Как найти нули функции синусоиды. Свойства синуса, косинуса, тангенса и котангенса угла

На этом уроке мы рассмотрим основные тригонометрические функции, их свойства и графики , а также перечислим основные типы тригонометрических уравнений и систем . Кроме этого, укажем общие решения простейших тригонометрических уравнений и их частные случаи .

Данный урок поможет Вам подготовиться к одному из типов задания В5 и С1 .

Подготовка к ЕГЭ по математике

Эксперимент

Урок 10. Тригонометрические функции. Тригонометрические уравнения и их системы.

Теория

Конспект урока

Мы с вами уже многократно применяли термин «тригонометрическая функция». Еще на первом уроке этой темы мы определили их с помощью прямоугольного треугольника и единичной тригонометрической окружности. Используя такие способы задания тригонометрических функций, мы уже можем сделать вывод, что для них одному значению аргумента (или угла) соответствует строго одно значение функции, т.е. мы вправе называть синус, косинус, тангенс и котангенс именно функциями.

На этом уроке самое время попробовать абстрагироваться от рассмотренных ранее способов вычисления значений тригонометрических функций. Сегодня мы перейдем к привычному алгебраическому подходу работы с функциями, мы рассмотрим их свойства и изобразим графики.

Что касается свойств тригонометрических функций, то особое внимание следует обратить на:

Область определения и область значений, т.к. для синуса и косинуса есть ограничения по области значений, а для тангенса и котангенса ограничения по области определения;

Периодичность всех тригонометрических функций, т.к. мы уже отмечали наличие наименьшего ненулевого аргумента, добавление которого не меняет значение функции. Такой аргумент называют периодом функции и обозначают буквой . Для синуса/косинуса и тангенса/котангенса эти периоды различны.

Рассмотрим функцию:

1) Область определения ;

2) Область значений ;

3) Функция нечетная ;

Построим график функции . При этом удобно начинать построение с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Кроме того, для построения полезно помнить значения синусов нескольких основных табличных углов, например, что Это позволит построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

Теперь рассмотрим функцию:

Основные свойства этой функции:

1) Область определения ;

2) Область значений ;

3) Функция четная Из этого следует симметричность графика функции относительно оси ординат;

4) Функция не является монотонной на всей своей области определения;

Построим график функции . Как и при построении синуса удобно начинать с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Также нанесем на график координаты нескольких точек, для чего необходимо помнить значения косинусов нескольких основных табличных углов, например, что С помощью этих точек мы можем построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

Перейдем к функции:

Основные свойства этой функции:

1) Область определения кроме , где . Мы уже указывали в предыдущих уроках, что не существует. Это утверждение можно обобщить, учитывая период тангенса;

2) Область значений , т.е. значения тангенса не ограничены;

3) Функция нечетная ;

4) Функция монотонно возрастает в пределах своих так называемых веток тангенса, которые мы сейчас увидим на рисунке;

5) Функция периодична с периодом

Построим график функции . При этом удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е. и т.д. Далее изображаем ветки тангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. При этом не забываем, что каждая ветка монотонно возрастает. Все ветки изображаем одинаково, т.к. функция имеет период, равный . Это видно по тому, что каждая ветка получается смещением соседней на вдоль оси абсцисс.

И завершаем рассмотрением функции:

Основные свойства этой функции:

1) Область определения кроме , где . По таблице значений тригонометрических функций мы уже знаем, что не существует. Это утверждение можно обобщить, учитывая период котангенса;

2) Область значений , т.е. значения котангенса не ограничены;

3) Функция нечетная ;

4) Функция монотонно убывает в пределах своих веток, которые похожи на ветки тангенса;

5) Функция периодична с периодом

Построим график функции . При этом, как и для тангенса, удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е. и т.д. Далее изображаем ветки котангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. В этом случае учитываем, что каждая ветка монотонно убывает. Все ветки аналогично тангенсу изображаем одинаково, т.к. функция имеет период, равный .

Отдельно следует отметить тот факт, что у тригонометрических функций со сложным аргументом может быть нестандартный период. Речь идет о функциях вида:

У них период равен . И о функциях:

У них период равен .

Как видим, для вычисления нового периода стандартный период просто делится на множитель при аргументе. От остальных видоизменений функции он не зависит.

