Михаил лукин объявил о создании. Будущее наступило: когда без квантовых компьютеров не получится обойтись. Откуда взялась идея эксперимента с задержкой света

В ходе Международной квантовой конференции в Москве российский учёный Михаил Лукин представил самый мощный на сегодняшний день 51-кубитный квантовый компьютер. Число 51 было выбрано не случайно: Google уже долгое время работает над 49-кубитным квантовым компьютером, а потому обойти конкурента было для Лукина, как для азартного учёного, делом принципа.


«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, - отмечает сооснователь Российского квантового центра Сергей Белоусов. - Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью - развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, - справедливо считает Джон Мартинес. - Настоящая гонка у нас с природой. Потому что это действительно сложно - создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита - это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Сами же кубиты, в количестве которых так неистово «соревнуются» учёные, - это вычислительный юнит, который одновременно представляет собой и ноль, и единицу, в то время как привычный бит - это либо одно, либо другое. Современные суперкомпьютеры выстраивают последовательности, а квантовые компьютеры, в свою очередь, проводят вычисления параллельно, в одно мгновение. Благодаря такому подходу вычисления, на которые сегодняшним суперкомпьютерам понадобятся тысячи лет, квантовый компьютер может осуществить моментально.

«Это одна из самых больших квантовых систем, которые были созданы, - рассказывает Михаил Лукин, профессор Гарвардского университета и сооснователь Российского квантового центра. - Мы входим в тот режим, где уже классические компьютеры не могут справиться с вычислениями. Делаем маленькие открытия, увидели новые эффекты, которые не ожидались теоретически, которые мы сейчас можем, мы пытаемся понять, но до конца не понимаем».

Пока даже создатели мощнейших квантовых компьютеров не могут сказать наверняка, зачем человечеству понадобятся настолько мощные вычислительные машины. Возможно, с их помощью будут разработаны принципиально новые материалы. Могут быть совершены новые открытия на ниве физики или химии. Или, возможно, квантовые компьютеры помогут, наконец, полностью понять природу человеческого мозга и сознания.

«Когда совершается научное открытие, его создатели не представляют всю мощь, которую оно принесёт, - полагает Руслан Юнусов, директор Российского квантового центра. - Здесь можно привести пример транзистора. Когда придуман был транзистор, то никто не представлял, что на этом транзисторе построятся компьютеры. А когда построили компьютеры, никто не представлял, как сильно изменится жизнь».

МОСКВА, 14 июл — РИА Новости. Российские и американские ученые, работающие в Гарварде, создали и проверили первый в мире квантовый компьютер, состоящий из 51 кубита. Устройство пока является самой сложной вычислительной системой такого рода, заявил профессор Гарвардского университета, сооснователь Российского квантового центра (РКЦ) Михаил Лукин.

Физик сообщил об этом, выступая с докладом на Международной конференции по квантовым технологиям ICQT-2017, которая проводится под эгидой РКЦ в Москве. Это достижение позволило группе Лукина стать лидером в гонке по созданию полноценного квантового компьютера, которая неофициально проходит уже несколько лет между несколькими группами ведущих физиков мира.

Квантовые компьютеры представляют собой особые вычислительные устройства, чья мощность растет экспоненциальным образом благодаря использованию законов квантовой механики в их работе. Все подобные устройства состоят из кубитов — ячеек памяти и одновременно примитивных вычислительных модулей, способных хранить в себе спектр значений между нулем и единицей.

Сегодня существует два основных подхода к разработке подобных устройств — классический и адиабатический. Сторонники первого из них пытаются создать универсальный квантовый компьютер, кубиты в котором подчинялись бы тем правилам, по которым работают обычные цифровые устройства. Работа с подобным вычислительным устройством в идеале не будет сильно отличаться от того, как инженеры и программисты управляют обычными компьютерами. Адиабатический компьютер проще создать, но он ближе по принципам своей работы к аналоговым компьютерам начала XX века, а не к цифровым устройствам современности.

В прошлом году сразу несколько команд ученых и инженеров из США, Австралии и ряда европейских стран заявляли о том, что они близки к созданию подобной машины. Лидером в этой неформальной гонке считалась команда Джона Мартиниса из компании Google, разрабатывающая необычный "гибридный" вариант универсального квантового вычислителя, сочетающего в себе элементы аналогового и цифрового подхода к таким расчетам.

Лукин и его коллеги по РКЦ и Гарварду обошли группу Мартиниса, которая, как рассказал Мартинис РИА Новости, сейчас работает над созданием 22-кубитной вычислительной машины, используя не сверхпроводники, как ученые из Google, а экзотические "холодные атомы".

Как обнаружили российские и американские ученые, набор атомов, удерживаемых внутри специальных лазерных "клеток" и охлажденных до сверхнизких температур, можно использовать в качестве кубитов квантового компьютера, сохраняющих стабильность работы при достаточно широком наборе условий. Это позволило физикам создать пока самый большой квантовый вычислитель из 51 кубита.

