Как найти первообразную функции. Первообразная и интегралы

Функция F(x ) называется первообразной для функции f(x ) на заданном промежутке, если для всех x из этого промежутка выполняется равенство

F"(x ) = f (x ) .

Например, функция F(x) = х 2 f(x ) = 2х , так как

F"(x) = (х 2 )" = 2x = f(x).

Основное свойство первообразной

Если F(x) — первообразная для функции f(x) на заданном промежутке, то функция f(x) имеет бесконечно много первообразных, и все эти первообразные можно записать в виде F(x) + С , где С — произвольная постоянная.

Например.

Функция F(x) = х 2 + 1 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 + 1 )" = 2 x = f(x) ;

функция F(x) = х 2 - 1 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 - 1)" = 2x = f(x) ;

функция F(x) = х 2 - 3 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 - 3)" = 2 x = f(x) ;

любая функция F(x) = х 2 + С , где С — произвольная постоянная, и только такая функция, является первообразной для функции f(x ) = 2х .

Правила вычисления первообразных

  1. Если F(x) — первообразная для f(x) , а G(x) — первообразная для g(x) , то F(x) + G(x) — первообразная для f(x) + g(x) . Иными словами, первообразная суммы равна сумме первообразных .
  2. Если F(x) — первообразная для f(x) , и k — постоянная, то k ·F(x) — первообразная для k ·f(x) . Иными словами, постоянный множитель можно выносить за знак производной .
  3. Если F(x) — первообразная для f(x) , и k , b — постоянные, причём k ≠ 0 , то 1 / k · F(k x + b ) — первообразная для f (k x + b ) .

Неопределённый интеграл

Неопределённым интегралом от функции f(x) называется выражение F(x) + С , то есть совокупность всех первообразных данной функции f(x) . Обозначается неопределённый интеграл так:

f(x) dx = F(x) + С ,

f(x) — называют подынтегральной функцией ;

f(x) dx — называют подынтегральным выражением ;

x — называют переменной интегрирования ;

F(x) — одна из первообразных функции f(x) ;

С — произвольная постоянная.

Например, 2 x dx = х 2 + С , cos x dx = sin х + С и так далее.

Слово "интеграл" происходит от латинского слова integer , что означает "восстановленный". Считая неопределённый интеграл от 2 x , мы как бы восстанавливаем функцию х 2 , производная которой равна 2 x . Восстановление функции по её производной, или, что то же, отыскание неопределённого интеграла по данной подынтегральной функции, называется интегрированием этой функции. Интегрирование представляет собой операцию, обратную дифференцированию.Для того чтобы проверить, правильно ли выполнено интегрирование, достаточно продифференцировать результат и получить при этом подынтегральную функцию.

Основные свойства неопределённого интеграла

  1. Производная неопределённого интеграла равна подынтегральной функции:
  2. ( f(x) dx )" = f(x) .

  3. Постоянный множитель подынтегрального выражения можно выносить за знак интеграла:
  4. k · f(x) dx = k · f(x) dx .

  5. Интеграл от суммы (разности) функций равен сумме (разности) интегралов от этих функций:
  6. ( f(x) ± g(x ) ) dx = f(x) dx ± g(x ) dx .

  7. Если k , b — постоянные, причём k ≠ 0 , то
  8. f (k x + b ) dx = 1 / k · F(k x + b ) + С .