Подробнее разобраться и понять, откуда берутся эти формулы, вы сможете в уроке про построение и преобразование графиков функций.

Мы подошли к одной из самых главных частей темы «Тригонометрия», которую мы посвятим решению тригонометрических уравнений. Умение решать такие уравнения важно, например, при описании колебательных процессов в физике. Представим, что вы на спортивной машине проехали несколько кругов на картинге, определить сколько времени вы уже участвуете в гонке в зависимости от положения машины на трассе поможет решение тригонометрического уравнения.

Запишем простейшее тригонометрическое уравнение:

Решением такого уравнения являются аргументы, синус которых равен . Но мы уже знаем, что из-за периодичности синуса таких аргументов существует бесконечное множество. Таким образом, решением этого уравнения будут и т.п. То же самое относится и к решению любого другого простейшего тригонометрического уравнения, их будет бесконечное количество.

Тригонометрические уравнения делятся на несколько основных типов. Отдельно следует остановиться на простейших, т.к. все остальные к ним сводятся. Таких уравнений четыре (по количеству основных тригонометрических функций). Для них известны общие решения, их необходимо запомнить.

Простейшие тригонометрические уравнения и их общие решения выглядят следующим образом:

Обратите внимание, что на значения синуса и косинуса необходимо учитывать известные нам ограничения. Если, например, , то уравнение не имеет решений и применять указанную формулу не следует.

Кроме того, указанные формулы корней содержат параметр в виде произвольного целого числа . В школьной программе это единственный случай, когда решение уравнения без параметра содержит в себе параметр. Это произвольное целое число показывает, что можно выписать бесконечное количество корней любого из указанных уравнений просто подставляя вместо по очереди все целые числа.

Ознакомиться с подробным получением указанных формул вы можете, повторив главу «Тригонометрические уравнения» в программе алгебры 10 класса.

Отдельно необходимо обратить внимание на решение частных случаев простейших уравнений с синусом и косинусом. Эти уравнения имеют вид:

К ним не следует применять формулы нахождения общих решений. Такие уравнения удобнее всего решаются с использованием тригонометрической окружности, что дает более простой результат, чем формулы общих решений.

Например, решением уравнения является . Попробуйте сами получить этот ответ и решить остальные указанные уравнения.

Кроме указанного наиболее часто встречающегося типа тригонометрических уравнений существуют еще несколько стандартных. Перечислим их с учетом тех, которые мы уже указали:

1) Простейшие , например, ;

2) Частные случаи простейших уравнений , например, ;

3) Уравнения со сложным аргументом , например, ;

4) Уравнения, сводящиеся к простейшим путем вынесения общего множителя , например, ;

5) Уравнения, сводящиеся к простейшим путем преобразования тригонометрических функций , например, ;

6) Уравнения, сводящиеся к простейшим с помощью замены , например, ;

7) Однородные уравнения , например, ;

8) Уравнения, которые решаются с использованием свойств функций , например, . Пусть вас не пугает, что в этом уравнении две переменные, оно при этом решается;

А также уравнения, которые решаются с использованием различных методов.

Кроме решения тригонометрических уравнений необходимо уметь решать и их системы.

Наиболее часто встречаются системы следующих типов:

1) В которых одно из уравнений степенное , например, ;

2) Системы из простейших тригонометрических уравнений , например, .

На сегодняшнем уроке мы рассмотрели основные тригонометрические функции, их свойства и графики. А также познакомились с общими формулами решения простейших тригонометрических уравнений, указали основные типы таких уравнений и их систем.

В практической части урока мы разберем методы решения тригонометрических уравнений и их систем.

Вставка 1. Решение частных случаев простейших тригонометрических уравнений .

Как мы уже говорили в основной части урока частные случаи тригонометрических уравнений с синусом и косинусом вида:

имеют более простые решения, чем дают формулы общих решений.

Для этого используется тригонометрическая окружность. Разберем метод их решения на примере уравнения .

Изобразим на тригонометрической окружности точку, в которой значение косинуса равно нулю, оно же является координатой по оси абсцисс. Как видим, таких точек две. Наша задача указать чему равен угол, который соответствует этим точкам на окружности.

