Разложение квадратного трехчлена на множители упрощение выражений. Разложение квадратного трёхчлена на множители

Калькулятор онлайн.
Выделение квадрата двучлена и разложение на множители квадратного трехчлена.

Эта математическая программа выделяет квадрат двучлена из квадратного трехчлена , т.е. делает преобразование вида:
\(ax^2+bx+c \rightarrow a(x+p)^2+q \) и раскладывает на множители квадратный трехчлен : \(ax^2+bx+c \rightarrow a(x+n)(x+m) \)

Т.е. задачи сводятся к нахождению чисел \(p, q \) и \(n, m \)

Программа не только даёт ответ задачи, но и отображает процесс решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного трехчлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5x +1/7x^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} x + \frac{1}{7}x^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении введённое выражение сначала упрощается.
Например: 1/2(x-1)(x+1)-(5x-10&1/2)

Пример подробного решения

Выделение квадрата двучлена. $$ ax^2+bx+c \rightarrow a(x+p)^2+q $$ $$2x^2+2x-4 = $$ $$2x^2 +2 \cdot 2 \cdot\left(\frac{1}{2} \right)\cdot x+2 \cdot \left(\frac{1}{2} \right)^2-\frac{9}{2} = $$ $$2\left(x^2 + 2 \cdot\left(\frac{1}{2} \right)\cdot x + \left(\frac{1}{2} \right)^2 \right)-\frac{9}{2} = $$ $$2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Ответ: $$2x^2+2x-4 = 2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Разложение на множители. $$ ax^2+bx+c \rightarrow a(x+n)(x+m) $$ $$2x^2+2x-4 = $$
$$ 2\left(x^2+x-2 \right) = $$
$$ 2 \left(x^2+2x-1x-1 \cdot 2 \right) = $$ $$ 2 \left(x \left(x +2 \right) -1 \left(x +2 \right) \right) = $$ $$ 2 \left(x -1 \right) \left(x +2 \right) $$ Ответ: $$2x^2+2x-4 = 2 \left(x -1 \right) \left(x +2 \right) $$

Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Выделение квадрата двучлена из квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+p) 2 +q, где p и q - действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена .

Выделим из трехчлена 2x 2 +12x+14 квадрат двучлена.


\(2x^2+12x+14 = 2(x^2+6x+7) \)


Для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 3 2 . Получим:
$$ 2(x^2+2 \cdot 3 \cdot x + 3^2-3^2+7) = 2((x+3)^2-3^2+7) = $$ $$ = 2((x+3)^2-2) = 2(x+3)^2-4 $$

Т.о. мы выделили квадрат двучлена из квадратного трехчлена , и показоли, что:
$$ 2x^2+12x+14 = 2(x+3)^2-4 $$

Разложение на множители квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+n)(x+m), где n и m - действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена .

Покажем на примере как это преобразование делается.

Разложим квадратный трехчлен 2x 2 +4x-6 на множители.

Вынесем за скобки коэффициент a, т.е. 2:
\(2x^2+4x-6 = 2(x^2+2x-3) \)

Преобразуем выражение в скобках.
Для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. Получим:
$$ = 2(x^2+3 \cdot x -1 \cdot x -1 \cdot 3) = 2(x(x+3)-1 \cdot (x+3)) = $$
$$ = 2(x-1)(x+3) $$

Т.о. мы разложили на множители квадратный трехчлен , и показоли, что:
$$ 2x^2+4x-6 = 2(x-1)(x+3) $$

Заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому трехчлену имеет корни.
Т.е. в нашем случае разложить на множители трехчлен 2x 2 +4x-6 возможно, если квадратное уравнение 2x 2 +4x-6 =0 имеет корни. В процессе разложения на множители мы установили, что уравнение 2x 2 +4x-6 =0 имеет два корня 1 и -3, т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство.

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач

Квадратным трехчленом называется многочлен вида ax^2+bx+c, где х – переменная, a, b и с – некоторые числа, причем а не равно нулю.
Собственно, первое что нам нужно знать, чтобы разложить злополучный трехчлен на множители – теорема. Выглядит она следующим образом: “Если х1 и х2 – корни квадратного трехчлена ax^2+bx+c, то ax^2+bx+c=a(x-x1)(x-x2)”. Конечно, существует и доказательство этой теоремы, но оно требует некоторых теоретических знаний (при вынесении за скобки в многочлене ax^2+bx+c множителя а получаем ax^2+bx+c=a(x^2+(b/a)x + c/a). По теореме Виетта x1+x2=-(b/a), х1*х2=с/а, следовательно b/a=-(x1+x2), с/а=х1*х2. значит, x^2+ (b/a)x+c/a= x^2- (x1+x2)x+ x1x2=x^2-x1x-x2x+x1x2=x(x-x1)-x2(x-x1)= (x-x1)(x-x2). значит, ax^2+bx+c=a(x-x1)(x-x2) . Иногда учителя заставляют учить доказательство, но если оно не востребовано, советую просто запомнить итоговую формулу.