Таблица первообразных и неопределённых интегралов


f(x)
F(x) + C
f(x) dx = F(x) + С
I.
$$0$$
$$C$$
$$\int 0dx=C$$
II.
$$k$$
$$kx+C$$
$$\int kdx=kx+C$$
III.
$$x^n~(n\neq-1)$$
$$\frac{x^{n+1}}{n+1}+C$$
$$\int x^ndx=\frac{x^{n+1}}{n+1}+C$$
IV.
$$\frac{1}{x}$$
$$\ln |x|+C$$
$$\int\frac{dx}{x}=\ln |x|+C$$
V.
$$\sin x$$
$$-\cos x+C$$
$$\int\sin x~dx=-\cos x+C$$
VI.
$$\cos x$$
$$\sin x+C$$
$$\int\cos x~dx=\sin x+C$$
VII.
$$\frac{1}{\cos^2x}$$
$$\textrm{tg} ~x+C$$
$$\int\frac{dx}{\cos^2x}=\textrm{tg} ~x+C$$
VIII.
$$\frac{1}{\sin^2x}$$
$$-\textrm{ctg} ~x+C$$
$$\int\frac{dx}{\sin^2x}=-\textrm{ctg} ~x+C$$
IX.
$$e^x$$
$$e^x+C$$
$$\int e^xdx=e^x+C$$
X.
$$a^x$$
$$\frac{a^x}{\ln a}+C$$
$$\int a^xdx=\frac{a^x}{\ln a}+C$$
XI.
$$\frac{1}{\sqrt{1-x^2}}$$
$$\arcsin x +C$$
$$\int\frac{dx}{\sqrt{1-x^2}}=\arcsin x +C$$
XII.
$$\frac{1}{\sqrt{a^2-x^2}}$$
$$\arcsin \frac{x}{a}+C$$
$$\int\frac{dx}{\sqrt{a^2-x^2}}=\arcsin \frac{x}{a}+C$$
XIII.
$$\frac{1}{1+x^2}$$
$$\textrm{arctg} ~x+C$$
$$\int \frac{dx}{1+x^2}=\textrm{arctg} ~x+C$$
XIV.
$$\frac{1}{a^2+x^2}$$
$$\frac{1}{a}\textrm{arctg} ~\frac{x}{a}+C$$
$$\int \frac{dx}{a^2+x^2}=\frac{1}{a}\textrm{arctg} ~\frac{x}{a}+C$$
XV.
$$\frac{1}{\sqrt{a^2+x^2}}$$
$$\ln|x+\sqrt{a^2+x^2}|+C$$
$$\int\frac{dx}{\sqrt{a^2+x^2}}=\ln|x+\sqrt{a^2+x^2}|+C$$
XVI.
$$\frac{1}{x^2-a^2}~(a\neq0)$$
$$\frac{1}{2a}\ln \begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}+C$$
$$\int\frac{dx}{x^2-a^2}=\frac{1}{2a}\ln \begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}+C$$
XVII.
$$\textrm{tg} ~x$$
$$-\ln |\cos x|+C$$
$$\int \textrm{tg} ~x ~dx=-\ln |\cos x|+C$$
XVIII.
$$\textrm{ctg} ~x$$
$$\ln |\sin x|+C$$
$$\int \textrm{ctg} ~x ~dx=\ln |\sin x|+C$$
XIX.
$$ \frac{1}{\sin x} $$
$$\ln \begin{vmatrix}\textrm{tg} ~\frac{x}{2}\end{vmatrix}+C $$
$$\int \frac{dx}{\sin x}=\ln \begin{vmatrix}\textrm{tg} ~\frac{x}{2}\end{vmatrix}+C $$
XX.
$$ \frac{1}{\cos x} $$
$$\ln \begin{vmatrix}\textrm{tg}\left (\frac{x}{2}+\frac{\pi }{4} \right) \end{vmatrix}+C $$
$$\int \frac{dx}{\cos x}=\ln \begin{vmatrix}\textrm{tg}\left (\frac{x}{2}+\frac{\pi }{4} \right) \end{vmatrix}+C $$
Первообразные и неопределённые интегралы, приведённые в этой таблице, принято называть табличными первообразными и табличными интегралами .

