Первообразная для функции 2 x 4. Функция F(x) называется первообразной для функции f(x), если F`(x)=f(x) или dF(x)=f(x)dx

Существует три основных правила нахождения первообразных функций. Они очень похожи на соответствующие правила дифференцирования.

Правило 1

Если F есть первообразная дл некоторой функции f, а G есть первообразная для некоторой функции g, то F + G будет являться первообразной для f + g.

По определению первообразной F’ = f. G’ = g. А так как эти условия выполняются, то по правилу вычисления производной для суммы функций будем иметь:

(F + G)’ = F’ + G’ = f + g.

Правило 2

Если F есть первообразная для некоторой функции f, а k - некоторая постоянная. Тогда k*F есть первообразная для функции k*f. Это правило следует из правила вычисления производной сложной функции.

Имеем: (k*F)’ = k*F’ = k*f.

Правило 3

Если F(x) есть некоторая первообразная для функции f(x), а k и b есть некоторые постоянные, причем k не равняется нулю, тогда (1/k)*F*(k*x+b) будет первообразной для функции f(k*x+b).

Данное правило следует из правила вычисления производной сложной функции:

((1/k)*F*(k*x+b))’ = (1/k)*F’(k*x+b)*k = f(k*x+b).

Рассмотрим несколько примеров применения этих правил:

Пример 1 . Найти общий вид первообразных для функции f(x) = x^3 +1/x^2. Для функции x^3 одной из первообразных будет функция (x^4)/4, а для функции 1/x^2 одной из первообразных будет являться функция -1/x. Используя первое правило, имеем:

F(x) = x^4/4 - 1/x +C.

Пример 2 . Найдем общий вид первообразных для функции f(x) = 5*cos(x). Для функции cos(x) одна из первообразных будет являться функция sin(x). Если теперь воспользоваться вторым правилом, то будем иметь:

F(x) = 5*sin(x).

Пример 3. Найти одну из первообразных для функции y = sin(3*x-2). Для функции sin(x) одной из первообразных будет являться функция -cos(x). Если теперь воспользоваться третьим правилом, то получим выражение для первообразной:

F(x) = (-1/3)*cos(3*x-2)

Пример 4 . Найти первообразную для функции f(x) = 1/(7-3*x)^5

Первообразной для функции 1/x^5 будет являться функция (-1/(4*x^4)). Теперь воспользовавшись третьим правилом, получим.


Определение первообразной.

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x) , что выполняется равенство для любого х из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C , для произвольной константы С , причем эти первообразные отличаются друг от друга на произвольную постоянную величину.


Определение неопределенного интеграла.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называют подынтегральным выражением , а f(x) – подынтегральной функцией . Подынтегральное выражение представляет собой дифференциал функции f(x) .

Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x) , а множество ее первообразных F(x)+C .

На основании свойств производной можно сформулировать и доказать свойства неопределенного интеграла (свойства первообразной).

Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.

Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:

Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.


Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:

  • первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;
  • второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.

Рассмотрим пример.

Пример.

Найти первообразную функции , значение которой равно единице при х = 1 .

Решение.

Мы знаем из дифференциального исчисления, что (достаточно заглянуть в таблицу производных основных элементарных функций). Таким образом, . По второму свойству . То есть, имеем множество первообразных . При х = 1 получим значение . По условию, это значение должно быть равно единице, следовательно, С = 1 . Искомая первообразная примет вид .

Пример.

Найти неопределенный интеграл и результат проверить дифференцированием.

Решение.

По формуле синуса двойного угла из тригонометрии , поэтому

Этот урок — первый из серии видео, посвященных интегрированию. В нём мы разберём, что такое первообразная функции, а также изучим элементарные приёмы вычисления этих самых первообразных.

На самом деле здесь нет ничего сложного: по существу всё сводится к понятию производной, с которым вы уже должны знакомы.:)

Сразу отмечу, что, поскольку это самый первый урок в нашей новой теме, сегодня не будет никаких сложных вычислений и формул, но то, что мы изучим сегодня, ляжет в основу гораздо более сложных выкладок и конструкций при вычислении сложных интегралов и площадей.