Используя набор подобных кубитов, команда Лукина уже решила несколько физических задач, чрезвычайно сложных для моделирования при помощи "классических" суперкомпьютеров. К примеру, российские и американские ученые смогли просчитать то, как ведет себя большое облако частиц, связанных между собой, обнаружить ранее неизвестные эффекты, возникающие внутри него. Оказалось, что при затухании возбуждения в системе могут остаться и удерживаться фактически бесконечно некоторые типы колебаний, о чем раньше ученые не подозревали.

Для проверки результатов этих вычислений Лукину и его коллегам пришлось разработать специальный алгоритм, который позволил провести аналогичные расчеты в очень грубом виде на обычных компьютерах. Результаты в целом совпали, это подтвердило, что 51-кубитная система ученых из Гарварда работает на практике.

В ближайшее время ученые намерены продолжить эксперименты с квантовым компьютером. Лукин не исключает, что его команда попытается запустить на нем знаменитый квантовый алгоритм Шора, который позволяет взломать большинство существующих систем шифрования на базе алгоритма RSA. По словам Лукина, статья с первыми результатами работы квантового компьютера уже была принята к публикации в одном из рецензируемых научных журналов.

Когда речь заходит о выдающихся российских ученых, многие вспоминают героев прошлых лет - Менделеева, Павлова или Ландау, забывая, что и среди наших современников есть множество незаурядных исследователей. Ко Дню российской науки «Чердак» собрал имена тех, кто сделал значимые открытия уже в XXI веке.

Физика

Андрей Гейм. Фото: ИТАР-ТАСС/ Станислав Красильников

В новом тысячелетии Нобелевская премия по физике доставалась русскоязычным ученым трижды, правда лишь в 2010 году - за открытие, совершенное в XXI веке. Выпускники МФТИ Андрей Гейм и Константин Новоселов в лаборатории Манчестерского университета впервые смогли получить стабильный двумерный кристалл углерода - графен. Он представляет собой очень тонкую - толщиной в один атом - углеродную пленку, которая благодаря своей структуре обладает множеством интересных свойств: это и замечательная проводимость, и прозрачность, и гибкость, и очень высокая прочность. Для графена все время находят новые и новые области применения, например в микроэлектронике: из него создают гибкие дисплеи, электроды и солнечные батареи.

Михаил Лукин. Фото: ИТАР-ТАСС/ Денис Вышинский

Еще один выпускник МФТИ, а ныне профессор физики Гарвардского университета Михаил Лукин , сделал, казалось бы, невозможное: он остановил свет. Для этого ученый использовал сверхохлажденные пары рубидия и два лазера: контрольный делал среду проводимой для света, а второй служил источником короткого светового импульса. При отключении контрольного лазера частицы светового импульса переставали выходить из среды, как бы останавливаясь в ней. Этот эксперимент стал настоящим прорывом на пути создания квантовых компьютеров - машин совершенно нового типа, которые могут параллельно выполнять колоссальное количество операций. Ученый продолжил исследования в этой области, и в 2012 году его группа в Гарварде создала самый долгоживущий на тот момент кубит, наименьший элемент для хранения информации в квантовом компьютере. А в 2013-м Лукин впервые получил фотонную материю - подобие вещества, только состоящее не из атомов, а из частиц света, фотонов. Ее также планируют использовать для квантовых вычислений.

Юрий Оганесян (в центре) с Георгием Флеровым и Константином Петржаком. Фото из электронного архива ОИЯИ

Российские ученые в XXI веке значительно расширили таблицу Менделеева. Например, в январе 2016 года в нее добавились элементы с номерами 113, 115, 117 и 118, три из которых были впервые получены в Объединенном институте ядерных исследований (ОИЯИ) в Дубне под руководством академика РАН Юрия Оганесяна . Ему также принадлежит честь открытия ряда других сверхтяжелых элементов и реакций их синтеза: в природе элементы тяжелее урана не существуют - слишком нестабильны, так что они создаются искусственно в ускорителях. Кроме того, Оганесян экспериментально подтвердил, что для сверхтяжелых элементов есть так называемый «остров стабильности». Все эти элементы очень быстро распадаются, но сперва теоретически, а затем и экспериментально было показано, что среди них должны быть такие, время жизни которых значительно превышает время жизни соседей по таблице.

Химия

Артем Оганов. Фото из личного архива

Химик Артем Оганов , руководитель лабораторий в США, Китае и России, а теперь еще и профессор Сколковского института науки и технологий, создал алгоритм, который позволяет с помощью компьютера искать вещества с заранее заданными свойствами, даже невозможные с точки зрения классической химии. Разработанный Огановым метод лег в основу программы USPEX (что читается как русское слово «успех»), которая широко применяется по всему миру («Чердак» подробно ). С ее помощью были открыты новые магниты, и вещества, способные существовать в экстремальных условиях, например под высоким давлением. Предполагается, что такие условия вполне могут быть на других планетах, а значит, там и предсказанные Огановым вещества.