Определённый интеграл

Пусть на промежутке [a ; b ] задана непрерывная функция y = f(x) , тогда определённым интегралом от a до b функции f(x) называется приращение первообразной F(x) этой функции, то есть

$$\int_{a}^{b}f(x)dx=F(x)|{_a^b} = ~~F(a)-F(b).$$

Числа a и b называются соответственно нижним и верхним пределами интегрирования.

Основные правила вычисления определённого интеграла

1. \(\int_{a}^{a}f(x)dx=0\);

2. \(\int_{a}^{b}f(x)dx=- \int_{b}^{a}f(x)dx\);

3. \(\int_{a}^{b}kf(x)dx=k\int_{a}^{b}f(x)dx,\) где k — постоянная;

4. \(\int_{a}^{b}(f(x) ± g(x))dx=\int_{a}^{b}f(x) dx±\int_{a}^{b}g(x) dx \);

5. \(\int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx\);

6. \(\int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx\), где f(x) — четная функция;

7. \(\int_{-a}^{a}f(x)dx=0\), где f(x) — нечетная функция.

Замечание . Во всех случаях предполагается, что подынтегральные функции интегрируемые на числовых промежутках, границами которых являются пределы интегрирования.

Геометрический и физический смысл определённого интеграла

Геометрический смысл
определённого интеграла


Физический смысл
определённого интеграла



Площадь S криволинейной трапеции (фигура, ограниченная графиком непрерывной положительной на промежутке [a ; b ] функции f(x) , осью Ox и прямыми x=a , x=b ) вычисляется по формуле

$$S=\int_{a}^{b}f(x)dx.$$

Путь s , который преодолела материальная точка, двигаясь прямолинейно со скоростью, изменяющейся по закону v(t) , за промежуток времени a ; b ] , то площадь фигуры, ограниченной графиками этих функций и прямыми x = a , x = b , вычисляется по формуле

$$S=\int_{a}^{b}(f(x)-g(x))dx.$$


Например. Вычислим площадь фигуры, ограниченной линиями

y = x 2 и y = 2 - x .


Изобразим схематически графики данных функций и выделим другим цветом фигуру, площадь которой необходимо найти. Для нахождения пределов интегрирования решим уравнение:

x 2 = 2 - x ; x 2 + x - 2 = 0 ; x 1 = -2, x 2 = 1 .

$$S=\int_{-2}^{1}((2-x)-x^2)dx=$$

$$=\int_{-2}^{1}(2-x-x^2)dx=\left (2x-\frac{x^2}{2}-\frac{x^3}{2} \right)\bigm|{_{-2}^{~1}}=4\frac{1}{2}. $$

Объём тела вращения


Если тело получено в результате вращения около оси Ox криволинейной трапеции, ограниченной графиком непрерывной и неотрицательной на промежутке [a ; b ] функции y = f(x) и прямыми x = a и x = b , то его называют телом вращения .

Объём тела вращения вычисляется по формуле

$$V=\pi\int_{a}^{b}f^2(x)dx.$$

Если тело вращения получено в результате вращения фигуры, ограниченной сверху и снизу графиками функций y = f(x) и y = g(x) , соответственно, то

$$V=\pi\int_{a}^{b}(f^2(x)-g^2(x))dx.$$


Например. Вычислим объём конуса с радиусом r и высотой h .

Расположим конус в прямоугольной системе координат так, чтобы его ось совпадала с осью Ox , а центр основания располагался в начале координат. Вращение образующей AB определяет конус. Так как уравнение AB

$$\frac{x}{h}+\frac{y}{r}=1,$$

$$y=r-\frac{rx}{h}$$

и для объёма конуса имеем

$$V=\pi\int_{0}^{h}(r-\frac{rx}{h})^2dx=\pi r^2\int_{0}^{h}(1-\frac{x}{h})^2dx=-\pi r^2h\cdot \frac{(1-\frac{x}{h})^3}{3}|{_0^h}=-\pi r^2h\left (0-\frac{1}{3} \right)=\frac{\pi r^2h}{3}.$$

Первообразная

Определение первообразной функции

  • Функцию у= F (x) называют первообразной для функции у=f (x) на заданном промежутке Х, если для всех х Х выполняется равенство: F′(x) = f (x)

Можно прочесть двумя способами:

  1. f производная функции F
  2. F первообразная для функции f

Свойство первообразных

  • Если F(x) - первообразная для функции f(x) на заданном промежутке, то функция f(x) имеет бесконечно много первообразных, и все эти первообразные можно записать в виде F(x) + С , где С - произвольная постоянная.