Кроме того, приступая к изучению интегрирования и интегралов в частности, мы неявно предполагаем, что ученик уже, как минимум, знаком к понятиям производной и имеет хотя бы элементарные навыки их вычисления. Без четкого понимания этого, делать в интегрировании совершенно нечего.

Однако здесь же кроется одна из самых частых и коварных проблем. Дело в том, что, начиная вычислять свои первые первообразные, многие ученики путают их с производными. В результате на экзаменах и самостоятельных работах допускаются глупые и обидные ошибки.

Поэтому сейчас я не буду давать четкого определения первообразной. А взамен предлагаю вам посмотреть, как она считается на простом конкретном примере.

Что такое первообразная и как она считается

Мы знаем такую формулу:

\[{{\left({{x}^{n}} \right)}^{\prime }}=n\cdot {{x}^{n-1}}\]

Считается эта производная элементарно:

\[{f}"\left(x \right)={{\left({{x}^{3}} \right)}^{\prime }}=3{{x}^{2}}\]

Посмотрим внимательно на полученное выражение и выразим ${{x}^{2}}$:

\[{{x}^{2}}=\frac{{{\left({{x}^{3}} \right)}^{\prime }}}{3}\]

Но мы можем записать и так, согласно определению производной:

\[{{x}^{2}}={{\left(\frac{{{x}^{3}}}{3} \right)}^{\prime }}\]

А теперь внимание: то, что мы только что записали и есть определением первообразной. Но, чтобы записать ее правильно, нужно написать следующее:

Аналогично запишем и такое выражение:

Если мы обобщим это правило, то сможем вывести такую формулу:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

Теперь мы можем сформулировать четкое определение.

Первообразной функции называется такая функция, производная которой равна исходной функции.

Вопросы о первообразной функции

Казалось бы, довольно простое и понятное определение. Однако, услышав его, у внимательного ученика сразу возникнет несколько вопросов:

  1. Допустим, хорошо, эта формула верна. Однако в этом случае при $n=1$ у нас возникают проблемы: в знаменателе появляется «ноль», а на «ноль» делить нельзя.
  2. Формула ограничивается только степенями. Как считать первообразную, например, синуса, косинуса и любой другой тригонометрии, а также констант.
  3. Экзистенциальный вопрос: а всегда ли вообще можно найти первообразную? Если да, то как быть с первообразной суммы, разности, произведения и т.д.?

На последний вопрос я отвечу сразу. К сожалению, первообразная, в отличие от производной, считается не всегда. Нет такой универсальной формулы, по которой из любой исходной конструкции мы получим функцию, которая будет равна этой сходной конструкции. А что касается степеней и констант — сейчас мы об этом поговорим.

Решение задач со степенными функциями

\[{{x}^{-1}}\to \frac{{{x}^{-1+1}}}{-1+1}=\frac{1}{0}\]

Как видим, данная формула для ${{x}^{-1}}$ не работает. Возникает вопрос: а что тогда работает? Неужели мы не можем посчитать ${{x}^{-1}}$? Конечно, можем. Только давайте для начала вспомним такое:

\[{{x}^{-1}}=\frac{1}{x}\]

Теперь подумаем: производная какой функции равна $\frac{1}{x}$. Очевидно, что любой ученик, который хоть немного занимался этой темой, вспомнит, что этому выражению равна производная натурального логарифма:

\[{{\left(\ln x \right)}^{\prime }}=\frac{1}{x}\]

Поэтому мы с уверенностью можем записать следующее:

\[\frac{1}{x}={{x}^{-1}}\to \ln x\]

Эту формулу нужно знать, точно так же, как и производную степенной функции.

Итак, что нам известно на данный момент:

  • Для степенной функции — ${{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}$
  • Для константы — $=const\to \cdot x$
  • Частный случай степенной функции — $\frac{1}{x}\to \ln x$

А если простейшие функции мы начнем умножать и делить, как тогда посчитать первообразную произведения или частного. К сожалению, аналогии с производной произведения или частного здесь не работают. Какой-либо стандартной формулы не существует. Для некоторых случаев существуют хитрые специальные формулы — с ними мы познакомимся на будущих видеоуроках.