Валерий Фокин. Биофармацевтический кластер «Северный»

Однако необходимо не только смоделировать вещества с заранее заданными свойствами, но и создать их на практике. Для этого в 1997 году в химии была введена новая парадигма, так называемая клик-химия . Слово «клик» имитирует звук защелки, ведь новый термин был введен для реакций, которые должны при любых условиях соединять маленькие составные части в нужную молекулу. Сперва ученые с недоверием отнеслись к существованию чудо-реакции, однако в 2002 году Валерий Фокин , выпускник Нижегородского государственного университета имени Лобачевского, сейчас работающий в Институте Скриппс в Калифорнии, открыл такую «молекулярную защелку»: она состоит из азида и алкина и работает в присутствии меди в воде с аскорбиновой кислотой. С помощью этой нехитрой реакции можно соединять друг с другом совершенно различные соединения: белки, красители, неорганические молекулы. Такой «клик»-синтез веществ с заранее известными свойствами прежде всего необходим при создании новых лекарств.

Биология

Евгений Кунин. Фото из личного архива ученого

Однако для лечения болезни иногда необходимо не просто нейтрализовать вирус или бактерию, но и подправить собственные гены. Нет, это не сюжет для фантастического фильма: ученые уже разработали несколько систем «молекулярных ножниц», способных редактировать геном (подробнее об удивительной технологии в статье «Чердака»). Наиболее перспективной среди них считается система CRISPR/Cas9, в основу которой лег механизм защиты от вирусов, существующий у бактерий и архей. Один из ключевых исследователей этой системы - наш бывший соотечественник Евгений Кунин , уже много лет работающий в Национальном центре биотехнологической информации США. Помимо CRISPR-систем ученый интересуется многими вопросами генетики, эволюционной и вычислительной биологии, так что недаром его индекс Хирша (индекс цитируемости статей ученого, отражающий, насколько востребованы его исследования) перевалил за 130 - это абсолютный рекорд среди всех русскоязычных ученых.

Вячеслав Эпштейн. Фото Северо-западного университета

Впрочем, опасность сегодня предоставляют не только поломки генома, но и самые обычные микробы. Дело в том, что за последние 30 лет не было создано ни одного нового типа антибиотиков, а к старым бактерии постепенно становятся невосприимчивыми. На счастье человечества, в январе 2015 года группа ученых из Северо-восточного университета США объявила о создании абсолютно нового противомикробного средства. Для этого ученые обратились к изучению почвенных бактерий, вырастить которые в условиях лаборатории прежде считалось невозможным. Чтобы обойти эту преграду, сотрудник Северо-восточного университета, выпускник МГУ Вячеслав Эпштейн вместе с коллегой разработал специальный чип для выращивания непокорных бактерий прямо на дне океана – таким хитрым способом ученый обошел проблему повышенной «капризности» бактерий, которые никак не хотели расти в чашке Петри. Эта методика и легла в основу большого исследования, результатом которого стал антибиотик теиксобактин, который может справиться и с туберкулезом, и с золотистым стафилококком.

Математика

Григорий Перельман. Фото: George M. Bergman - Mathematisches Institut Oberwolfach (MFO)

Даже весьма далекие от науки люди наверняка слышали о математике из Санкт-Петербурга Григории Перельмане . В 2002-2003 годах он опубликовал три статьи, доказывающие гипотезу Пуанкаре. Эта гипотеза относится к разделу математики, который называется топологией и объясняет наиболее общие свойства пространства. В 2006 году доказательство было принято математическим сообществом, и гипотеза Пуанкаре, таким образом, стала первой решенной среди так называемых семи задач тысячелетия . К ним относятся классические математические проблемы, доказательства которых не были найдены на протяжении многих лет. За свое доказательство Перельман был удостоен Филдсовской премии, которую часто называют Нобелевкой для математиков, а также премии, установленной Математическим институтом Клэя за решение задач тысячелетия. От всех наград ученый отказался, чем и привлек к себе внимание далекой от математики общественности.

Станислав Смирнов. Фото: ИТАР-ТАСС/ Юрий Белинский

Работающий в Женевском университете Станислав Смирнов в 2010 году тоже стал обладателем Филдсовской премии. Самую престижную в математическом мире награду ему принесло доказательство конформной инвариантности двумерной перколяции и модели Изинга в статистической физике - эта вещь с непроизносимым названием используется теоретиками для описания намагниченности материала и применяется в разработке квантовых компьютеров.