Геометрическая интерпретация

  • Графики всех первообразных данной функции f (x) получаются из графика какой-либо одной первообразной параллельными переносами вдоль оси Оу .

Правила вычисления первообразных

  1. Первообразная суммы равна сумме первообразных . Если F(x) - первообразная для f(x) , а G(x) - первообразная для g(x) , то F(x) + G(x) - первообразная для f(x) + g(x) .
  2. Постоянный множитель можно выносить за знак производной . Если F(x) - первообразная для f(x) , и k - постоянная, то k·F(x) - первообразная для k·f(x) .
  3. Если F(x) - первообразная для f(x) , и k, b - постоянные, причём k ≠ 0 , то 1/k · F(kx + b) - первообразная для f(kx + b) .

Запомни!

Любая функция F(x) = х 2 + С , где С - произвольная постоянная, и только такая функция, является первообразной для функции f(x) = 2х .

  • Например:

    F"(x) = (х 2 + 1)" = 2x = f(x);

    f(x) = 2х, т.к. F"(x) = (х 2 – 1)" = 2x = f(x);

    f(x) = 2х, т.к. F"(x) = (х 2 –3)" = 2x = f(x);

Связь между графиками функции и ее первообразной:

  1. Если график функции f(x)>0 F(x) возрастает на этом промежутке.
  2. Если график функции f(x)<0 на промежутке, то график ее первообразной F(x) убывает на этом промежутке.
  3. Если f(x)=0 , то график ее первообразной F(x) в этой точке меняется с возрастающего на убывающий (или наоборот).

Для обозначения первообразной используют знак неопределённого интеграла, то есть интеграла без указания пределов интегрирования.

Неопределенный интеграл

Определение :

  • Неопределённым интегралом от функции f(x) называется выражение F(x) + С, то есть совокупность всех первообразных данной функции f(x). Обозначается неопределённый интеграл так: \int f(x) dx = F(x) + C
  • f(x) - называют подынтегральной функцией;
  • f(x) dx - называют подынтегральным выражением;
  • x - называют переменной интегрирования;
  • F(x) - одна из первообразных функции f(x);
  • С - произвольная постоянная.

Свойства неопределённого интеграла

  1. Производная неопределённого интеграла равна подынтегральной функции: (\int f(x) dx)\prime= f(x) .
  2. Постоянный множитель подынтегрального выражения можно выносить за знак интеграла: \int k \cdot f(x) dx = k \cdot \int f(x) dx .
  3. Интеграл от суммы (разности) функций равен сумме (разности) интегралов от этих функций:\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx .
  4. Если k, b - постоянные, причём k ≠ 0, то \int f(kx + b) dx = \frac{1}{k} \cdot F(kx + b) + C .

Таблица первообразных и неопределенных интегралов

Функция

f(x)