Начинаем отсчет от положительного направления оси абсцисс (оси косинусов) и при откладывании угла попадаем в первую изображенную точку, т.е. одним из решений будет это значение угла. Но нас же еще устраивает угол, который соответствует второй точке. Как попасть в нее?

Даны определения обратных тригонометрических функций и их графики. А также формулы, связывающие обратные тригонометрические функции, формулы сумм и разностей.

Определение обратных тригонометрических функций

Поскольку тригонометрические функции периодичны, то обратные к ним функции не однозначны. Так, уравнение y = sin x , при заданном , имеет бесконечно много корней. Действительно, в силу периодичности синуса, если x такой корень, то и x + 2πn (где n целое) тоже будет корнем уравнения. Таким образом, обратные тригонометрические функции многозначны . Чтобы с ними было проще работать, вводят понятие их главных значений. Рассмотрим, например, синус: y = sin x . Если ограничить аргумент x интервалом , то на нем функция y = sin x монотонно возрастает. Поэтому она имеет однозначную обратную функцию, которую называют арксинусом: x = arcsin y .

Если особо не оговорено, то под обратными тригонометрическими функциями имеют в виду их главные значения, которые определяются следующими определениями.

Арксинус (y = arcsin x ) - это функция, обратная к синусу (x = sin y

Арккосинус (y = arccos x ) - это функция, обратная к косинусу (x = cos y ), имеющая область определения и множество значений .

Арктангенс (y = arctg x ) - это функция, обратная к тангенсу (x = tg y ), имеющая область определения и множество значений .

Арккотангенс (y = arcctg x ) - это функция, обратная к котангенсу (x = ctg y ), имеющая область определения и множество значений .

Графики обратных тригонометрических функций

Графики обратных тригонометрических функций получаются из графиков тригонометрических функций зеркальным отражением относительно прямой y = x . См. разделы Синус, косинус , Тангенс, котангенс .

y = arcsin x


y = arccos x


y = arctg x


y = arcctg x

Основные формулы

Здесь следует особо обратить внимание на интервалы, для которых справедливы формулы.

arcsin(sin x) = x при
sin(arcsin x) = x
arccos(cos x) = x при
cos(arccos x) = x

arctg(tg x) = x при
tg(arctg x) = x
arcctg(ctg x) = x при
ctg(arcctg x) = x

Формулы, связывающие обратные тригонометрические функции

Формулы суммы и разности


при или

при и

при и


при или

при и

при и


при

при


при

при

Тригонометрические функции числового аргумента. Свойства и графики тригонометрических функций.

Определение1: Числовая функция, заданная формулой y=sin x называется синусом.

Данная кривая имеет название – синусоида.

Свойства функции y=sin x

2. Область значения функции: E(y)=[-1; 1]

3. Четность функции:

y=sin x – нечетная,.

4. Периодичность: sin(x+2πn)=sin x, где n – целое число.

Данная функция через определенный промежуток принимает одинаковые значения. Такое свойство функции называют периодичностью. Промежуток – периодом функции.

Для функции y=sin x период составляет 2π.

Функция y=sin x – периодическая, с периодом Т=2πn, n – целое число.

Наименьший положительный период Т=2π.

Математически это можно записать так: sin(x+2πn)=sin x, где n – целое число.

Определение2: Числовая функция, заданная формулой y=cosx называется косинусом.

Свойства функции y=cos x

1. Область определения функции: D(y)=R

2. Область значения функции: E(y)=[-1;1]

3. Четность функции:

y=cos x –четная.

4. Периодичность: cos(x+2πn)=cos x, где n – целое число.

Функция y=cos x – периодическая, с периодом Т=2π.

Определение 3: Числовая функция, заданная формулой y=tg x, называется тангенсом.


Свойства функции y=tg x

1. Область определения функции: D(y) - все действительные числа, кроме π/2+πk, k – целое число. Потому что в этих точках тангенс не определен.

2. Область значения функции: E(y)=R.

3. Четность функции:

y=tg x – нечетная.

4. Периодичность: tg(x+πk)=tg x, где k – целое число.

Функция y=tg x – периодическая с периодом π.

Определение 4: Числовая функция, заданная формулой y=ctg x, называется котангенсом.

