Нахождение нок двух чисел. Как найти наименьшее общее кратное, нок для двух и более чисел

Как найти НОК (наименьшее общее кратное)

Общее кратное для двух целых чисел - это такое целое число, которое делится нацело без остатка на оба заданных числа.

Наименьшее общее кратное для двух целых чисел - это наименьшее из всех целых чисел, которое делится нацело и без остатка на оба заданных числа.

Способ 1 . Найти НОК можно, по очереди, для каждого из заданных чисел, выписывая в порядке возрастания все числа, которые получаются путем их умножения на 1, 2, 3, 4 и так далее.

Пример для чисел 6 и 9.
Умножаем число 6, последовательно, на 1, 2, 3, 4, 5.
Получаем: 6, 12, 18 , 24, 30
Умножаем число 9, последовательно, на 1, 2, 3, 4, 5.
Получаем: 9, 18 , 27, 36, 45
Как видно, НОК для чисел 6 и 9 будет равно 18.

Данный способ удобен, когда оба числа небольшие и их несложно умножать на последовательность целых чисел. Однако, бывают случаи, когда нужно найти НОК для двузначных или трехзначных чисел, а также, когда исходных чисел три или даже больше.

Способ 2 . Найти НОК можно, разложив исходные числа на простые множители.
После разложения необходимо вычеркнуть из получившихся рядов простых множителей одинаковые числа. Оставшиеся числа первого числа будут множителем для второго, а оставшиеся числа второго - множителем для первого.

Пример для числе 75 и 60.
Наименьшее общее кратное чисел 75 и 60 можно найти и не выписывая подряд кратные этих чисел. Для этого разложим 75 и 60 на простые множители:
75 = 3 * 5 * 5, а
60 = 2 * 2 * 3 * 5 .
Как видно, множители 3 и 5 встречаются в обоих строках. Мысленно их "зачеркиваем".
Выпишем оставшиеся множители, входящие в разложение каждого из этих чисел. При разложении числа 75 у нас осталось число 5, а при разложении числа 60 - остались 2 * 2
Значит, чтобы определить НОК для чисел 75 и 60, нам нужно оставшиеся числа от разложения 75 (это 5) умножить на 60, а числа, оставшиеся от разложения числа 60 (это 2 * 2) умножить на 75. То есть, для простоты понимания, мы говорим, что умножаем "накрест".
75 * 2 * 2 = 300
60 * 5 = 300
Таким образом мы и нашли НОК для чисел 60 и 75. Это - число 300.

Пример . Определить НОК для чисел 12, 16, 24
В данном случае, наши действия будут несколько сложнее. Но, сначала, как всегда, разложим все числа на простые множители
12 = 2 * 2 * 3
16 = 2 * 2 * 2 * 2
24 = 2 * 2 * 2 * 3
Чтобы правильно определить НОК, выбираем наименьшее из всех чисел (это число 12) и последовательно проходим по его множителям, вычеркивая их, если хотя бы в одном из других рядов чисел встретился такой же, еще не зачеркнутый множитель.

Шаг 1 . Мы видим, что 2 * 2 встречаются во всех рядах чисел. Зачеркиваем их.
12 = 2 * 2 * 3
16 = 2 * 2 * 2 * 2
24 = 2 * 2 * 2 * 3

Шаг 2. В простых множителях числа 12 осталось только число 3. Но оно присутствует в простых множителях числа 24. Вычеркиваем число 3 из обоих рядов, при этом для числа 16 никаких действий не предполагается.
12 = 2 * 2 * 3
16 = 2 * 2 * 2 * 2
24 = 2 * 2 * 2 * 3

Как видим, при разложении числа 12 мы "вычеркнули" все числа. Значит нахождение НОК завершено. Осталось только вычислить его значение.
Для числа 12 берем оставшиеся множители у числа 16 (ближайшего по возрастанию)
12 * 2 * 2 = 48
Это и есть НОК

Как видим, в данном случае, нахождение НОК было несколько сложнее, но когда нужно его найти для трех и более чисел, данный способ позволяет сделать это быстрее. Впрочем, оба способа нахождения НОК являются правильными.

Онлайн калькулятор позволяет быстро находить наибольший общий делитель и наименьшее общее кратное как для двух, так и для любого другого количества чисел.

Калькулятор для нахождения НОД и НОК

Найти НОД и НОК

Найдено НОД и НОК: 5806

Как пользоваться калькулятором

  • Введите числа в поле для ввода
  • В случае ввода некорректных символов поле для ввода будет подсвечено красным
  • нажмите кнопку "Найти НОД и НОК"

Как вводить числа

  • Числа вводятся через пробел, точку или запятую
  • Длина вводимых чисел не ограничена , так что найти НОД и НОК длинных чисел не составит никакого труда

Что такое НОД и НОК?