Однако запомните: общей формулы, аналогичной формуле для вычисления производной частного и произведения, не существует.

Решение реальных задач

Задача № 1

Давайте каждую из степенных функций посчитаем отдельно:

\[{{x}^{2}}\to \frac{{{x}^{3}}}{3}\]

Возвращаясь к нашему выражению, мы запишем общую конструкцию:

Задача № 2

Как я уже говорил, первообразные произведений и частного «напролом» не считаются. Однако здесь можно поступить следующим образом:

Мы разбили дробь на сумму двух дробей.

Посчитаем:

Хорошая новость состоит в том, что зная формулы вычисления первообразных, вы уже способны считать более сложные конструкции. Однако давайте пойдем дальше и расширим наши знания еще чуть-чуть. Дело в том, что многие конструкции и выражения, которые, на первый взгляд, не имеют никакого отношения к ${{x}^{n}}$, могут быть представлены в виде степени с рациональным показателем, а именно:

\[\sqrt{x}={{x}^{\frac{1}{2}}}\]

\[\sqrt[n]{x}={{x}^{\frac{1}{n}}}\]

\[\frac{1}{{{x}^{n}}}={{x}^{-n}}\]

Все эти приемы можно и нужно комбинировать. Степенные выражения можно

  • умножать (степени складываются);
  • делить (степени вычитаются);
  • умножать на константу;
  • и т.д.

Решение выражений со степенью с рациональным показателем

Пример № 1

Посчитаем каждый корень отдельно:

\[\sqrt{x}={{x}^{\frac{1}{2}}}\to \frac{{{x}^{\frac{1}{2}+1}}}{\frac{1}{2}+1}=\frac{{{x}^{\frac{3}{2}}}}{\frac{3}{2}}=\frac{2\cdot {{x}^{\frac{3}{2}}}}{3}\]

\[\sqrt{x}={{x}^{\frac{1}{4}}}\to \frac{{{x}^{\frac{1}{4}}}}{\frac{1}{4}+1}=\frac{{{x}^{\frac{5}{4}}}}{\frac{5}{4}}=\frac{4\cdot {{x}^{\frac{5}{4}}}}{5}\]

Итого всю нашу конструкцию можно записать следующим образом:

Пример № 2

\[\frac{1}{\sqrt{x}}={{\left(\sqrt{x} \right)}^{-1}}={{\left({{x}^{\frac{1}{2}}} \right)}^{-1}}={{x}^{-\frac{1}{2}}}\]

Следовательно, мы получим:

\[\frac{1}{{{x}^{3}}}={{x}^{-3}}\to \frac{{{x}^{-3+1}}}{-3+1}=\frac{{{x}^{-2}}}{-2}=-\frac{1}{2{{x}^{2}}}\]

Итого, собирая все в одно выражение, можно записать:

Пример № 3

Для начала заметим, что $\sqrt{x}$ мы уже считали:

\[\sqrt{x}\to \frac{4{{x}^{\frac{5}{4}}}}{5}\]

\[{{x}^{\frac{3}{2}}}\to \frac{{{x}^{\frac{3}{2}+1}}}{\frac{3}{2}+1}=\frac{2\cdot {{x}^{\frac{5}{2}}}}{5}\]

Перепишем:

Надеюсь, я никого не удивлю, если скажу, что то, что мы только что изучали — это лишь самые простые вычисления первообразных, самые элементарные конструкции. Давайте сейчас рассмотрим чуть более сложные примеры, в которых помимо табличных первообразных еще потребуется вспомнить школьную программу, а именно, формулы сокращенного умножения.