Андрей Окуньков. Фото: «Радио Свобода»

Перельман и Смирнов - представители Ленинградской математической школы, выпускники небезызвестной 239-й школы и математико-механического факультета СПбГУ. Но были среди номинантов математической Нобелевки и москвичи, например много лет проработавший в США профессор Колумбийского университета, выпускник МГУ Андрей Окуньков . Он получил медаль Филдса в 2006 году, одновременно с Перельманом, за достижения, соединяющие теорию вероятностей, теорию представлений и алгебраическую геометрию. На практике работы Окунькова разных лет нашли применение как в статистической физике для описания поверхностей кристаллов, так и в теории струн - области физики, пытающейся объединить принципы квантовой механики и теории относительности.

История

Петр Турчин. Фото: Технологический университет Стивенс

Новую теорию на стыке математики и гуманитарных наук предложил Петр Турчин . Удивительно, что при этом сам Турчин не математик и не историк: он биолог, учившийся в МГУ, ныне работает в университете Коннектикута и занимается исследованием популяций. Процессы популяционной биологии развиваются на протяжении долгого времени, и для их описания и анализа зачастую необходимо построение математических моделей. Но моделирование можно использовать и для лучшего понимания социальных и исторических явлений в человеческом обществе. Именно это и сделал в 2003 году Турчин, назвав новый подход клиодинамикой (от имени музы истории Клио). С помощью этого метода самим Турчиным были установлены «вековые» демографические циклы.

Лингвистика

Андрей Зализняк. Фото: Mitrius/wikimedia

Ежегодно в Новгороде, а также в некоторых других древних русских городах, таких как Москва, Псков, Рязань и даже Вологда, находят все новые и новые берестяные грамоты, возраст которых датируется XI-XV веком. В них можно найти личную и официальную переписку, детские упражнения, рисунки, шутки, а то и вовсе любовные послания - «Чердак» о самых смешных древнерусских надписях. Живой язык грамот помогает исследователям разобраться в новгородском диалекте, а также в жизни простого народа и истории Руси. Самый известный исследователь берестяных грамот - это, безусловно, академик РАН Андрей Зализняк : недаром на его ежегодные лекции, посвященные вновь найденным грамотам и расшифровке старых, набивается полный зал народу.

Климатология

Василий Титов. Фото с сайта noaa.gov

Утром 26 декабря 2004-го, в день трагического цунами в Индонезии, унесшего, по разным оценкам, жизни 200-300 тысяч человек, выпускник НГУ, работающий в Центре по исследованию цунами при Национальной океанической и атмосферной администрации в Сиэтле (США), Василий Титов проснулся знаменитым. И это не просто фигура речи: узнав о сильнейшем землетрясении, произошедшем в Индийском океане, ученый, прежде чем лечь спать, решил запустить на компьютере программу по прогнозированию волны цунами и выложил ее результаты в сеть. Его прогноз оказался очень точным, но, к сожалению, был сделан слишком поздно и потому не смог предотвратить человеческих жертв. Теперь же программа по прогнозированию цунами MOST , разработанная Титовым, используется во многих странах мира.

Астрономия

Константин Батыгин. Фото с сайта caltech.edu

В январе 2016 года мир потрясла еще одна новость: в нашей родной Солнечной системе . Одним из авторов открытия оказался родившийся в России Константин Батыгин из Калифорнийского университета. Исследовав движение шести космических тел, находящихся за орбитой Нептуна - последней из признанных на данный момент планет, ученые с помощью вычислений показали, что на расстоянии, в семь раз превышающем расстояние от Нептуна до Солнца, должна находится еще одна, обращающаяся вокруг Солнца планета. Размер ее, по оценкам ученых, в 10 раз превышает диаметр Земли. Однако для того, чтобы окончательно убедиться в существовании далекого гиганта, все еще необходимо увидеть его с помощью телескопа.

Недавно гарвардской группе физика Михаила Лукина удалось создать - фактически, подобие вещества, которое состоит не из атомов, а из квантов света. Это фундаментальное открытие, - ранее о возможности фотонной материи говорили только теоретически, - имеет непосредственное практическое применение: на основе взаимодействующих фотонов можно создавать вычислительную логику для квантовых компьютеров. Пока это дело отдаленного будущего, но уже сейчас группа Лукина работает над созданием коммуникационных устройств для систем абсолютно защищенной связи.

Михаил Лукин, - профессор Гарвардского университета и по совместительству глава Международного консультативного совета Российского квантового центра . Он - один из самых цитируемых физиков российского происхождения. Его группа занимается не только фундаментальными исследованиями в фотонике, но и ее технологическим применением. Причем не только в области квантовых коммуникаций или квантовых вычислений, но и в применении к медицине: летом этого года группа Лукина создала алмазные , с помощью которых можно селективно и контролируемо убивать раковые клетки. «Лента.ру» поговорила с ученым о том, как новое открытие способно приблизить появление полноценных квантовых компьютеров, легко ли фундаментальная физика превращается в медицинские стартапы и о том, что он делает для Сколково, работая в Бостоне.