Свойства функции y=ctg x

1. Область определения функции: D(y) - все действительные числа, кроме πk, k– целое число. Потому что в этих точках котангенс не определен.

Если построить единичную окружность с центром в начале координат, и задать произвольное значение аргумента x 0 и отсчитать от оси Ox угол x 0, то этому углу на единичной окружности соответствует некоторая точка A (рис. 1) а ее проекцией на ось Ох будет точка М . Длина отрезка ОМ равна абсолютной величине абсциссы точки A . Данному значению аргумента x 0 сопоставлено значение функции y = cos x 0 как абсциссы точки А . Соответственно точка В (x 0 ; у 0) принадлежит графику функции у = cos х (рис. 2). Если точка А находится правее оси Оу , токосинус будет положителен, если же левее – отрицателен. Но в любом случае точка А не может покинуть окружность. Поэтому косинус лежит в пределах от –1 до 1:

–1 = cos x = 1.

Дополнительный поворот на любой угол, кратный 2p , возвращает точку A на то же место. Поэтому функция у = cos x p :

cos (x + 2p ) = cos x.

Если взять два значения аргумента, равные по абсолютной величине, но противоположные по знаку, x и –x , найти на окружности соответствующие точки A x и А -x . Как видно на рис. 3 их проекцией на ось Ох является одна и та же точка М . Поэтому

cos (–x ) = cos (x ),

т.е. косинус – четная функция, f (–x ) = f (x ).

Значит, можно исследовать свойства функции y = cos х на отрезке , а затем учесть ее четность и периодичность.

При х = 0 точка А лежит на оси Ох , ее абсцисса равна 1, а потому cos 0 = 1. С увеличением х точка А передвигается по окружности вверх и влево, ее проекция, естественно, только влево, и при х = p /2 косинус становится равен 0. Точка A в этот момент поднимается на максимальную высоту, а затем продолжает двигаться влево, но уже снижаясь. Ее абсцисса все убывает, пока не достигнет наименьшего значения, равного –1 при х = p . Таким образом, на отрезке функция у = cos х монотонно убывает от 1 до –1 (рис. 4, 5).

Из четности косинуса следует, что на отрезке [–p , 0] функция монотонно возрастает от –1 до 1, принимая нулевое значение при х = p /2. Если взять несколько периодов, получится волнообразная кривая (рис. 6).

Итак, функция y = cos x принимает нулевые значения в точках х = p /2 + kp , где k – любое целое число. Максимумы, равные 1, достигаются в точках х = 2kp , т.е. с шагом 2p , а минимумы, равные –1, в точках х = p + 2kp .

Функция y = sin х.

На единичной окружности углу x 0 соответствует точка А (рис. 7), а ее проекцией на ось Оу будет точка N . З начение функции у 0 = sin x 0 определяется как ордината точки А . Точка В (угол x 0 , у 0) принадлежит графику функции y = sin x (рис. 8). Ясно, что функция y = sin x периодическая, ее период равен 2p :

sin (x + 2p ) = sin (x ).

Для двух значений аргумента, х и – , проекции соответствующих им точек А x и А -x на ось Оу расположены симметрично относительно точки О . Поэтому

sin (–x ) = –sin (x ),

т.е. синус – функция нечетная, f(–x ) = –f(x ) (рис. 9).

Если точку A повернуть относительно точки О на угол p /2 против часовой стрелки (другими словами, если угол х увеличить на p /2), то ее ордината в новом положении будет равна абсциссе в старом. А значит,

sin (x + p /2) = cos x.

Иначе, синус – это косинус, «запоздавший» на p /2, поскольку любое значение косинуса «повторится» в синусе, когда аргумент возрастет на p /2. И чтобы построить график синуса, достаточно сдвинуть график косинуса на p /2 вправо (рис. 10). Чрезвычайно важное свойство синуса выражается равенством

Геометрический смысл равенства виден из рис. 11. Здесь х – это половина дуги АВ , а sin х – половина соответствующей хорды. Очевидно, что по мере сближения точек А и В длина хорды все точнее приближается к длине дуги. Из того же рисунка несложно извлечь неравенство

|sin x | x|, верное при любом х .

Формулу (*) математики называют замечательным пределом. Из нее, в частности, следует, что sin х » х при малых х .