Решение более сложных примеров

Задача № 1

Вспомним формулу квадрата разности:

\[{{\left(a-b \right)}^{2}}={{a}^{2}}-ab+{{b}^{2}}\]

Давайте перепишем нашу функцию:

Первообразную такой функции нам сейчас предстоит найти:

\[{{x}^{\frac{2}{3}}}\to \frac{3\cdot {{x}^{\frac{5}{3}}}}{5}\]

\[{{x}^{\frac{1}{3}}}\to \frac{3\cdot {{x}^{\frac{4}{3}}}}{4}\]

Собираем все в общую конструкцию:

Задача № 2

В этом случае нам нужно раскрыть куб разности. Вспомним:

\[{{\left(a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}\cdot b+3a\cdot {{b}^{2}}-{{b}^{3}}\]

С учетом этого факта можно записать так:

Давайте немного преобразуем нашу функцию:

Считаем как всегда — по каждому слагаемому отдельно:

\[{{x}^{-3}}\to \frac{{{x}^{-2}}}{-2}\]

\[{{x}^{-2}}\to \frac{{{x}^{-1}}}{-1}\]

\[{{x}^{-1}}\to \ln x\]

Запишем полученную конструкцию:

Задача № 3

Сверху у нас стоит квадрат суммы, давайте его раскроем:

\[\frac{{{\left(x+\sqrt{x} \right)}^{2}}}{x}=\frac{{{x}^{2}}+2x\cdot \sqrt{x}+{{\left(\sqrt{x} \right)}^{2}}}{x}=\]

\[=\frac{{{x}^{2}}}{x}+\frac{2x\sqrt{x}}{x}+\frac{x}{x}=x+2{{x}^{\frac{1}{2}}}+1\]

\[{{x}^{\frac{1}{2}}}\to \frac{2\cdot {{x}^{\frac{3}{2}}}}{3}\]

Давайте напишем итоговое решение:

А теперь внимание! Очень важная вещь, с которой связана львиная доля ошибок и недопониманий. Дело в том, что до сих пор считая первообразные с помощью производных, приводя преобразования, мы не задумывались о том, чему равна производная константы. А ведь производная константы равна «нулю». А это означает, что можно записать такие варианты:

  1. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}$
  2. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}+1$
  3. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}+C$

Вот это очень важно понимать: если производная функции всегда одна и та же, то первообразных у одной и той же функции бесконечно много. Просто к нашим первообразным мы можем дописывать любые числа-константы и получать новые.

Неслучайно, в пояснении к тем задачам, которые мы только что решали, было написано «Запишите общий вид первообразных». Т.е. уже заранее предполагается, что их не одна, а целое множество. Но, на самом деле, они отличаются лишь константой $C$ в конце. Потому в наших задачах мы исправим то, что мы не дописали.

Еще раз переписываем наши конструкции:

В таких случаях следует дописывать, что $C$ — константа — $C=const$.

Во второй нашей функции мы получим следующую конструкцию:

И последняя:

И вот теперь мы действительно получили то, что от нас требовалось в исходном условии задачи.

Решение задач на нахождение первообразных с заданной точкой

Сейчас, когда мы знаем о константах и об особенностях записи первообразных, вполне логично возникает следующий тип задач, когда из множества всех первообразных требуется найти одну-единственную такую, которая проходила бы через заданную точку. В чем состоит эта задача?

Дело в том, что все первообразные данной функции отличаются лишь тем, что они сдвинуты по вертикали на какое-то число. А это значит, что какую бы точку на координатной плоскости мы не взяли, обязательно пройдет одна первообразная, и, причем, только одна.

Итак, задачи, которые сейчас мы будем решать, сформулированы следующем образом: не просто найти первообразную, зная формулу исходной функции, а выбрать именно такую из них, которая проходит через заданную точку, координаты которой будут даны в условии задачи.

Пример № 1

Для начала просто посчитаем каждое слагаемое:

\[{{x}^{4}}\to \frac{{{x}^{5}}}{5}\]

\[{{x}^{3}}\to \frac{{{x}^{4}}}{4}\]

Теперь подставляем эти выражения в нашу конструкцию:

Эта функция должна проходить через точку $M\left(-1;4 \right)$. Что значит, что она проходит через точку? Это значит, что если вместо $x$ поставить везде $-1$, а вместо $F\left(x \right)$ — $-4$, то мы должны получить верное числовое равенство. Давайте так и сделаем:

Мы видим, что у нас получилось уравнение относительно $C$, поэтому давайте попробуем его решить:

Давайте запишем то самое решение, которое мы искали:

Пример № 2

В первую очередь необходимо раскрыть квадрат разности по формуле сокращенного умножения:

\[{{x}^{2}}\to \frac{{{x}^{3}}}{3}\]

Исходная конструкция запишется следующим образом:

Теперь давайте найдем $C$: подставим координаты точки $M$:

\[-1=\frac{8}{3}-12+18+C\]

Выражаем $C$:

Осталось отобразить итоговое выражение:

Решение тригонометрических задач

В качестве финального аккорда к тому, что мы только что разобрали, предлагаю рассмотреть две более сложные задачи, в которых содержится тригонометрия. В них точно так же потребуется найти первообразные для всех функций, затем выбрать из этого множества одну-единственную, которая проходит через точку $M$ на координатной плоскости.