Наибольший общий делитель нескольких чисел – это наибольшее натуральное целое число, на которое все исходные числа делятся без остатка. Наибольший общий делитель сокращённо записывается как НОД .
Наименьшее общее кратное нескольких чисел – это наименьшее число, которое делится на каждое из исходных чисел без остатка. Наименьшее общее кратное сокращённо записывается как НОК .

Как проверить, что число делится на другое число без остатка?

Чтобы узнать, делится ли одно число на другое без остатка, можно воспользоваться некоторыми свойствами делимости чисел. Тогда, комбинируя их, можно проверять делимость на некоторые их них и их комбинации.

Некоторые признаки делимости чисел

1. Признак делимости числа на 2
Чтобы определить, делится ли число на два (является ли оно чётным), достаточно посмотреть на последнююю цифру этого числа: если она равна 0, 2, 4, 6 или 8, то число чётно, а значит делится на 2.
Пример: определить, делится ли на 2 число 34938 .
Решение: смотрим на последнюю цифру: 8 - значит число делится на два.

2. Признак делимости числа на 3
Число делится на 3 тогда, когда сумма его цифр делится на три. Таким образом, чтобы определить, делится ли число на 3, нужно посчитать сумму цифр и проверить, делится ли она на 3. Даже если сумма цифр получилась очень большой, можно повторить этот же процесс вновь.
Пример: определить, делится ли число 34938 на 3.
Решение: считаем сумму цифр: 3+4+9+3+8 = 27. 27 делится на 3, а значит и число делится на три.

3. Признак делимости числа на 5
Число делится на 5 тогда, когда его последняя цифра равна нулю или пяти.
Пример: определить, делится ли число 34938 на 5.
Решение: смотрим на последнюю цифру: 8 - значит число НЕ делится на пять.

4. Признак делимости числа на 9
Этот признак очень похож на признак делимости на тройку: число делится на 9 тогда, когда сумма его цифр делится на 9.
Пример: определить, делится ли число 34938 на 9.
Решение: считаем сумму цифр: 3+4+9+3+8 = 27. 27 делится на 9, а значит и число делится на девять.

Как найти НОД и НОК двух чисел

Как найти НОД двух чисел

Наиболее простым способом вычисления наибольшего общего делителя двух чисел является поиск всех возможных делителей этих чисел и выбор наибольшего из них.

Рассмотрим этот способ на примере нахождения НОД(28, 36) :

  1. Раскладываем оба числа на множители: 28 = 1·2·2·7 , 36 = 1·2·2·3·3
  2. Находим общие множители, то есть те, которые есть у обоих чисел: 1, 2 и 2.
  3. Вычисляем произведение этих множителей: 1·2·2 = 4 - это и есть наибольший общий делитель чисел 28 и 36.

Как найти НОК двух чисел

Наиболее распространены два способа нахождения наименьшего кратного двух чисел. Первый способ заключается в том, что можно выписать первые кратные двух чисел, а затем выбрать среди них такое число, которое будет общим для обоих чисел и при этом наименьшем. А второй заключается в нахождении НОД этих чисел. Рассмотрим только его.

Для вычисления НОК нужно вычислить произведение исходных чисел и затем разделить его на предварительно найденный НОД. Найдём НОК для тех же чисел 28 и 36:

  1. Находим произведение чисел 28 и 36: 28·36 = 1008
  2. НОД(28, 36), как уже известно, равен 4
  3. НОК(28, 36) = 1008 / 4 = 252 .

Нахождение НОД и НОК для нескольких чисел

Наибольший общий делитель можно находить и для нескольких чисел, а не только для двух. Для этого числа, подлежащие поиску наибольшего общего делителя, раскладывают на простые множители, затем находят произведение общих простых множителей этих чисел. Также для нахождение НОД нескольких чисел можно воспользоваться следующим соотношением: НОД(a, b, c) = НОД(НОД(a, b), c) .

Аналогичное соотношение действует и для наименьшего общего кратного чисел: НОК(a, b, c) = НОК(НОК(a, b), c)

Пример: найти НОД и НОК для чисел 12, 32 и 36.

  1. Cперва разложим числа на множители: 12 = 1·2·2·3 , 32 = 1·2·2·2·2·2 , 36 = 1·2·2·3·3 .
  2. Найдём обшие множители: 1, 2 и 2 .
  3. Их произведение даст НОД: 1·2·2 = 4
  4. Найдём теперь НОК: для этого найдём сначала НОК(12, 32): 12·32 / 4 = 96 .
  5. Чтобы найти НОК всех трёх чисел, нужно найти НОД(96, 36): 96 = 1·2·2·2·2·2·3 , 36 = 1·2·2·3·3 , НОД = 1·2·2·3 = 12 .
  6. НОК(12, 32, 36) = 96·36 / 12 = 288 .

