Сердечный выброс, его фракции. Систолический и минутный объемы крови. Сердечный индекс. Метод раздельного взвешивания сердца Смотреть что такое "Сердечный индекс" в других словарях

Оглавление темы "Функции систем кровообращения и лимфообращения. Система кровообращения. Системная гемодинамика. Сердечный выброс.":
1. Функции систем кровообращения и лимфообращения. Система кровообращения. Центральное венозное давление.
2. Классификация системы кровообращения. Функциональные классификации системы кровообращения (Фолкова, Ткаченко).
3. Характеристика движения крови по сосудам. Гидродинамические характеристики сосудистого русла. Линейная скорость кровотока. Что такое сердечный выброс?
4. Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы (ССС).
5. Системная гемодинамика. Параметры гемодинамики. Системное артериальное давление. Систолическое, диастолическое давление. Среднее давление. Пульсовое давление.
6. Общее периферическое сопротивление сосудов (ОПСС). Уравнение Франка.

8. Частота сердечных сокращений (пульс). Работа сердца.
9. Сократимость. Сократимость сердца. Сократимость миокарда. Автоматизм миокарда. Проводимость миокарда.
10. Мембранная природа автоматии сердца. Водитель ритма. Пейсмекер. Проводимость миокарда. Истинный водитель ритма. Латентный водитель ритма.

В клинической литературе чаще используют понятие «минутный объем кровообращения » (МОК ).

Минутный объем кровообращения характеризует общее количество крови, перекачиваемое правым и левым отделом сердца в течение одной минуты в сердечно-сосудистой системе. Размерность минутного объема кровообращения - л/мин или мл/мин. Чтобы нивелировать влияние индивидуальных антропометрических различий на величину МОК, его выражают в виде сердечного индекса . Сердечный индекс - это величина минутного объема кровообращения, деленная на площадь поверхности тела в м. Размерность сердечного индекса - л/(мин м2).

В системе транспорта кислорода аппарат кровообращения является лимитирующим звеном, поэтому соотношение максимальной величины МОК, проявляющейся при максимально напряженной мышечной работе, с его значением в условиях основного обмена дает представление о функциональном резерве сердечно-сосудистой системы. Это же соотношение отражает и функциональный резерв сердца в его гемодинамической функции. Гемодинамический функциональный резерв сердца у здоровых людей составляет 300-400 %. Это означает, что МОК покоя может быть увеличен в 3-4 раза. У физически тренированных лиц функциональный резерв выше - он достигает 500-700 %.

Для условий физического покоя и горизонтального положения тела испытуемого нормальные величины минутного объема кровообращения (МОК) соответствуют диапазону 4-6 л/ мин (чаще приводятся величины 5-5,5 л/мин). Средние величины сердечного индекса колеблются от 2 до 4 л/(мин м2) - чаще приводятся величины порядка 3-3,5 л/(мин м2).

Рис. 9.4. Фракции диастолической емкости левого желудочка.

Поскольку объем крови у человека составляет только 5-6 л, полный кругооборот всего объема крови происходит примерно за 1 мин. В период тяжелой работы МОК у здорового человека может увеличиваться до 25- 30 л/мин, а у спортсменов - до 30-40 л/мин.

Факторами, определяющими величину величины минутного объема кровообращения (МОК) , являются систолический объем крови, частота сердечных сокращений и венозный возврат крови к сердцу.

Систолический объем крови . Объем крови, нагнетаемый каждым желудочком в магистральный сосуд (аорту или легочную артерию) при одном сокращении сердца, обозначают как систолический, или ударный, объем крови.

В покое объем крови , выбрасываемый из желудочка, составляет в норме от трети до половины общего количества крови, содержащейся в этой камере сердца к концу диастолы. Оставшийся в сердце после систолы резервный объем крови является своеобразным депо, обеспечивающим увеличение сердечного выброса при ситуациях, в которых требуется быстрая интенсификация гемодинамики (например, при физической нагрузке, эмоциональном стрессе и др.).

Таблица 9.3. Некоторые параметры системной гемодинамики и насосной функции сердца у человека (в условиях основного обмена)

Величина систолического (ударного) объема крови во многом предопределена конечным диастолическим объемом желудочков. В условиях покоя диастолическая емкость желудочков сердца подразделяется на три фракции: ударного объема, базального резервного объема и остаточного объема. Все эти три фракции суммарно составляют конечно-диастолический объем крови, содержащийся в желудочках (рис. 9.4).

После выброса в аорту систолического объема крови оставшейся в желудочке объем крови - это конечно-систолический объем. Он подразделяется на базальный резервный объем и остаточный объем. Базальный резервный объем - это количество крови, которое может быть дополнительно выброшено из желудочка при увеличении силы сокращений миокарда (например, при физической нагрузке организма). Остаточный объем - это то количество крови, которое не может быть вытолкнуто из желудочка даже при самом мощном сердечном сокращении (см. рис. 9.4).

Величина резервного объема крови является одной из главных детерминант функционального резерва сердца по его специфической функции - перемещению крови в системе. При увеличении резервного объема, соответственно, увеличивается максимальный систолический объем, который может быть выброшен из сердца в условиях его интенсивной деятельности.

Регуляторные влияния на сердце реализуются в изменении систолического объема путем воздействия на сократительную силу миокарда. При уменьшении мощности сердечного сокращения систолический объем снижается.

