренное прекращение цепной реакции , осуществляемое сбрасыванием в активную зону всех поглощающих стержней - система аварийной защиты .

Остаточное тепловыделение

Важной проблемой, непосредственно связанной с ядерной безопасностью , является остаточное тепловыделение. Это специфическая особенность ядерного топлива, заключающаяся в том, что, после прекращения цепной реакции деления и обычной для любого энергоисточника тепловой инерции, выделение тепла в реакторе продолжается ещё долгое время, что создаёт ряд технически сложных проблем.

Остаточное тепловыделение является следствием β- и γ- распада продуктов деления , которые накопились в топливе за время работы реактора. Ядра продуктов деления вследствие распада переходят в более стабильное или полностью стабильное состояние с выделением значительной энергии.

Хотя мощность остаточного тепловыделения быстро спадает до величин, малых по сравнению со стационарными значениями, в мощных энергетических реакторах она значительна в абсолютных величинах. По этой причине остаточное тепловыделение влечёт необходимость длительное время обеспечивать теплоотвод от активной зоны реактора после его остановки. Эта задача требует наличия в конструкции реакторной установки систем расхолаживания с надёжным электроснабжением, а также обуславливает необходимость длительного (в течение 3-4 лет) хранения отработавшего ядерного топлива в хранилищах со специальным температурным режимом - бассейнах выдержки, которые обычно располагаются в непосредственной близости от реактора .

См. также

  • Перечень атомных реакторов, спроектированных и построенных в Советском Союзе

Литература

  • Левин В. Е. Ядерная физика и ядерные реакторы. 4-е изд. - М.: Атомиздат, 1979.
  • Шуколюков А. Ю. «Уран. Природный ядерный реактор». «Химия и Жизнь» № 6, 1980 г., с. 20-24

Примечания

  1. «ZEEP - Canada’s First Nuclear Reactor» , Canada Science and Technology Museum.
  2. Грешилов А. А., Егупов Н. Д., Матущенко А. М. Ядерный щит. - М .: Логос, 2008. - 438 с. -

В средине двадцатого века внимание человечества было сосредоточено вокруг атома и объяснения учеными ядерной реакции, которую первоначально решили использовать в военных целях, изобретая согласно Манхэттенскому проекту первые ядерные бомбы. Но в 50-х годах XX века ядерный реактор в СССР применили в мирных целях. Общеизвестно, что 27 июня 1954 года на службу человечества поступила первая в мире атомная электростанция мощностью 5000 кВт. Сегодня ядерный реактор позволяет вырабатывать электроэнергию в 4000 МВт и более, то есть в 800 раз больше, чем было полвека назад.

Что такое ядерный реактор: основное определение и главные комплектующие элементы агрегата

Ядерный реактор – это специальный агрегат, при помощи которого вырабатывается энергия как следствие правильного поддержания контролируемой ядерной реакции. Использовать слово «атомный» в сочетании со словом «реактор» - допускается. Многие вообще считают понятия «ядерный» и «атомный» - синонимами, так как не находят между ними принципиальной разницы. Но представители науки склоняются к более верному сочетанию – «ядерный реактор».

Интересный факт! Ядерные реакции могут протекать с выделением или поглощением энергии.

Основными комплектующими в устройстве ядерного реактора считаются следующие элементы:

  • Замедлитель;
  • Регулирующие стержни;
  • Стержни, содержание обогащенную смесь изотопов урана;
  • Специальные защитные элементы от радиации;
  • Теплоноситель;
  • Парогенератор;
  • Турбина;
  • Генератор;
  • Конденсатор;
  • Ядерное горючее.

Какие основополагающие принципы работы ядерного реактора определяются учеными-физиками и почему они незыблемы

Основополагающий принцип работы ядерного реактора базируется на особенностях проявления ядерной реакции. В момент стандартного физического цепного ядерного процесса протекает взаимодействие частицы с атомным ядром, как следствие, ядро превращается в новое с выделением вторичных частиц, которые ученые называют гамма-квантами. Во время ядерной цепной реакции высвобождается огромное количество тепловой энергии. Пространство, в котором протекает цепная реакция, называется активной зоной реактора.