Первообразная

F(x) + C

Неопределенные интегралы

\int f(x) dx = F(x) + C

0 C \int 0 dx = C
f(x) = k F(x) = kx + C \int kdx = kx + C
f(x) = x^m, m\not =-1 F(x) = \frac{x^{m+1}}{m+1} + C \int x{^m}dx = \frac{x^{m+1}}{m+1} + C
f(x) = \frac{1}{x} F(x) = l n \lvert x \rvert + C \int \frac{dx}{x} = l n \lvert x \rvert + C
f(x) = e^x F(x) = e^x + C \int e{^x }dx = e^x + C
f(x) = a^x F(x) = \frac{a^x}{l na} + C \int a{^x }dx = \frac{a^x}{l na} + C
f(x) = \sin x F(x) = -\cos x + C \int \sin x dx = -\cos x + C
f(x) = \cos x F(x) =\sin x + C \int \cos x dx = \sin x + C
f(x) = \frac{1}{\sin {^2} x} F(x) = -\ctg x + C \int \frac {dx}{\sin {^2} x} = -\ctg x + C
f(x) = \frac{1}{\cos {^2} x} F(x) = \tg x + C \int \frac{dx}{\sin {^2} x} = \tg x + C
f(x) = \sqrt{x} F(x) =\frac{2x \sqrt{x}}{3} + C
f(x) =\frac{1}{ \sqrt{x}} F(x) =2\sqrt{x} + C
f(x) =\frac{1}{ \sqrt{1-x^2}} F(x)=\arcsin x + C \int \frac{dx}{ \sqrt{1-x^2}}=\arcsin x + C
f(x) =\frac{1}{ \sqrt{1+x^2}} F(x)=\arctg x + C \int \frac{dx}{ \sqrt{1+x^2}}=\arctg x + C
f(x)=\frac{1}{ \sqrt{a^2-x^2}} F(x)=\arcsin \frac {x}{a}+ C \int \frac{dx}{ \sqrt{a^2-x^2}} =\arcsin \frac {x}{a}+ C
f(x)=\frac{1}{ \sqrt{a^2+x^2}} F(x)=\arctg \frac {x}{a}+ C \int \frac{dx}{ \sqrt{a^2+x^2}} = \frac {1}{a} \arctg \frac {x}{a}+ C
f(x) =\frac{1}{ 1+x^2} F(x)=\arctg + C \int \frac{dx}{ 1+x^2}=\arctg + C
f(x)=\frac{1}{ \sqrt{x^2-a^2}} (a \not= 0) F(x)=\frac{1}{2a}l n \lvert \frac {x-a}{x+a} \rvert + C \int \frac{dx}{ \sqrt{x^2-a^2}}=\frac{1}{2a}l n \lvert \frac {x-a}{x+a} \rvert + C
f(x)=\tg x F(x)= - l n \lvert \cos x \rvert + C \int \tg x dx =- l n \lvert \cos x \rvert + C
f(x)=\ctg x F(x)= l n \lvert \sin x \rvert + C \int \ctg x dx = l n \lvert \sin x \rvert + C
f(x)=\frac{1}{\sin x} F(x)= l n \lvert \tg \frac{x}{2} \rvert + C \int \frac {dx}{\sin x} = l n \lvert \tg \frac{x}{2} \rvert + C
f(x)=\frac{1}{\cos x} F(x)= l n \lvert \tg (\frac{x}{2} +\frac{\pi}{4}) \rvert + C \int \frac {dx}{\cos x} = l n \lvert \tg (\frac{x}{2} +\frac{\pi}{4}) \rvert + C


Формула Ньютона–Лейбница

Пусть f (х) данная функция, F её произвольная первообразная.

\int_{a}^{b} f(x) dx =F(x)|_{a}^{b} = F(b) - F(a)

где F(x) - первообразная для f(x)

То есть, интеграл функции f (x) на интервале равен разности первообразных в точках b и a .

Площадь криволинейной трапеции

Криволинейной трапецией называется фигура, ограниченная графиком неотрицательной и непрерывной на отрезке функции f , осью Ox и прямыми x = a и x = b .

Площадь криволинейной трапеции находят по формуле Ньютона-Лейбница:

S= \int_{a}^{b} f(x) dx

Таблица первообразных

Определение. Функция F(x) на заданном промежутке называется первообразной для функции f(x) , для всех x из этого промежутка, если F"(x)=f(x) .

Операция нахождение первообразной для функции называется интегрированием . Она является обратной к операции дифференцирования.