Функции у = tg х, у = ctg х . Две другие тригонометрические функции – тангенс и котангенс проще всего определить как отношения уже известных нам синуса и косинуса:

Как синус и косинус, тангенс и котангенс – функции периодические, но их периоды равны p , т.е. они вдвое меньше, чем у синуса и косинуса. Причина этого понятна: если синус и косинус оба поменяют знаки, то их отношение не изменится.

Поскольку в знаменателе тангенса находится косинус, то тангенс не определен в тех точках, где косинус равен 0, – когда х = p /2 + kp . Во всех остальных точках он монотонно возрастает. Прямые х = p /2 + kp для тангенса являются вертикальными асимптотами. В точках kp тангенс и угловой коэффициент составляют 0 и 1 соответственно (рис. 12).

Котангенс не определен там, где синус равен 0 (когда х = kp ). В остальных точках он монотонно убывает, а прямые х = kp его вертикальные асимптоты. В точках х = p /2 + kp котангенс обращается в 0, а угловой коэффициент в этих точках равен –1 (рис. 13).

Четность и периодичность.

Функция называется четной, если f (–x ) = f (x ). Функции косинус и секанс – четные, а синус, тангенс, котангенс и косеканс – функции нечетные:

sin (–α) = – sin α tg (–α) = – tg α
cos (–α) = cos α ctg (–α) = – ctg α
sec (–α) = sec α cosec (–α) = – cosec α

Свойства четности вытекают из симметричности точек P a и Р - a (рис. 14) относительно оси х . При такой симметрии ордината точки меняет знак ((х ; у ) переходит в (х ; –у)). Все функции – периодические, синус, косинус, секанс и косеканс имеют период 2p , а тангенс и котангенс – p :

sin (α + 2) = sin α cos (α + 2) = cos α
tg (α + ) = tg α ctg (α + ) = ctg α
sec (α + 2) = sec α cosec (α + 2) = cosec α

Периодичность синуса и косинуса следует из того, что все точки P a + 2 kp , где k = 0, ±1, ±2,…, совпадают, а периодичность тангенса и котангенса – из того, что точки P a + kp поочередно попадают в две диаметрально противоположные точки окружности, дающие одну и ту же точку на оси тангенсов.

Основные свойства тригонометрических функций могут быть сведены в таблицу:

Функция Область определения Множество значений Четность Участки монотонности (k = 0, ± 1, ± 2,…)
sin x –Ґ x Ґ [–1, +1] нечетная возрастает при x О ((4k – 1) p /2, (4k + 1) p /2),убывает при x О ((4k + 1) p /2, (4k + 3) p /2)
cos x –Ґ x Ґ [–1, +1] четная Возрастает приx О ((2k – 1) p , 2kp ),убывает приx О (2kp , (2k + 1) p )
tg x x p /2 + p k (–Ґ , +Ґ ) нечетная возрастает приx О ((2k – 1) p /2, (2k + 1) p /2)
ctg x x p k (–Ґ , +Ґ ) нечетная убывает приx О (kp , (k + 1) p )
sec x x p /2 + p k (–Ґ , –1] И [+1, +Ґ ) четная Возрастает приx О (2kp , (2k + 1) p ),убывает приx О ((2k – 1) p , 2kp )
cosec x x p k (–Ґ , –1] И [+1, +Ґ ) нечетная возрастает приx О ((4k + 1) p /2, (4k + 3) p /2),убывает приx О ((4k – 1) p /2, (4k + 1) p /2)

Формулы приведения.

По этим формулам значение тригонометрической функции аргумента a , где p /2 a p , можно привести к значению функции аргумента a , где 0 a p /2, как той же, так и дополнительной к ней.

Аргумент b – a + a p – a p + a + a + a 2p – a
sin b cos a cos a sin a –sin a –cos a –cos a –sin a
cos b sin a –sin a –cos a –cos a –sin a sin a cos a

Поэтому в таблицах тригонометрических функций даются значения только для острых углов, причем достаточно ограничиться, например, синусом и тангенсом. В таблице даны только наиболее употребительные формулы для синуса и косинуса. Из них легко получить формулы для тангенса и котангенса. При приведении функции от аргумента вида kp /2 ± a , где k – целое число, к функции от аргумента a :

1) название функции сохраняется, если k четное, и меняется на «дополнительное», если k нечетное;

2) знак в правой части совпадает со знаком приводимой функции в точке kp /2 ± a , если угол a острый.