«Лента.ру»: В вашей последней статье говорится о создании фотонной материи. Что это такое?

Давайте я попробую объяснить на простом примере. Представьте два лазерных пучка, которые вы перекрещиваете друг с другом. Фотоны этих пучков никак не взаимодействуют, они проходят друг сквозь друга, никак друг на друга не влияя, как две волны на поверхности озера. Это происходит вследствие того, что индивидуальные кванты света, фотоны, - фундаментально не взаимодействующие частицы. Однако если те же лазерные пучки вы скрестите не в вакууме, а в некоей среде, например в стекле, ситуация поменяется. Свет разных пучков станет взаимодействовать: лучи будут друг друга немного отклонять или скорость в одном пучке будет меняться в зависимости от интенсивности другого.

Почему это происходит? Дело в том, что свет сам по себе меняет среду, в которой он распространяется. Обычно очень слабо, но меняет. Изменившаяся среда по-другому проводит электромагнитное излучение - и именно через среду происходит взаимодействие фотонов.

Все это довольно давно известно. Область физики, которая занимается подобными взаимодействиями, существует уже почти полвека и называется нелинейной оптикой. В нее, кстати говоря, большой вклад сделали советские ученые. Однако до сих пор никому не удавалось заставить взаимодействовать не лазерные лучи, а отдельные кванты света.

В принципе, теоретически над этим многие думали ранее. Лет 20-30 назад были теоретические предсказания касательно того, какую среду распространения света нужно сделать, чтобы заставить фотоны внутри нее взаимодействовать. Была предсказана возможность существования таких экзотических объектов, фотонных пар, - по существу, фотонных молекул. В этой статье в Nature , про которую вы говорите, мы описали, как нам, наконец, удалось такие пары получить. Их, собственно, и называют фотонной материей - из-за того, что они сильно напоминают молекулы, но состоят не из атомов, а из фотонов.

Здесь следует добавить, что изучение взаимодействующих фотонов интересно не только само по себе. Оно имеет прямое практическое применение в информационных технологиях, в коммуникациях. Дело вот в чем. С одной стороны, тот факт, что обычно фотоны не взаимодействуют, - это их большое преимущество как носителя информации. Но с другой стороны, если мы хотим как-то перерабатывать информацию, которая передается с помощью света, то необходимо делать какие-то переключатели, какие-то логические элементы. А для этого нужно, чтобы фотоны как-то вступали во взаимодействие друг с другом. Сейчас свет в основном используется только для передачи информации, а для манипуляции с ней его нужно переводить в какой-то электрический сигнал. Это неудобно, медленно и неэффективно. Поэтому, если нам удастся заставить фотоны взаимодействовать друг с другом, мы сможем создать полностью фотонные устройства, обрабатывающие информацию.

Как устроена среда, в которой существует фотонная материя?

В нашей установке она состоит из охлажденных атомов рубидия, образующих достаточно плотный атомный газ. В этой среде свет распространяется очень медленно. То есть по сравнению с вакуумом скорость света падает в любой среде, это понятно, но в данном случае фотоны почти останавливаются - их скорость составляет около ста метров в секунду. Метод такой «остановки света» мы опубликовали еще в 2001 году (Лента.ру об этой работе).

Изображения: Ofer Firstenberg et al., Nature, 2013

Распространяясь в такой среде, фотоны как бы тянут за собой шлейф атомных возбуждений. За счет этого, собственно, свет и замедляется. Но самое интересное заключается в том, что атомы в этой среде начинают настолько сильно друг с другом взаимодействовать, что эти взаимодействия переносятся на фотоны, и они, фотоны, как бы начинают притягиваться друг к другу. В результате, фотоны, во-первых, приобретают эффективную массу и, во-вторых, за счет взаимного притяжения формируют связное состояние, которое напоминает молекулу. Законы, описывающие поведение фотонов в такой среде, очень похожи на законы, описывающие поведение частиц с массой, массивных атомов.

Фотонная молекула, которую нам удалось получить, это только начало, потому что в принципе из них можно создавать и более сложные объекты. Прежде всего нас интересуют сейчас аналоги кристаллических структур, фотонные кристаллы.

Имеется в виду фотонная материя, содержащая не два фотона, а больше?

Не только больше, но и на регулярных интервалах. Чтобы получить такое состояние, фотоны должны отталкиваться, а не притягиваться. В принципе, мы знаем, как этого добиться, и я думаю, что небольшие кристаллы наверняка можно сделать в ближайшем будущем.

Полученные вами пары фотонов, насколько я понимаю, достаточно стабильны. То есть их, как и всякие фотоны, нельзя остановить, они должны двигаться в среде, но они относительно длительное время существуют в паре, не коллапсируют, не превращаются, скажем, в один фотон увеличенной энергии. При этом, как вы сказали, в среде между ними возникает только сила притяжения, без отталкивания. Почему так происходит?