Интересный факт! Активная зона внешне напоминает собой котел, через который протекает обычная вода, выполняющая роль теплоносителя.

Для упреждения потери нейтронов зону актива реактора окружают специальным отражателем нейтронов. Его первостепенная задача – отбрасывать большую часть вылетающих нейтронов внутрь активной зоны. В качестве отражателя используют обычно то же вещество, которое служит замедлителем.

Главное управление ядерным реактором происходит с помощью специальных регулирующих стержней. Известно, что эти стержни вводятся в активную зону реактора и создают все условия для функционирования агрегата. Обычно управляющие стержни изготавливаются из химических соединений бора и кадмия. Почему используются именно эти элементы? Да все потому, что бор или кадмий способны эффективно поглощать тепловые нейтроны. И как только планируется запуск, по принципу действия ядерного реактора, управляющие стержни вводятся в активную зону. Их первостепенная задача – поглощать значительную часть нейтронов, тем самым провоцируя развитие цепной реакции. Результат должен дойти до желаемого уровня. При увеличении мощности свыше установленного уровня включаются автоматы, обязательно погружающие управляющие стержни вглубь активной зоны реактора.

Таким образом, становится понятно, что управляющие или регулирующие стержни играют важную роль в работе теплового ядерного реактора.

А для уменьшения утечки нейтронов активную зону реактора окружают отражателем нейтронов, отбрасывающих значительную массу вылетающих свободно нейтронов внутрь активной зоны. В значении отражателя используют обычно то же самое вещество, что и для замедлителя.

Ядро атомов вещества-замедлителя по стандарту обладает сравнительно небольшой массой, чтобы при столкновении с легким ядром имеющийся с цепи нейтрон терял энергию большую, чем при столкновении с тяжелым. Наиболее распространенные замедлители – обычная вода или графит.

Интересный факт! Нейтроны в процессе ядерной реакции характеризуются чрезвычайно высокой скоростью движения, поэтому и требуется замедлитель, подталкивающий нейтроны терять часть своей энергии.

Ни один реактор в мире не может функционировать нормально без помощи теплоносителя, так как его назначение – выводить энергию, которая вырабатывается в сердце реактора. В качестве теплоносителя используется обязательно жидкость или газы, так как они не способны поглощать нейтроны. Приведем пример теплоносителя для компактного ядерного реактора – вода, углекислый газ, а иногда даже жидкий металлический натрий.

Таким образом, принципы работы ядерного реактора всецело базируются на законах цепной реакции, ее протекании. Все комплектующие реактора - замедлитель, стержни, теплоноситель, ядерное горючее – выполняют поставленные задачи, обуславливая нормальную работоспособность реактора.

Какое топливо используют для ядерных реакторов и почему именно эти химические элементы избираются

Основным топливом в реакторах могут служить изотопы урана, также плутония или тория.

Еще в 1934 году Ф.Жолио-Кюри, пронаблюдав за процессом деления ядра урана, заметил, что в результате химической реакции ядро урана делится на осколки-ядра и два-три свободных нейтрона. А это значит, что появляется вероятность, что свободные нейтрону примкнут к другим ядрам урана и спровоцируют очередное деление. А так, как предсказывает цепная реакция: из трех ядер урана освободится уже шесть-девять нейтронов, и они снова примкнут к вновь образовавшимся ядрам. И так до бесконечности.

Важно помнить! Нейтроны, появляющиеся при делении ядер, способны провоцировать деление ядер изотопа урана с массовым числом 235, а для уничтожения ядер изотопа урана с массовым числом 238 может оказаться мало возникающей в процессе распада энергии.

Уран с числом 235 редко встречается в природе. На его долю приходится только 0,7%, а вот природный уран-238 занимает более просторную нишу и составляет 99,3 %.

Невзирая на такую малую долю урана-235 в природе, все равно физики и химики от него не могут отказаться, потому что он наиболее эффективен для функционирования ядерного реактора, удешевляя процесс получения энергии для человечества.