Теорема. Всякая непрерывная на промежутке функция (x) имеет первообразную на этом же промежутке.

Теорема (основное свойство первообразной). Если на некотором промежутке функция F(x) является первообразной для функции f(x ), то на этом промежутке первообразной для f(x) будет также функция F(x)+C , где C произвольная постоянная.

Из этой теоремы выплывает, что когда f(x) имеет на заданном промежутке первообразную функцию F(x) , то этих первобытных множество. Придавая C произвольных числовых значений, каждый раз будем получать первообразную функцию.

Для нахождения первообразных пользуются таблицей первообразных . Она получается из таблицы производных.

Понятие неопределенного интеграла

Определение. Совокупность всех первообразных функций для функции f(x) называется неопределенным интегралом и обозначается .

При этом f(x) называется подынтегральной функцией , а f(x) dx - подынтегральным выражением .

Следовательно, если F(x) , является первообразной для f(x) , то .

Свойства неопределенного интеграла

Понятие определенного интеграла

Рассмотрим плоскую фигуру, ограниченную графиком непрерывной и неотрицательной на отрезке [а; b] функции f(x) , отрезком [а; b] , и прямыми x=a и x=b .

Полученная фигура называется криволинейной трапецией . Вычислим ее площадь.

Для этого разобьем отрезок [а; b] на n равных отрезков. Длины каждого из отрезков равняются Δx .

Это динамический рисунок GeoGebra .
Красные элементы можно изменять

Рис. 1. Понятие определенное интеграла

На каждом отрезке, построим прямоугольники с высотами f(x k-1) (Рис. 1).

Площадь каждого такого прямоугольника равняется S k = f(x k-1)Δx k .

Площадь всех таких прямоугольников равняется .

Эту сумму называют интегральной суммой для функции f(x) .

Если n→∞ то площадь построенной таким образом фигуры будет все менее отличаться от площади криволинейной трапеции.

Определение. Граница интегральной суммы, когда n→∞ называется определенным интегралом , и записывается так:.

читается: "интеграл от a к b f от xdx "

Число а называется нижним пределом интегрирования, b – верхним пределом интегрирования, отрезок [а; b] – промежутком интегрирования.

Свойства определенного интеграла

Формула Ньютона-Лейбница

Определенный интеграл тесно связан с первообразной и неопределенным интегралом формулой Ньютона-Лейбница

.

Использование интеграла

Интегральное исчисление широко используется при решении разнообразных практических задач. Рассмотрим некоторые из них.

Вычисление объемов тел

Пусть задана функция, которая задает площадь поперечного сечения тела в зависимости от некоторой переменной S = s(x), x[а; b] . Тогда объем данного тела можно найти интегрируя данную функцию в соответствующих пределах.

Если нам задано тело, которое получено вращением вокруг оси Ох криволинейной трапеции ограниченной некоторой функцией f(x), x [а; b] . (Рис. 3). То площади поперечных сечений можно вычислить по известной формуле S = π f 2 (x) . Поэтому формула объема такого тела вращения

Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на оптимизацию.

Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача - задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти закон движения.
Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = v(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна gt. Нетрудно догадаться, что \(s(t) = \frac{gt^2}{2} \). В самом деле
\(s"(t) = \left(\frac{gt^2}{2} \right)" = \frac{g}{2}(t^2)" = \frac{g}{2} \cdot 2t = gt \)
Ответ: \(s(t) = \frac{gt^2}{2} \)

Сразу заметим, что пример решен верно, но неполно. Мы получили \(s(t) = \frac{gt^2}{2} \). На самом деле задача имеет бесконечно много решений: любая функция вида \(s(t) = \frac{gt^2}{2} + C \), где C - произвольная константа, может служить законом движения, поскольку \(\left(\frac{gt^2}{2} +C \right)" = gt \)

Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s 0 , то из равенства s(t) = (gt 2)/2 + C получаем: s(0) = 0 + С, т. е. C = s 0 . Теперь закон движения определен однозначно: s(t) = (gt 2)/2 + s 0 .