2 шаг

Возьмем как пример трехчлен 3x^2-24x+21. Первое, что нам нужно сделать – приравнять трехчлен к нулю: 3x^2-24x+21=0. Корни полученного квадратного уравнения и будут корнями трехчлена, соответственно.

3 шаг

Решим уравнение 3x^2-24x+21=0. a=3, b=-24, c=21. Итак, решаем. Кто не знает как решать квадратные уравнения, смотрите в мою инструкцию с 2-мя способами их решения на примере этого же уравнения. Получились корни х1=7, х2=1.

4 шаг

Теперь, когда у нас есть корни трехчлена, можно смело подставлять их в формулу =) ax^2+bx+c=a(x-x1)(x-x2)
получаем:3x^2-24x+21=3(х-7)(х-1)
Можно избавиться от члена а, внеся его в скобки: 3x^2-24x+21=(х-7)(х*3-1*3)
в итоге получаем: 3x^2-24x+21=(х-7)(3х-3). Примечание: каждый из полученных множителей ((х-7), (3х-3) являются многочленами первой степени. Вот и все разложение =) Если сомневаетесь в полученном ответе, всегда можно его проверить, перемножив скобки.

5 шаг

Проверка решения. 3x^2-24x+21=3(х-7)(х-3)
(x-7)(3x-3)=3x^2-3x-21x+21=3x^2-24x+21. Теперь мы точно знаем, что наше решение верно! Надеюсь, моя инструкция кому-нибудь поможет =) Удачи в учебе!

  • В нашем случае в уравнении D >0 и мы получили по 2 корня. Если бы было D<0, то уравнение, как и многочлен, соответственно, корней бы не имело.
  • Если квадратный трехчлен не имеет корней, то его нельзя разложить на множители, являющиеся многочленами первой степени.

Найдем сумму и произведение корней квадратного уравнения. Используя формулы (59.8) для корней приведенного уравнения, получим

(первое равенство очевидно, второе получается после несложного вычисления, которое читатель проведет самостоятельно; удобно использовать формулу для произведения суммы двух чисел на их разность).

Доказана следующая

Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту с противоположным знаком, а их произведение равно свободному члену.

В случае неприведенного квадратного уравнения следует в формулы (60.1) подставить выражения формулы (60.1) примут вид

Пример 1. Составить квадратное уравнение по его корням:

Решение, а) Находим уравнение имеет вид

Пример 2. Найти сумму квадратов корней уравнения не решая самого уравнения.

Решение. Известны сумма и произведение корней. Представим сумму квадратов корней в виде

и получим

Из формул Виета легко получить формулу

выражающую правило разложения квадратного трехчлена на множители.

В самом деле, напишем формулы (60.2) в виде

Теперь имеем

что и требовалось получить.

Вышеуказанный вывод формул Виета знаком читателю из курса алгебры средней школы. Можно дать другой вывод, использующий теорему Безу и разложение многочлена на множители (пп. 51, 52).

Пусть корни уравнения тогда по общему правилу (52.2) трехчлен в левой части уравнения разлагается на множители:

Раскрывая скобки в правой части этого тождественного равенства, получим

и сравнение коэффициентов при одинаковых степенях даст нам формулы Виета (60.1).

Преимущество этого вывода состоит в том, что его можно применить и к уравнениям высших степеней с тем, чтобы получить выражения коэффициентов уравнения через его корни (не находя самих корней!). Например, если корни приведенного кубического уравнения

суть то согласно равенству (52.2) находим

(в нашем случае Раскрыв скобки в правой части равенства и собрав коэффициенты при различных степенях получим

На данном уроке мы с вами научимся раскладывать квадратные трёхчлены на линейные множители. Для этого необходимо вспомнить теорему Виета и обратную ей. Данное умение поможет нам быстро и удобно раскладывать квадратные трёхчлены на линейные множители, а также упростит сокращение дробей, состоящих из выражений.

Итак вернёмся к квадратному уравнению , где .

То, что стоит у нас в левой части, называется квадратным трёхчленом.