Все дело в том, что это квантовая система. Вспомните атомную модель Бора, у которой в этом году столетний юбилей. Ведь в обычном атоме тоже есть положительно заряженное ядро, есть электрон и между ними нет никаких сил отталкивания, только притяжение. Тем не менее, электрон на ядро не падает, как мы знаем.

Происходит это из-за квантования энергии, которая позволяет электрону как бы двигаться вокруг ядра и при этом не коллапсировать. Точно такая же история происходит с нашими фотонами. В принципе, между ними есть только сила притяжения, но из-за того, что это квантовая система, она не коллапсирует, она находится в стабильном состоянии. Ситуация очень похожа на ту, что имеет место в молекулах с двумя атомами. То есть название «фотонной материи» для этих пар частиц весьма оправданно, - аналогия здесь достаточно глубокая.

В этом же выпуске Nature , где появилась ваша статья, опубликована работа Фукухара, где подобный эффект спаривания был продемонстрирован не на фотонах, а на магнонах - виртуальных магнитных частицах.

Да, это сделала группа Эммануэля Блоха из института Макса Планка. Это действительно очень необычное совпадение, потому что системы, на которых мы работаем, совершенно разные, но эффекты, которые мы наблюдаем, удивительно похожи.

Группа Блоха работала с атомами, фиксированными в оптической ловушке . Это довольно известная система, которая при помощи нескольких лазеров позволяет создать оптическую решетку, в которой атомы сидят в потенциальных ямах, условно говоря, как яйца в коробке. В исходном состоянии все эти атомы имеют один спин, то есть их магнитная поляризация направлена в одну сторону. Воздействуя на эту среду светом, Блох и коллеги добились того, что пара атомов поменяла спин на противоположный, а затем эта инверсия начала волной распространяться вдоль решетки.

При этом тоже возникла пара связанных частиц, только в их случае магнонов, а не фотонов. То, что магноны могут существовать в связанном состоянии, было известно, в принципе, и раньше. Но группе Блоха впервые удалось проследить распространение этих связанных частиц в среде. Волновая функция такого связанного состояния частиц очень похожа на то, что мы увидели для фотонов. Оказывается, это такой достаточно универсальный эффект.

Мы с Эммануэлем недавно встретились на конференции. За завтраком, когда я показал ему свои данные, возникла довольно забавная ситуация: наши данные оказались настолько похожи при совершенно разных физических процессах, что оставалось только сказать «вау».

Да, но пары магнонов, в отличие от фотонной материи, гораздо менее удобны для применения в коммуникациях. Расскажите, пожалуйста, что с фотонной материей можно делать в практическом плане?

Прикладная цель нашей работы - создание фотонной логики. В системах, где отдельные фотоны могут друг с другом взаимодействовать, мы можем создавать, скажем, однофотонные переключатели или однофотонные транзисторы. Одна из конкретных задач заключается в том, чтобы подойти к созданию квантового повторителя - устройства, которое позволяет передать квантовую информацию, не разрушая ее квантовой природы.

Что такое квантовый повторитель? Вы, конечно, знаете о , в которой информация передается с помощью одиночных фотонов, находящихся в суперпозиции двух состояний. Теоретически, передача ключа с помощью одиночных фотонов является абсолютно надежной технологией шифрования, потому что любая попытка злоумышленника вмешаться в систему и перехватить сообщение будет заметна. Этим, собственно, квантовая криптография и интересна. Однако в любых каналах существуют потери, поэтому ныне существующая квантовая связь ограничивается тем расстоянием, на котором большая часть фотонов не теряется - это десятки, максимум - сотни километров.

В принципе, проблема потерь существует и в классической связи, но там она решается с помощью обычных повторителей, которые принимают сигнал, немножко «чистят» его, повторяют в усиленном виде и отправляют дальше по оптической сети. Для квантовой связи необходимы аналоги таких устройств. Но проблема в том, что если вы посылаете информацию, закодированную в одном фотоне, вы не можете его «усилить» (типичным примером является детекция фотона с неизвестной поляризацией - если базис при измерении будет не совпадать с базисом поляризации фотона, информация просто будет потеряна - прим. «Ленты.ру» ).

Квантовый повторитель должен уметь две базовые вещи. Во-первых, он должен уметь сохранить квантовую информацию, которая передается с фотонами. Чтобы добиться этого, мы, собственно, и работали над тем, что называют «остановкой света». В этом, собственно, была практическая мотивация нашей работы - мы пытались остановить импульс, записав его информацию в атомное возбуждение.

Во-вторых, чтобы сделать этот повторитель, необходимо научиться делать логические переключатели для фотонов, фотонную логику. И те эксперименты, которые сейчас были опубликованы, они имеют прямое отношение к созданию такой логики для квантовых повторителей.

А кубитами в этом компьютере выступают фотонные пары?