Рассмотрим решение следующей задачи. Шаг мальчика составляет 75 см, а шаг девочки 60 см. Необходимо найти наименьшее расстояние, на котором они оба сделают по целому числу шагов.

Решение. Весь путь который пройдут ребята, должен делиться без остатка на 60 и на 70, так как они должны сделать каждый целое число шагов. Другими словами, в ответе должно быть число, кратное как 75 так и 60.

Сначала будем выписывать все кратные числа, для числа 75. Получаем:

  • 75, 150, 225, 300, 375, 450, 525, 600, 675, … .

Теперь выпишем числа, которые будут кратны 60. Получаем:

  • 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 660, … .

Теперь находим числа которые есть в обоих рядах.

  • Общими кратными чисел будут числа, 300, 600, и т.д.

Самое наименьшее из них, это число 300. Оно в данном случае будет называться наименьшим общим кратным чисел 75 и 60.

Возвращаясь к условию задачи, наименьшее расстояние, на котором ребята сделают целое число шагов будет 300 см. Мальчик пройдет этот путь за 4 шага, а девочке потребуется сделать 5 шагов.

Определение наименьшего общего кратного

  • Наименьшим общим кратным двух натуральных чисел a и b называется наименьшее натуральное число, которое кратно как a, так и b.

Для того, чтобы найти наименьшее общее кратное двух чисел, не обязательно выписывть подряд все кратные для этих чисел.

Можно воспользоваться следующим методом.

Как найти наименьшее общее кратное

Сначала необходимо разложить данные числа на простые множители.

  • 60 = 2*2*3*5,
  • 75=3*5*5.

Теперь выпишем все множители которые есть в разложении первого числа (2,2,3,5) и добавим к нему все недостающие множители из разложения второго числа (5).

Получим в итоге ряд простых чисел: 2,2,3,5,5. Произведение этих чисел и будет наименьшим общим сомножителем для данных чисел. 2*2*3*5*5 = 300.

Общая схема нахождения наименьшего общего кратного

  • 1. Разложить числа на простые множители.
  • 2. Выписать простые множители которые входят в состав одного из них.
  • 3. Добавить к этим множителям все те, которые есть в разложении остальных, но нет в выбранном.
  • 4. Найти произведение всех выписанных сомножителей.

Данный способ универсален. С его помощью можно найти наименьшее общее кратное любого количества натуральных чисел.

Тема «Кратные числа» изучается в 5 классе общеобразовательной школы. Ее целью является совершенствование письменных и устных навыков математических вычислений. На этом уроке вводятся новые понятия - «кратные числа» и «делители», отрабатывается техника нахождения делителей и кратных натурального числа, умение находить НОК различными способами.

Эта тема является очень важной. Знания по ней можно применить при решении примеров с дробями. Для этого нужно найти общий знаменатель путем расчета наименьшего общего кратного (НОК).

Кратным А считается целое число, которое делится на А без остатка.

Каждое натуральное число имеет бесконечное количество кратных ему чисел. Наименьшим считается оно само. Кратное не может быть меньше самого числа.

Нужно доказать, что число 125 кратно числу 5. Для этого нужно первое число разделить на второе. Если 125 делится на 5 без остатка, то ответ положительный.

Данный способ применим для небольших чисел.

При расчёте НОК встречаются особые случаи.

1. Если необходимо найти общее кратное для 2-х чисел (например, 80 и 20), где одно из них (80) делится без остатка на другое (20), то это число (80) и есть наименьшее кратное этих двух чисел.

НОК (80, 20) = 80.

2. Если два не имеют общего делителя, то можно сказать, что их НОК - это произведение этих двух чисел.

НОК (6, 7) = 42.

Рассмотрим последний пример. 6 и 7 по отношению к 42 являются делителями. Они делят кратное число без остатка.

В этом примере 6 и 7 являются парными делителями. Их произведение равно самому кратному числу (42).

Число называется простым, если делится только само на себя или на 1 (3:1=3; 3:3=1). Остальные называются составными.

В другом примере нужно определить, является ли 9 делителем по отношению к 42.

42:9=4 (остаток 6)

Ответ: 9 не является делителем числа 42, потому что в ответе есть остаток.

Делитель отличается от кратного тем, что делитель - это то число, на которое делят натуральные числа, а кратное само делится на это число.

Наибольший общий делитель чисел a и b , умноженный на их наименьшее кратное, даст произведение самих чисел a и b .

А именно: НОД (а, b) х НОК (а, b) = а х b.

Общие кратные числа для более сложных чисел находят следующим способом.

Например, найти НОК для 168, 180, 3024.

Эти числа раскладываем на простые множители, записываем в виде произведения степеней:

168=2³х3¹х7¹

2⁴х3³х5¹х7¹=15120

НОК (168, 180, 3024) = 15120.