Когда появились первые ядерные реакторы и где их принято применять сегодня

Еще в 1919 году физики уже триумфовали, когда Резерфордом была обнаружен и описан процесс образования движущихся протонов как результат столкновения альфа-частиц с ядрами атомов азота. Это открытие означало, что ядро изотопа азота в результате столкновения с альфа-частицей превращалось в ядро изотопа кислорода.

Прежде чем появились первые ядерные реакторы, мир узнал несколько новых законов физики, трактующих все важные аспекты ядерной реакции. Так, в 1934 году Ф.Жолио-Кюри, Х.Халбан, Л. Коварски впервые предложили обществу и кругу мировых ученых теоретическое предположение и доказательную базу о возможности осуществления ядерных реакций. Все эксперименты были связаны с наблюдением за делением ядра урана.

В 1939 году Э.Ферми, И.Жолио-Кюри, О. Ган, О. Фриш отследили реакцию деления ядер урана при бомбардировке их нейтронами. В ходе исследований ученые установили, что при попадании в ядро урана одного ускоренного нейтрона имеющееся ядро делится на две-три части.

Цепная реакция была практически доказана в средине XX века. Ученым удалось в 1939 году доказать, что при делении одного уранового ядра высвобождается где-то 200 МэВ энергии. А вот на кинетическую энергию ядер-осколков отводится приблизительно 165 МэВ, а остаток уносит с собой гамма-кванты. Данное открытие совершило прорыв в квантовой физике.

Э.Ферми работы и исследования продолжает еще несколько лет и запускает первый ядерный реактор в 1942 году в США. Воплощенный проект получил название – «Чикагская поленница» и был поставлен на венные рельсы. 5 сентября 1945 года Канада запустила свой ядерный реактор ZEEP. Европейский континент не отставал, и в это же время возводилась установка Ф-1. А для россиян есть и другая памятная дата – 25 декабря 1946 года в Москве под руководством И.Курчатова запускается реактор. Это были не самые мощные ядерные реакторы, но это было началом освоения человеком атома.

В мирных целях научный ядерный реактор создали в 1954 году в СССР. Первый в мире мирный корабль с ядерной силовой установкой – атомный ледокол «Ленин» - был построен в Советском Союзе в 1959 году. И еще одно достижение нашего государства – атомный ледокол «Арктика». Данный надводный корабль впервые в мире достиг Северного полюса. Это случилось в 1975 году.

Первые портативные ядерные реакторы работали на медленных нейтронах.

Где используют ядерные реакторы и какие виды использует человечество

  • Промышленные реакторы. Их используют для выработки энергии на АЭС.
  • Атомные реакторы, выступающие как движетель атомных подводных лодок.
  • Экспериментальные (портативные, малые) реакторы. Без них не проходит ни один современный научный опыт или исследование.

Сегодня научный свет научился при помощи специальных реакторов опреснять морскую воду, обеспечивать население качественной питьевой водой. Действующих ядерных реакторов в России очень много. Так, по статистике по состоянию на 2018 год работает в государстве около 37 блоков.

А по классификации они могут быть следующими:

  • Исследовательские (исторические). К ним относят станцию Ф-1, которая создавалась как опытная площадка по получению плутония. На Ф-1 работал Курчатов И.В., руководил первым физическим реактором.
  • Исследовательские (действующие).
  • Оружейные. Как образец реактора – А-1, который вошел в историю, как первый реактор с охлаждением. Прошлая мощность ядерного реактора небольшая, но функциональная.
  • Энергетические.
  • Судовые. Известно, что на кораблях и подводных лодках по необходимости и технической целесообразности используют водо-водяные или жидкометаллические реакторы.
  • Космические. Как пример, назовем установку «Енисей» на космических кораблях, которая вступает в действие, если необходимо добыть дополнительное количество энергии, и получать ее придется при помощи солнечных батарей и изотопных источников.

Таким образом, тема о ядерных реакторах достаточно расширенная, поэтому требует глубокого изучения и понимания законов квантовой физики. Но значение ядерных реакторов для энергетики и экономики государства уже, бесспорно, овеяно аурой полезности и выгоды.