Нет, кубитами являются отдельные фотоны. И логика будет построена на основе их соединения и разъединения в фотонные молекулы. Поскольку мы можем связать фотоны в пары, мы представляем, как создать переключатель, где, скажем, наличие одного фотона сможет остановить распространение другого. На этом уже можно строить вычислительную логику.

Конечно, здесь очень много работы предстоит. Чтобы создать переключатель, мы должны во много раз улучшить взаимодействие между фотонами. Но основной принцип мы уже показали, и он работает. Теперь можно думать в более практическом ключе. На самом деле, в независимом эксперименте мы уже намного улучшили даже то качество взаимодействия (перформанс), которое было получено в опубликованных экспериментах.

Мы надеемся, что квантовыми повторителями применение фотонной материи не ограничится. В будущем, на их основе можно будет создать полноценные квантовые компьютеры, выполняющие вычисления. Это пока очень дальний горизонт, потому что для этого необходимо создать сотни, может даже тысячи кубитов. А квантовый повторитель - наша текущая, вполне осязаемая, практическая цель.

Вы занимаетесь не только фотонной материей. В августе мы про то, как ваша группа придумала неожиданное применения для алмазов с азотными вакансиями . Обычно их используют в роли кубитов, но вы сделали из них термометры даже не клеток, а их отдельных частей. Откуда появилась такая идея?

Сейчас в роли носителей кубитов используют самые разные системы. Это могут быть, например, охлажденные сверхпроводящие резонаторы, отдельные ионы или охлажденные атомы в оптической ловушке. Или, в случае данной работы, электроны в так называемых NV-центрах. Физически NV-центр - это просто дырка в кристаллической решетке алмаза, существующая рядом с примесью - атомом азота. Примеси эти существуют и в обычных алмазах, но мы можем создавать их и искусственно с помощью облучения, например, атомами азота. Причем эти центры можно делать в очень маленьких частицах, нанокристаллах алмаза.

Электроны NV-центра, если он расположен близко к поверхности, очень чувствительны к внешней среде, к ее температуре и магнитному полю. От этих параметров зависит, грубо говоря, скорость их квантовой эволюции. С одной стороны, для квантовых компьютеров это проблема - состояние системы становится хрупким, его становится трудно в таком кубите сохранить. Но, с другой стороны, такие NV-центры можно использовать как крайне чувствительные сенсоры.

Уникальность их в том, что они могут быть очень маленькими, то есть мы можем измерять поля и температуру в очень маленьких объемах. Естественно, что мы попробовали использовать такие нанокристаллы для приложений, где микроскопический размер - это преимущество. Например, для спектроскопии сложных биомолекул при комнатной температуре или для измерения температуры отдельных частей клетки. В той статье мы изучали возможности применения алмазных NV-центров именно как микроскопических термометров.

Такие нанокристаллы - это не только совершенно новый для биологов инструмент. Это еще и, потенциально, метод контролируемого уничтожения раковых клеток. И в этом смысле пример того, как совершенно фундаментальное исследование, такой «blue sky research», может приводить к разработке реальных приложений. Уже сейчас есть пара стартапов, которые пытаются эту методику коммерциализировать.

Это ваши стартапы?

Один из них создал мой бывший постдок, второй - мой бывший студент. Я в них вовлечен только как внешний советник. То есть я немножко знаю, что там происходит. Очень интересно наблюдать, как исследования превращаются в реальные приложения.

Вы возглавляете научный консультативный совет Российского квантового центра в Сколково , но сами в России не работаете. Хотя многие ваши коллеги как раз уже сюда перебрались. Как так получилось?

Когда, собственно, создавалось Сколково, мне пытались предложить создать большую лабораторию в Москве. Но я вообще не сторонник строительства больших империй, мне кажется, что когда есть огромные группы, в которых работают сотни человек, тогда руководитель реально уже не может наукой заниматься, он должен быть прежде всего менеджером. И на моей памяти это никогда не заканчивалось чем-то хорошим.

Моя позиция была в том, что если в Москве будет активный центр, в котором будут работать хорошие ученые, со своими идеями, своими группами, то я с удовольствием с ними буду взаимодействовать и сотрудничать. Свою лабораторию в Москве я создавать не захотел. Но я сказал, что могу помочь создать РКЦ, и, в частности, пообещал помочь найти хороших людей, которые могли бы создать лаборатории. Ну и посоветовать, как что можно организовать.

То, что было создано менее чем за два года, что я видел этим летом, уже впечатляет. Есть несколько теоретических и экспериментальных групп, которые уже начинают делать серьезные эксперименты. С группой Алексея Акимова у нас летом вышла совместная статья в Science .

Мы разговаривали с ним про эту публикацию . Он сейчас работает в Сколково, но вот эту установку, на которой, собственно, и сделана статья, собирали в Америке.

Это так. Тем не менее, сейчас здесь уже есть научная жизнь, уже появляются довольно интересные работы. Я имею в виду группы Акимова, Калачевского, Львовского, Желтикова и Устинова («Лента.ру» писала про создание в лаборатории последнего).