Например, при приведении ctg (a – p /2) убеждаемся, что a – p /2 при 0 a p /2 лежит в четвертом квадранте, где котангенс отрицателен, и, по правилу 1, меняем название функции: ctg (a – p /2) = –tg a .

Формулы сложения.

Формулы кратных углов.

Эти формулы выводятся прямо из формул сложения:

sin 2a = 2 sin a cos a ;

cos 2a = cos 2 a – sin 2 a = 2 cos 2 a – 1 = 1 – 2 sin 2 a ;

sin 3a = 3 sin a – 4 sin 3 a ;

cos 3a = 4 cos 3 a – 3 cos a ;

Формулу для cos 3a использовал Франсуа Виет при решении кубического уравнения. Он же впервые нашел выражения для cos n a и sin n a , которые позже были получены более простым путем из формулы Муавра.

Если в формулах двойного аргумента заменить a на a /2, их можно преобразовать в формулы половинных углов:

Формулы универсальной подстановки.

Используя эти формулы, выражение, включающее разные тригонометрические функции от одного и того же аргумента, можно переписать как рациональное выражение от одной функции tg (a /2), это бывает полезно при решении некоторых уравнений:

Формулы преобразования сумм в произведения и произведений в суммы.

До появления компьютеров эти формулы использовались для упрощения вычислений. Расчеты производились с помощью логарифмических таблиц, а позже – логарифмической линейки, т.к. логарифмы лучше всего приспособлены для умножения чисел, поэтому все исходные выражения приводили к виду, удобному для логарифмирования, т.е. к произведениям, например:

2 sin a sin b = cos (a – b ) – cos (a + b );

2 cos a cos b = cos (a – b ) + cos (a + b );

2 sin a cos b = sin (a – b ) + sin (a + b ).

Формулы для функций тангенса и котангенса можно получить из вышеприведенных.

Формулы понижения степени.

Из формул кратного аргумента выводятся формулы:

sin 2 a = (1 – cos 2a )/2; cos 2 a = (1 + cos 2a )/2;
sin 3 a = (3 sin a – sin 3a )/4; cos 3 a = (3 cosa + cos 3 a )/4.

С помощью этих формул тригонометрические уравнения можно приводить к уравнениям более низких степеней. Таким же образом можно вывести и формулы понижения для более высоких степеней синуса и косинуса.

Производные и интегралы тригонометрических функций
(sin x )` = cos x ; (cos x )` = –sin x ;
(tg x )` = ; (ctg x )` = – ;
т sin x dx = –cos x + C ; т cos x dx = sin x + C ;
т tg x dx = –ln |cos x | + C ; т ctg x dx = ln |sin x | + C ;

Каждая тригонометрическая функция в каждой точке своей области определения непрерывна и бесконечно дифференцируема. Причем и производные тригонометрических функций являются тригонометрическими функциями, а при интегрировании получаются так же тригонометрические функции или их логарифмы. Интегралы от рациональных комбинаций тригонометрических функций всегда являются элементарными функциями.

Представление тригонометрических функций в виде степенных рядов и бесконечных произведений.

Все тригонометрические функции допускают разложение в степенные ряды. При этом функции sin x b cos x представляются рядами. сходящимися для всех значений x :

Эти ряды можно использовать для получения приближенных выражений sin x и cos x при малых значениях x :

при |x| p /2;

при 0 x| p

(B n – числа Бернулли).

Функции sin x и cos x могут быть представлены в виде бесконечных произведений:

Тригонометрическая система 1, cos x , sin x , cos 2x , sin 2x , ¼, cos nx , sin nx , ¼, образует на отрезке [–p , p ] ортогональную систему функций, что дает возможность представления функций в виде тригонометрических рядов.

определяются как аналитические продолжения соответствующих тригонометрических функций действительного аргумента в комплексную плоскость. Так, sin z и cos z могут быть определены с помощью рядов для sin x и cos x , если вместо x поставить z :

Эти ряды сходятся по всей плоскости, поэтому sin z и cos z – целые функции.