Забегая наперед, хотел бы отметить, что тот прием, который мы сейчас будем использовать для нахождения первообразных от тригонометрических функций, на самом деле, является универсальным приемом для самопроверки.

Задача № 1

Вспомним следующую формулу:

\[{{\left(\text{tg}x \right)}^{\prime }}=\frac{1}{{{\cos }^{2}}x}\]

Исходя из этого, мы можем записать:

Давайте подставим координаты точки $M$ в наше выражение:

\[-1=\text{tg}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}+C\]

Перепишем выражение с учетом этого факта:

Задача № 2

Тут будет чуть сложнее. Сейчас увидите, почему.

Вспомним такую формулу:

\[{{\left(\text{ctg}x \right)}^{\prime }}=-\frac{1}{{{\sin }^{2}}x}\]

Чтобы избавится от «минуса», необходимо сделать следующее:

\[{{\left(-\text{ctg}x \right)}^{\prime }}=\frac{1}{{{\sin }^{2}}x}\]

Вот наша конструкция

Подставим координаты точки $M$:

Итого запишем окончательную конструкцию:

Вот и все, о чем я хотел сегодня вам рассказать. Мы изучили сам термин первообразных, как считать их от элементарных функций, а также как находить первообразную, проходящую через конкретную точку на координатной плоскости.

Надеюсь, этот урок хоть немного поможет вам разобраться в этой сложной теме. В любом случае, именно на первообразных строятся неопределенные и неопределенные интегралы, поэтому считать их совершенно необходимо. На этом у меня все. До новых встреч!

Первообразная.

Первообразную легко понять на примере.

Возьмем функцию у = х 3 . Как мы знаем из предыдущих разделов, производной от х 3 является 3х 2:

(х 3)" = 3х 2 .

Следовательно, из функции у = х 3 мы получаем новую функцию: у = 3х 2 .
Образно говоря, функция у = х 3 произвела функцию у = 3х 2 и является ее «родителем». В математике нет слова «родитель», а есть родственное ему понятие: первообразная.

То есть: функция у = х 3 является первообразной для функции у = 3х 2 .

Определение первообразной:

В нашем примере (х 3)" = 3х 2 , следовательно у = х 3 – первообразная для у = 3х 2 .

Интегрирование.

Как вы знаете, процесс нахождения производной по заданной функции называется дифференцированием. А обратная операция называется интегрированием.

Пример-пояснение :

у = 3х 2 + sin x .

Решение :

Мы знаем, что первообразной для 3х 2 является х 3 .

Первообразной для sin x является –cos x .

Складываем два первообразных и получаем первообразную для заданной функции:

у = х 3 + (–cos x ),

у = х 3 – cos x .

Ответ :
для функции у = 3х 2 + sin x у = х 3 – cos x .

Пример-пояснение :

Найдем первообразную для функции у = 2 sin x .

Решение :

Замечаем, что k = 2. Первообразной для sin x является –cos x .

Следовательно, для функции у = 2 sin x первообразной является функция у = –2 cos x .
Коэффициент 2 в функции у = 2 sin x соответствует коэффициенту первообразной, от которой эта функция образовалась.

Пример-пояснение :

Найдем первообразную для функции y = sin 2x .

Решение :

Замечаем, что k = 2. Первообразной для sin x является –cos x .

Применяем нашу формулу при нахождении первообразной для функции y = cos 2x :

1
y = - · (–cos 2x ),
2

cos 2x
y = – ----
2

cos 2x
Ответ : для функции y = sin 2x первообразной является функция y = – ----
2


(4)

Пример-пояснение .