Я довольно много времени и сил потратил на то, чтобы помочь сделать так, чтобы все это работало правильно. Сейчас главный вопрос, который меня беспокоит - это вопрос о том, какое будущее ждет квантовый центр и вообще подобные проекты. Этот вопрос важный, потому что...

Потому что люди хотят планировать свою жизнь...

Не только. Дело в том, что одним Квантовым центром не решишь всех проблем. Должна быть по крайней мере какая-то группа таких институтов или центров. У них должна быть хоть какая-то долговременная перспектива - только так создается настоящая научная среда.

Лично мне наиболее удивительно в этой истории то, насколько много ведущих мировых ученых согласилось помочь в создании этого центра. И помогли, причем помогли совершенно безвозмездно. Для российской действительности, это, насколько я понимаю, случай уникальный. Может быть, именно поэтому и получилось что-то хорошее сделать.

Российские ученые представили разработку, которая, по их словам, должна кардинально изменить жизнь человечества. Созданием квантовых компьютеров, способных работать в миллионы раз быстрее современных операционных систем, занимаются крупнейшие технологические корпорации мира. Но они уже признали победу коллег.

Это казалось фантастикой еще вчера - квантовые компьютеры, способные обогнать все существующие устройства. Они настолько мощные, что могут или открыть человечеству новые горизонты, или обрушить все системы безопасности, потому что смогут взломать их.

«Квантовый компьютер функционирующий, он гораздо страшнее атомный бомбы», - считает генеральный директор компании Acronis, сооснователь Российского квантового центра Сергей Белоусов.

В разработку вкладываются крупнейшие корпорации: Google, IBM, Microsoft, Alibaba. Но сегодня в центре внимания - Михаил Лукин, физик из Гарварда и один из основателей Российского квантового центра. Его команде удалось создать самый мощный на данный момент квантовый компьютер.

«Это одна из самых больших квантовых систем, которые были созданы. Мы входим в тот режим, где уже классические компьютеры не могут справится с вычислениями. Делаем маленькие открытия уже, увидели новые эффекты, которые не ожидались теоретически, которые мы сейчас можем, мы пытаемся понять, мы даже до конца их не понимаем», - рассказывает профессор Гарвардского университета, сооснователь Российского квантового центра Михаил Лукин.

Все - из-за мощности таких устройств. Расчеты, которые на сегодняшнем суперкомпьютере займут тысячи лет, квантовый может сделать в один миг.

Как это работает? В обычных компьютерах информация и вычисления - это биты. Каждый бит - либо ноль, либо единица. Но квантовые компьютеры основаны на кубитах, а они могут находиться в состоянии суперпозиции, когда каждый кубит - одновременно и ноль, и единица. И если для какого-нибудь расчета обычным компьютерам нужно, грубо говоря, выстроить последовательности, то квантовые вычисления происходят параллельно, в одно мгновение. В компьютере Михаила Лукина таких кубитов - 51.

«Во-первых, он сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это больше чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49, потому что Google все время говорил, что сделает 49», - объясняет гендиректор компании Acronis, сооснователь Российского квантового центра Сергей Белоусов.

Создание самого мощного квантового компьютера пророчили ему. Джон Мартинес - руководитель крупнейшей в мире квантовой лаборатории корпорации Google. И свой 49-кубитный компьютер он планировал закончить только через несколько месяцев.

«22 кубита - это максимум, что мы смогли сделать, мы использовали все свое волшебство и профессионализм», - рассказывает он.

Мартинес и Лукин выступили на одной сцене - в Москве, на Четвертой международной квантовой конференции. Впрочем, соперниками ученые себя не считают.

«Неправильно думать об этом, как о гонке. Настоящая гонка у нас с природой. Потому что это действительно сложно - создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов», - говорит глава лаборатории «Квантовый искусственный интеллект» компании Google Джон Мартинес.

Но для чего нам понадобятся квантовые компьютеры? Даже сами их создатели не знают наверняка. С их помощью могут быть разработаны совершенно новые материалы, сотни открытий в физике и химии. Квантовые компьютеры - пожалуй, единственное, что может приоткрыть тайну человеческого мозга и искусственного интеллекта.

«Когда совершается научное открытие, его создатели не представляют всю мощь, которую оно принесет. Когда придуман был транзистор, то никто не представлял, что на этом транзисторе построятся компьютеры», - говорит директор Российского квантового центра Руслан Юнусов.

Один из первых компьютеров был создан в 40-х годах ХХ века и весил 27 тонн. Если сравнить с современными устройствами, то обычный смартфон по мощности - это как 20 000 таких машин. И это за 70 лет прогресса. Но если наступит эра квантовых компьютеров, уже наши потомки будут удивляться, как вообще пользоваться этим антиквариатом.