В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например: возведение в квадрат (х 2) и извлечение квадратного корня (\(\sqrt{x} \)), синус (sin x) и арксинус (arcsin x) и т. д. Процесс нахождения производной по заданной функции называют дифференцированием , а обратную операцию, т. е. процесс нахождения функции по заданной производной, - интегрированием .

Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у" = f"(x). Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у" = f"(x), первичный образ, или первообразная.

Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для \(x \in X \) выполняется равенство F"(x) = f(x)

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры.
1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для любого х справедливо равенство (x 2)" = 2х
2) Функция у = х 3 является первообразной для функции у = 3х 2 , поскольку для любого х справедливо равенство (x 3)" = 3х 2
3) Функция у = sin(x) является первообразной для функции y = cos(x), поскольку для любого x справедливо равенство (sin(x))" = cos(x)

При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.

Правило 2. Если F(x) - первообразная для f(x), то kF(x) - первообразная для kf(x).

Теорема 1. Если y = F(x) - первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция \(y=\frac{1}{k}F(kx+m) \)

Теорема 2. Если y = F(x) - первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много первообразных, и все они имеют вид y = F(x) + C.

Методы интегрирования

Метод замены переменной (метод подстановки)

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл \(\textstyle \int F(x)dx \). Сделаем подстановку \(x= \varphi(t) \) где \(\varphi(t) \) - функция, имеющая непрерывную производную.
Тогда \(dx = \varphi " (t) \cdot dt \) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:
\(\int F(x) dx = \int F(\varphi(t)) \cdot \varphi " (t) dt \)

Интегрирование выражений вида \(\textstyle \int \sin^n x \cos^m x dx \)

Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.

Интегрирование по частям

Интегрирование по частям - применение следующей формулы для интегрирования:
\(\textstyle \int u \cdot dv = u \cdot v - \int v \cdot du \)
или:
\(\textstyle \int u \cdot v" \cdot dx = u \cdot v - \int v \cdot u" \cdot dx \)

Таблица неопределённых интегралов (первообразных) некоторых функций

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac{x^{n+1}}{n+1} +C \;\; (n \neq -1) $$ $$ \int \frac{1}{x} dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac{a^x}{\ln a} +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $$ \int \frac{dx}{\cos^2 x} = \text{tg} x +C $$ $$ \int \frac{dx}{\sin^2 x} = -\text{ctg} x +C $$ $$ \int \frac{dx}{\sqrt{1-x^2}} = \text{arcsin} x +C $$ $$ \int \frac{dx}{1+x^2} = \text{arctg} x +C $$ $$ \int \text{ch} x dx = \text{sh} x +C $$ $$ \int \text{sh} x dx = \text{ch} x +C $$

Цель:

  • Формирование понятия первообразной.
  • Подготовка к восприятию интеграла.
  • Формирование вычислительных навыков.
  • Воспитание чувства прекрасного (умение видеть красоту в необычном).

Математический анализ - совокупность разделов математики, посвященных исследованию функций и их обобщений методами дифференциального и интегрального исчислений.

Если до настоящего времени мы изучали раздел математического анализа, называемого диффренциальным исчислением, суть которого заключается в изучении функции в “малом”.

Т.е. исследование функции в достаточно малых окрестностях каждой точки определения. Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.

Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.

Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.

Пример №1 .

Пусть (х)`=3х 2 .
Найдем f(х).

Решение:

Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х 3 , ибо (х 3)`=3х 2
Однако, легко можно заметить, что f(х) находится неоднозначно.
В качестве f(х) можно взять
f(х)= х 3 +1
f(х)= х 3 +2
f(х)= х 3 -3 и др.