Возьмем функцию из предыдущего примера: y = sin 2x .

Для этой функции все первообразные имеют вид:

cos 2x
y = – ---- + C .
2

Пояснение .

Возьмем первую строчку. Читается она так: если функция y = f(x )равна 0, то первообразной для для нее является 1. Почему? Потому что производная единицы равна нулю: 1" = 0.

В таком же порядке читаются и остальные строчки.

Как выписывать данные из таблицы? Возьмем восьмую строчку:

(-cos x )" = sin x

Пишем вторую часть со знаком производной, затем знак равенства и производную.

Читаем: первообразной для функции sin x является функция -cos x .

Или: функция -cos x является первообразной для функции sin x .

Первообразная

Определение первообразной функции

  • Функцию у= F (x) называют первообразной для функции у=f (x) на заданном промежутке Х, если для всех х Х выполняется равенство: F′(x) = f (x)

Можно прочесть двумя способами:

  1. f производная функции F
  2. F первообразная для функции f

Свойство первообразных

  • Если F(x) - первообразная для функции f(x) на заданном промежутке, то функция f(x) имеет бесконечно много первообразных, и все эти первообразные можно записать в виде F(x) + С , где С - произвольная постоянная.

Геометрическая интерпретация

  • Графики всех первообразных данной функции f (x) получаются из графика какой-либо одной первообразной параллельными переносами вдоль оси Оу .

Правила вычисления первообразных

  1. Первообразная суммы равна сумме первообразных . Если F(x) - первообразная для f(x) , а G(x) - первообразная для g(x) , то F(x) + G(x) - первообразная для f(x) + g(x) .
  2. Постоянный множитель можно выносить за знак производной . Если F(x) - первообразная для f(x) , и k - постоянная, то k·F(x) - первообразная для k·f(x) .
  3. Если F(x) - первообразная для f(x) , и k, b - постоянные, причём k ≠ 0 , то 1/k · F(kx + b) - первообразная для f(kx + b) .

Запомни!

Любая функция F(x) = х 2 + С , где С - произвольная постоянная, и только такая функция, является первообразной для функции f(x) = 2х .

  • Например:

    F"(x) = (х 2 + 1)" = 2x = f(x);

    f(x) = 2х, т.к. F"(x) = (х 2 – 1)" = 2x = f(x);

    f(x) = 2х, т.к. F"(x) = (х 2 –3)" = 2x = f(x);

Связь между графиками функции и ее первообразной:

  1. Если график функции f(x)>0 F(x) возрастает на этом промежутке.
  2. Если график функции f(x)<0 на промежутке, то график ее первообразной F(x) убывает на этом промежутке.
  3. Если f(x)=0 , то график ее первообразной F(x) в этой точке меняется с возрастающего на убывающий (или наоборот).

Для обозначения первообразной используют знак неопределённого интеграла, то есть интеграла без указания пределов интегрирования.

Неопределенный интеграл

Определение :

  • Неопределённым интегралом от функции f(x) называется выражение F(x) + С, то есть совокупность всех первообразных данной функции f(x). Обозначается неопределённый интеграл так: \int f(x) dx = F(x) + C
  • f(x) - называют подынтегральной функцией;
  • f(x) dx - называют подынтегральным выражением;
  • x - называют переменной интегрирования;
  • F(x) - одна из первообразных функции f(x);
  • С - произвольная постоянная.

Свойства неопределённого интеграла

  1. Производная неопределённого интеграла равна подынтегральной функции: (\int f(x) dx)\prime= f(x) .
  2. Постоянный множитель подынтегрального выражения можно выносить за знак интеграла: \int k \cdot f(x) dx = k \cdot \int f(x) dx .
  3. Интеграл от суммы (разности) функций равен сумме (разности) интегралов от этих функций:\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx .
  4. Если k, b - постоянные, причём k ≠ 0, то \int f(kx + b) dx = \frac{1}{k} \cdot F(kx + b) + C .