Определение. Наибольшее натуральное число, на которое делятся без остатка числа а и b, называют наибольшим общим делителем (НОД) этих чисел.

Найдём наибольший общий делитель чисел 24 и 35.
Делителями 24 будут числа 1, 2, 3, 4, 6, 8, 12, 24, а делителями 35 будут числа 1, 5, 7, 35.
Видим, что числа 24 и 35 имеют только один общий делитель - число 1. Такие числа называют взаимно простыми .

Определение. Натуральные числа называют взаимно простыми , если их наибольший общий делитель (НОД) равен 1.

Наибольший общий делитель (НОД) можно найти, не выписывая всех делителей данных чисел.

Разложим на множители числа 48 и 36, получим:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
Из множителей, входящих в разложение первого из этих чисел, вычеркнем те, которые не входят в разложение второго числа (т. е. две двойки).
Остаются множители 2 * 2 * 3. Их произведение равно 12. Это число и является наибольшим общим делителем чисел 48 и 36. Так же находят наибольший общий делитель трёх и более чисел.

Чтобы найти наибольший общий делитель

2) из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел;
3) найти произ ведение оставшихся множителей.

Если все данные числа делятся на одно из них, то это число и является наибольшим общим делителем данных чисел.
Например, наибольшим общим делителем чисел 15, 45, 75 и 180 будет число 15, так как на него делятся все остальные числа: 45, 75 и 180.

Наименьшее общее кратное (НОК)

Определение. Наименьшим общим кратным (НОК) натуральных чисел а и Ь называют наименьшее натуральное число, которое кратно и a, и b. Наименьшее общее кратное (НОК) чисел 75 и 60 можно найти и не выписывая подряд кратные этих чисел. Для этого разложим 75 и 60 на простые множители: 75 = 3 * 5 * 5, а 60 = 2 * 2 * 3 * 5.
Выпишем множители, входящие в разложение первого из этих чисел, и добавим к ним недостающие множители 2 и 2 из разложения второго числа (т.е. объединяем множители).
Получаем пять множителей 2 * 2 * 3 * 5 * 5, произведение которых равно 300. Это число является наименьшим общим кратным чисел 75 и 60.

Так же находят наименьшее общее кратное для трёх и более чисел.

Чтобы найти наименьшее общее кратное нескольких натуральных чисел, надо:
1) разложить их на простые множители;
2) выписать множители, входящие в разложение одного из чисел;
3) добавить к ним недостающие множители из разложений остальных чисел;
4) найти произведение получившихся множителей.

Заметим, что если одно из данных чисел делится на все остальные числа, то это число и является наименьшим общим кратным данных чисел.
Например, наименьшим общим кратным чисел 12, 15, 20 и 60 будет число 60, так как оно делится на все данные числа.

Пифагор (VI в. до н. э.) и его ученики изучали вопрос о делимости чисел. Число, равное сумме всех его делителей (без самого числа), они называли совершенным числом. Например, числа 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) совершенные. Следующие совершенные числа - 496, 8128, 33 550 336. Пифагорейцы знали только первые три совершенных числа. Четвёртое - 8128 - стало известно в I в. н. э. Пятое - 33 550 336 - было найдено в XV в. К 1983 г. было известно уже 27 совершенных чисел. Но до сих пор учёные не знают, есть ли нечётные совершенные числа, есть ли самое большое совершенное число.
Интерес древних математиков к простым числам связан с тем, что любое число либо простое, либо может быть представлено в виде произведения простых чисел, т. е. простые числа - это как бы кирпичики, из которых строятся остальные натуральные числа.
Вы, наверное, обратили внимание, что простые числа в ряду натуральных чисел встречаются неравномерно - в одних частях ряда их больше, в других - меньше. Но чем дальше мы продвигаемся по числовому ряду, тем реже встречаются простые числа. Возникает вопрос: существует ли последнее (самое большое) простое число? Древнегреческий математик Евклид (III в. до н. э.) в своей книге «начала», бывшей на протяжении двух тысяч лет основным учебником математики, доказал, что простых чисел бесконечно много, т. е. за каждым простым числом есть ещё большее простое число.
Для отыскания простых чисел другой греческий математик того же времени Эратосфен придумал такой способ. Он записывал все числа от 1 до какого-то числа, а потом вычёркивал единицу, которая не является ни простым, ни составным числом, затем вычёркивал через одно все числа, идущие после 2 (числа, кратные 2, т. е. 4, 6, 8 и т. д.). Первым оставшимся числом после 2 было 3. Далее вычёркивались через два все числа, идущие после 3 (числа, кратные 3, т. е. 6, 9, 12 и т. д.). в конце концов оставались невычеркнутыми только простые числа.