Т.к.производная каждой из них равно 3х 2 . (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х 3 +С, где С - любое постоянное действительное число.

Любую из найденных функций f(х) называют ПЕРВООБРАЗНОЙ для функции F`(х)= 3х 2

Определение. Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х 3 первообразная для f(х)=3х 2 на (- ∞ ; ∞).
Так как, для всех х ~R справедливо равенство: F`(х)=(х 3)`=3х 2

Как мы уже заметили, данная функция имеет бесконечное множество первообразных (смотри пример № 1).

Пример № 2. Функция F(х)=х есть первообразная для всех f(х)= 1/х на промежутке (0; +), т.к. для всех х из этого промежутка, выполняется равенство.
F`(х)= (х 1/2)`=1/2х -1/2 =1/2х

Пример № 3. Функция F(х)=tg3х есть первообразная для f(х)=3/cos3х на промежутке (-п/2; п/2),
т.к. F`(х)=(tg3х)`= 3/cos 2 3х

Пример № 4. Функция F(х)=3sin4х+1/х-2 первообразная для f(х)=12cos4х-1/х 2 на промежутке (0;∞)
т.к. F`(х)=(3sin4х)+1/х-2)`= 4cos4х-1/х 2

Лекция 2.

Тема: Первообразная. Основное свойство первообразной функции.

При изучении первообразной будем опираться на следующее утверждение. Признак постоянства функции: Если на промежутке J производная Ψ(х) функции равна 0, то на этом промежутке функция Ψ(х) постоянна.

Это утверждение можно продемонстрировать геометрически.

Известно, что Ψ`(х)=tgα, γде α-угол наклона касательной к графику функции Ψ(х) в точке с абсциссой х 0 . Если Ψ`(υ)=0 в любой точке промежутка J, то tgα=0 δля любой касательной к графику функции Ψ(х). Это означает, что касательная к графику функции в любой его точке параллельна оси абсцисс. Поэтому на указанном промежутке график функции Ψ(х) совпадает с отрезком прямой у=С.

Итак, функция f(х)=с постоянна на промежутке J, если f`(х)=0 на этом промежутке.

Действительно, для произвольного х 1 и х 2 из промежутка J по теореме о среднем значении функции можно записать:
f(х 2)- f(х 1)=f`(с) (х 2 - х 1), т.к. f`(с)=0, то f(х 2)= f(х 1)

Теорема: (Основное свойство первообразной функции)

Если F(х) одна из первообразных для функции f(х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.

Доказательство:

Пусть F`(х) = f (х), тогда (F(х)+С)`= F`(х)+С`= f (х), для х Є J.
Допустим существует Φ(х)- другая первообразная для f (х) на промежутке J, т.е. Φ`(х) = f (х),
тогда (Φ(х)- F(х))` = f (х) – f (х) = 0, для х Є J.
Это означает, что Φ(х)- F(х) постоянна на промежутке J.
Следовательно, Φ(х)- F(х) = С.
Откуда Φ(х)= F(х)+С.
Это значит, что если F(х) - первообразная для функции f (х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.
Следовательно, любые две первообразные данной функции отличаются друг от друга постоянным слагаемым.

Пример: Найти множество первообразных функции f (х) = cos х. Изобразить графики первых трех.

Решение: Sin х - одна из первообразных для функции f (х) = cos х
F(х) = Sin х+С –множество всех первообразных.

F 1 (х) = Sin х-1
F 2 (х) = Sin х
F 3 (х) = Sin х+1

Геометрическая иллюстрация: График любой первообразной F(х)+С можно получить из графика первообразной F(х) при помощи параллельного переноса r (0;с).

Пример: Для функции f (х) = 2х найти первообразную, график которой проходит через т.М (1;4)

Решение: F(х)=х 2 +С – множество всех первообразных, F(1)=4 - по условию задачи.
Следовательно, 4 = 1 2 +С
С = 3
F(х) = х 2 +3