Тангенс и котангенс определяются формулами:

Функции tg z и ctg z – мероморфные функции. Полюсы tg z и sec z – простые (1-го порядка) и находятся в точках z = p /2 + p n, полюсы ctg z и cosec z – также простые и находятся в точках z = p n , n = 0, ±1, ±2,…

Все формулы, справедливые для тригонометрических функций действительного аргумента, справедливы и для комплексного. В частности,

sin (–z ) = –sin z ,

cos (–z ) = cos z ,

tg (–z ) = –tg z ,

ctg (–z ) = –ctg z,

т.е. четность и нечетность сохраняются. Сохраняются и формулы

sin (z + 2p ) = sin z , (z + 2p ) = cos z , (z + p ) = tg z , (z + p ) = ctg z ,

т.е. периодичность также сохраняется, причем периоды такие же, как и для функций действительного аргумента.

Тригонометрические функции могут быть выражены через показательную функцию от чисто мнимого аргумента:

Обратно, e iz выражается через cos z и sin z по формуле:

e iz = cos z + i sin z

Эти формулы носят название формул Эйлера . Леонард Эйлер вывел их в 1743.

Тригонометрические функции также можно выразить через гиперболические функции:

z = –i sh iz , cos z = ch iz, z = –i th iz.

где sh, ch и th – гиперболические синус, косинус и тангенс.

Тригонометрические функции комплексного аргумента z = x + iy , где x и y – действительные числа, можно выразить через тригонометрические и гиперболические функции действительных аргументов, например:

sin (x + iy ) = sin x ch y + i cos x sh y ;

cos (x + iy ) = cos x ch y + i sin x sh y .

Синус и косинус комплексного аргумента могут принимать действительные значения, превосходящие 1 по абсолютной величине. Например:

Если неизвестный угол входит в уравнение как аргумент тригонометрических функций, то уравнение называется тригонометрическим. Такие уравнения настолько часто встречаются, что методы их решения очень подробно и тщательно разработаны. С помощью различных приемов и формул тригонометрические уравнения сводят к уравнениям вида f (x ) = a , где f – какая-либо из простейших тригонометрических функций: синус, косинус, тангенс или котангенс. Затем выражают аргумент x этой функции через ее известное значение а.

Поскольку тригонометрические функции периодичны, одному и тому же а из области значений отвечает бесконечно много значений аргумента, и решения уравнения нельзя записать в виде одной функции от а . Поэтому в области определения каждой из основных тригонометрических функций выделяют участок, на котором она принимает все свои значения, причем каждое только один раз, и находят функцию, обратную ей на этом участке. Такие функции обозначают, приписывая приставку агс (дуга) к названию исходной функции, и называют обратными тригонометрическими функциями или просто аркфункциями.

Обратные тригонометрические функции.

Для sin х , cos х , tg х и ctg х можно определить обратные функции. Они обозначаются соответственно arcsin х (читается «арксинус x »), arcos x , arctg x и arcctg x . По определению, arcsin х есть такое число у, что

sin у = х .

Аналогично и для других обратных тригонометрических функций. Но такое определение страдает некоторой неточностью.

Если отразить sin х , cos х , tg х и ctg х относительно биссектрисы первого и третьего квадрантов координатной плоскости, то функции из-за их периодичности становятся неоднозначными: одному и тому же синусу (косинусу, тангенсу, котангенсу) соответствует бесконечное количество углов.

Чтобы избавиться от неоднозначности, из графика каждой тригонометрической функции выделяется участок кривой шириной p , при этом нужно, чтобы между аргументом и значением функции соблюдалось взаимно однозначное соответствие. Выбираются участки около начала координат. Для синуса в качестве «интервала взаимной однозначности» берется отрезок [–p /2, p /2], на котором синус монотонно возрастает от –1 до 1, для косинуса – отрезок , для тангенса и котангенса соответственно интервалы (–p /2, p /2) и (0, p ). Каждая кривая на интервале отражается относительно биссектрисы и теперь можно определить обратные тригонометрические функции. Например, пусть задано значение аргумента x 0 , такое, что 0 Ј x 0 Ј 1. Тогда значением функции y 0 = arcsin x 0 будет единственное значение у 0 , такое, что –p /2 Ј у 0 Ј p /2 и x 0 = sin y 0 .