Таблица первообразных и неопределенных интегралов

Функция

f(x)

Первообразная

F(x) + C

Неопределенные интегралы

\int f(x) dx = F(x) + C

0 C \int 0 dx = C
f(x) = k F(x) = kx + C \int kdx = kx + C
f(x) = x^m, m\not =-1 F(x) = \frac{x^{m+1}}{m+1} + C \int x{^m}dx = \frac{x^{m+1}}{m+1} + C
f(x) = \frac{1}{x} F(x) = l n \lvert x \rvert + C \int \frac{dx}{x} = l n \lvert x \rvert + C
f(x) = e^x F(x) = e^x + C \int e{^x }dx = e^x + C
f(x) = a^x F(x) = \frac{a^x}{l na} + C \int a{^x }dx = \frac{a^x}{l na} + C
f(x) = \sin x F(x) = -\cos x + C \int \sin x dx = -\cos x + C
f(x) = \cos x F(x) =\sin x + C \int \cos x dx = \sin x + C
f(x) = \frac{1}{\sin {^2} x} F(x) = -\ctg x + C \int \frac {dx}{\sin {^2} x} = -\ctg x + C
f(x) = \frac{1}{\cos {^2} x} F(x) = \tg x + C \int \frac{dx}{\sin {^2} x} = \tg x + C
f(x) = \sqrt{x} F(x) =\frac{2x \sqrt{x}}{3} + C
f(x) =\frac{1}{ \sqrt{x}} F(x) =2\sqrt{x} + C
f(x) =\frac{1}{ \sqrt{1-x^2}} F(x)=\arcsin x + C \int \frac{dx}{ \sqrt{1-x^2}}=\arcsin x + C
f(x) =\frac{1}{ \sqrt{1+x^2}} F(x)=\arctg x + C \int \frac{dx}{ \sqrt{1+x^2}}=\arctg x + C
f(x)=\frac{1}{ \sqrt{a^2-x^2}} F(x)=\arcsin \frac {x}{a}+ C \int \frac{dx}{ \sqrt{a^2-x^2}} =\arcsin \frac {x}{a}+ C
f(x)=\frac{1}{ \sqrt{a^2+x^2}} F(x)=\arctg \frac {x}{a}+ C \int \frac{dx}{ \sqrt{a^2+x^2}} = \frac {1}{a} \arctg \frac {x}{a}+ C
f(x) =\frac{1}{ 1+x^2} F(x)=\arctg + C \int \frac{dx}{ 1+x^2}=\arctg + C
f(x)=\frac{1}{ \sqrt{x^2-a^2}} (a \not= 0) F(x)=\frac{1}{2a}l n \lvert \frac {x-a}{x+a} \rvert + C \int \frac{dx}{ \sqrt{x^2-a^2}}=\frac{1}{2a}l n \lvert \frac {x-a}{x+a} \rvert + C
f(x)=\tg x F(x)= - l n \lvert \cos x \rvert + C \int \tg x dx =- l n \lvert \cos x \rvert + C
f(x)=\ctg x F(x)= l n \lvert \sin x \rvert + C \int \ctg x dx = l n \lvert \sin x \rvert + C
f(x)=\frac{1}{\sin x} F(x)= l n \lvert \tg \frac{x}{2} \rvert + C \int \frac {dx}{\sin x} = l n \lvert \tg \frac{x}{2} \rvert + C
f(x)=\frac{1}{\cos x} F(x)= l n \lvert \tg (\frac{x}{2} +\frac{\pi}{4}) \rvert + C \int \frac {dx}{\cos x} = l n \lvert \tg (\frac{x}{2} +\frac{\pi}{4}) \rvert + C


Формула Ньютона–Лейбница

Пусть f (х) данная функция, F её произвольная первообразная.

\int_{a}^{b} f(x) dx =F(x)|_{a}^{b} = F(b) - F(a)

где F(x) - первообразная для f(x)

То есть, интеграл функции f (x) на интервале равен разности первообразных в точках b и a .

Площадь криволинейной трапеции

Криволинейной трапецией называется фигура, ограниченная графиком неотрицательной и непрерывной на отрезке функции f , осью Ox и прямыми x = a и x = b .

Площадь криволинейной трапеции находят по формуле Ньютона-Лейбница:

S= \int_{a}^{b} f(x) dx