Справедлива теорема: Если - корни квадратного трёхчлена, то справедливо тождество

Где - старший коэффициент, - корни уравнения.

Итак, мы имеем квадратное уравнение - квадратный трёхчлен, где корни квадратного уравнения также называются корнями квадратного трёхчлена. Поэтому если мы имеем корни квадратного трёхчлена, то этот трёхчлен раскладывается на линейные множители.

Доказательство:

Доказательство данного факта выполняется с помощью теоремы Виета, рассмотренной нами в предыдущих уроках.

Давайте вспомним, о чём говорит нам теорема Виета:

Если - корни квадратного трёхчлена, у которого , то .

Из данной теоремы вытекает следующее утверждение, что .

Мы видим, что, по теореме Виета, , т. е., подставив данные значения в формулу выше, мы получаем следующее выражение

что и требовалось доказать.

Вспомним, что мы доказали теорему, что если - корни квадратного трёхчлена, то справедливо разложение .

Теперь давайте вспомним пример квадратного уравнения , к которому с помощью теоремы Виета мы подбирали корни . Из этого факта мы можем получить следующее равенство благодаря доказанной теореме:

Теперь давайте проверим правильность данного факта простым раскрытием скобок:

Видим, что на множители мы разложили верно, и любой трёхчлен, если он имеет корни, может быть разложен по данной теореме на линейные множители по формуле

Однако давайте проверим, для любого ли уравнения возможно такое разложение на множители:

Возьмём, к примеру, уравнение . Для начала проверим знак дискриминанта

А мы помним, что для выполнения выученной нами теоремы D должен быть больше 0, поэтому в данном случае разложение на множители по изученной теореме невозможно.

Поэтому сформулируем новую теорему: если квадратный трёхчлен не имеет корней, то его нельзя разложить на линейные множители.

Итак, мы рассмотрели теорему Виета, возможность разложения квадратного трёхчлена на линейные множители, и теперь решим несколько задач.

Задача №1

В данной группе мы будем по факту решать задачу, обратную к поставленной. У нас было уравнение, и мы находили его корни, раскладывая на множители. Здесь мы будем действовать наоборот. Допустим, у нас есть корни квадратного уравнения

Обратная задача такова: составьте квадратное уравнение, чтобы были его корнями.

Для решения данной задачи существует 2 способа.

Поскольку - корни уравнения, то - это квадратное уравнение, корнями которого являются заданные числа. Теперь раскроем скобки и проверим:

Это был первый способ, по которому мы создали квадратное уравнение с заданными корнями, в котором нет каких-либо других корней, поскольку любое квадратное уравнение имеет не более двух корней.

Данный способ предполагает использование обратной теоремы Виета.

Если - корни уравнения, то они удовлетворяют условию, что .

Для приведённого квадратного уравнения , , т. е. в данном случае , а .

Таким образом, мы создали квадратное уравнение, которое имеет заданные корни.

Задача №2

Необходимо сократить дробь .

Мы имеем трёхчлен в числителе и трёхчлен в знаменателе, причём трёхчлены могут как раскладываться, так и не раскладываться на множители. Если же и числитель, и знаменатель раскладываются на множители, то среди них могут оказаться равные множители, которые можно сократить.

В первую очередь необходимо разложить на множители числитель .

Вначале необходимо проверить, можно ли разложить данное уравнении на множители, найдём дискриминант . Поскольку , то знак зависит от произведения ( должно быть меньше 0), в данном примере , т. е. заданное уравнение имеет корни.

Для решения используем теорему Виета:

В данном случае, поскольку мы имеем дело с корнями, то просто подобрать корни будет довольно сложно. Но мы видим, что коэффициенты уравновешены, т. е. если предположить, что , и подставить это значение в уравнение, то получается следующая система: , т. е. 5-5=0. Таким образом, мы подобрали один из корней данного квадратного уравнения.

Второй корень мы будем искать методом подставления уже известного в систему уравнений, к примеру, , т.е. .

Таким образом, мы нашли оба корня квадратного уравнения и можем подставить их значения в исходное уравнение, чтобы разложить его на множители:

Вспомним изначальную задачу, нам необходимо было сократить дробь .

Попробуем решить поставленную задачу, подставив вместо числителя .

Необходимо не забыть, что при этом знаменатель не может равняться 0, т. е. , .

Если данные условия будут выполняться, то мы сократили исходную дробь до вида .

Задача №3 (задача с параметром)

При каких значениях параметра сумма корней квадратного уравнения

Если корни данного уравнения существуют, то , вопрос: когда .

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.