Таким образом, арксинус – это функция агсsin а , определенная на отрезке [–1, 1] и равная при каждом а такому значению a , –p /2 a p /2, что sin a = а. Ее очень удобно представлять с помощью единичной окружности (рис. 15). При |а| 1 на окружности есть две точки с ординатой a , симметричные относительно оси у. Одной из них отвечает угол a = arcsin а , а другой – угол p - а. С учетом периодичности синуса решение уравнения sin x = а записывается следующим образом:

х = (–1) n arcsin a + 2p n ,

где n = 0, ±1, ±2,...

Так же решаются другие простейшие тригонометрические уравнения:

cos x = a , –1 = a = 1;

x = ±arcos a + 2p n ,

где п = 0, ±1, ±2,... (рис. 16);

tg х = a ;

x = arctg a + p n,

где п = 0, ±1, ±2,... (рис. 17);

ctg х = а ;

х = arcctg a + p n,

где п = 0, ±1, ±2,... (рис. 18).

Основные свойства обратных тригонометрических функций:

arcsin х (рис. 19): область определения – отрезок [–1, 1]; область значений – [–p /2, p /2], монотонно возрастающая функция;

arccos х (рис. 20): область определения – отрезок [–1, 1]; область значений – ; монотонно убывающая функция;

arctg х (рис. 21): область определения – все действительные числа; область значений – интервал (–p /2, p /2); монотонно возрастающая функция; прямые у = –p /2 и у = p /2 – горизонтальные асимптоты;


arcctg х (рис. 22): область определения – все действительные числа; область значений – интервал (0, p ); монотонно убывающая функция; прямые y = 0 и у = p – горизонтальные асимптоты.

,

Для любого z = x + iy , где x и y – действительные числа, имеют место неравенства

½|e\e y e -y | ≤|sin z |≤½(e y +e -y),

½|e y e -y | ≤|cos z |≤½(e y +e -y ),

из которых при y ® Ґ вытекают асимптотические формулы (равномерно относительно x )

|sin z | » 1/2 e |y| ,

|cos z | » 1/2 e |y| .

Тригонометрические функции возникли впервые в связи с исследованиями в астрономии и геометрии. Соотношения отрезков в треугольнике и окружности, являющиеся по существу тригонометрическими функциями, встречаются уже в 3 в. до н. э. в работах математиков Древней Греции Евклида , Архимеда , Аполлония Пергского и других, однако эти соотношения не являлись самостоятельным объектом исследования, так что тригонометрические функции как таковые ими не изучались. Они рассматривались первоначально как отрезки и в такой форме применялись Аристархом (конец 4 – 2-я половина 3 вв. до н. э.), Гиппархом (2 в. до н. э.), Менелаем (1 в. н. э.) и Птолемеем (2 в. н. э.) при решении сферических треугольников. Птолемей составил первую таблицу хорд для острых углов через 30" с точностью до 10 –6 . Это была первая таблица синусов. Как отношение функция sin a встречается уже у Ариабхаты (конец 5 в.). Функции tg a и ctg a встречаются у аль-Баттани (2-я половина 9 – начало 10 вв.) и Абуль-Вефа (10 в.), который употребляет также sec a и cosec a . Ариабхата знал уже формулу (sin 2 a + cos 2 a ) = 1, а также формулы sin и cos половинного угла, с помощью которых построил таблицы синусов для углов через 3°45"; исходя из известных значений тригонометрических функций для простейших аргументов. Бхаскара (12 в.) дал способ построения таблиц через 1 с помощью формул сложения. Формулы преобразования суммы и разности тригонометрических функций различных аргументов в произведение выводились Региомонтаном (15 в.) и Дж. Непером в связи с изобретением последним логарифмов (1614). Региомонтан дал таблицу значений синуса через 1". Разложение тригонометрических функций в степенные ряды получено И.Ньютоном (1669). В современную форму теорию тригонометрических функций привел Л.Эйлер (18 в.). Ему принадлежат их определение для действительного и комплексного аргументов, принятая ныне символика, установление связи с показательной функцией и ортогональности системы синусов и косинусов.


Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Copyright by cleverstudents

    Все права защищены.
    Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.