У человека при горизонтальном положении тела в условиях покоя систолический объем составляет от 60 до 90 мл (табл. 9.3).

Количество крови, выбрасываемое желудочком сердца в артерии в минуту является важным показателем функционального состояния сердечно-сосудистой системы (ССС) и называется минутным объемом крови (МОК). Он одинаков для обоих желудочков и в покое равен 4,5–5 л.

Важную характеристику насосной функции сердца дает ударный объем , называемый также систолическим объемом или систолическим выбросом . Ударный объем – количество крови, выбрасываемое желудочком сердца в артериальную систему за одну систолу. (Если разделить МОК на ЧСС в минуту получим систолический объем (СО) кровотока.) При сокращении сердца равном 75 ударов в мин он составляет 65–70 мл, при работе увеличивается до 125 мл. У спортсменов в покое он составляет 100 мл, при работе возрастает до 180 мл. Определение МОК и СО широко применяется в клинике.

Фракция выброса (ФВ) – выраженное в процентах отношение ударного объема сердца к конечно-диастолическому объему желудочка. ФВ в покое у здорового человека 50-75%, а при физической нагрузке может достигать 80%.

Объем крови полости желудочка, который она занимает перед его систолой составляет конечно-диастолический объем (120–130 мл).

Конечно-систолический объем (КСО) – это количество крови, остающееся в желудочке сразу после систолы. В покое он составляет менее 50% от КДО, или 50-60 мл. Часть этого объема крови является резервным объемом.

Резервный объем реализуется при увеличении СО при нагрузках. В норме он составляет 15–20% от конечно-диастолического.

Объем крови в полостях сердца, остающийся при полной реализации резервного объема, при максимальной систоле составляет остаточный объем. СО и МОК величины непостоянные. При мышечной деятельности МОК возрастает до 30–38 л за счет учащения сокращений сердца и увеличения СОК.

Ряд показателей используется для оценки сократимости сердечной мышцы. К ним относятся: фракция выброса, скорость изгнания крови в фазу быстрого наполнения, скорость прироста давления в желудочке в период напряжения (измеряется при зондировании желудочка)/

Скорость изгнания крови изменяется методом Доплера при УЗИ сердца.

Скорость прироста давления в полостях считается желудочков считается одним из наиболее достоверных показателей сократимости миокарда. Для левого желудочка величина этого показателя в норме составляет 2000-2500 мм рт ст /с.

Снижение фракции выброса ниже 50%, уменьшение скорости изгнания крови, скорости прироста давления свидетельсвуют о понижении сократимости миокарда и возможности развития недостаточности насосной функции сердца.

Величина МОК, деленная на площадь поверхности тела в м 2 определяется как сердечный индекс (л/мин/м 2).

СИ = МОК/S (л/мин×м 2)

Он является показателем насосной функции сердца. В норме сердечный индекс составляет 3–4 л/мин×м 2 .

МОК, УОК и СИ объединяют общим понятием сердечный выброс.

Если известен МОК и АД в аорте (или легочной артерии) можно определить внешнюю работу сердца

Р = МОК × АД

Р - работа сердца в мин в килограмометрах (кг/м).

МОК - минутный объем крови (л).

АД - давление в метрах водного столба.

При физическом покое внешняя работа сердца составляет 70–110 Дж, при работе увеличивается до 800 Дж, для каждого желудочка в отдельности.

Таким образом, работа сердца определяется 2-мя факторами:

1. Количеством притекающей к нему крови.

2. Сопротивлением сосудов при изгнании крови в артерии (аорту и легочную артерию). Когда сердце не может при данном сопротивлении сосудов перекачать всю кровь в артерии, возникает сердечная недостаточность.

Различают 3 варианта сердечной недостаточности:

1. Недостаточность от перегрузки, когда к сердцу с нормальной сократительной способностью предъявляются чрезмерные требования при пороках, гипертензии.

2. Недостаточность сердца при повреждении миокарда: инфекции, интоксикации, авитаминозы, нарушение коронарного кровообращения. При этом снижается сократительная функция сердца.

3. Смешанная форма недостаточности - при ревматизме, дистрофических изменениях в миокарде и др.

Весь комплекс проявлений деятельности сердца регистрируется с помощью различных физиологических методик - кардиографий: ЭКГ, электрокимография, баллистокардиография, динамокардиография, верхушечная кардиография, ультразвуковая кардиография и др.

Диагностическим методом для клиники является электрическая регистрация движения контура сердечной тени на экране рентгеновского аппарата. К экрану у краев контура сердца прикладывают фотоэлемент, соединенный с осциллографом. При движениях сердца изменяется освещенность фотоэлемента. Это регистрируется осциллографом в виде кривой сокращения и расслабления сердца. Такая методика называется электрокимографией .

Верхушечная кардиограмма регистрируется любой системой, улавливающей малые локальные перемещения. Датчик укрепляется в 5 межреберье над местом сердечного толчка. Характеризует все фазы сердечного цикла. Но зарегистрировать все фазы удается не всегда: сердечный толчок по разному проецируется, часть силы прикладывается к ребрам. Запись у разных лиц и у одного лица может отличаться, влияет степень развития жирового слоя и др.

Используются в клинике также методы исследования, основанные на использовании ультразвука - ультразвуковая кардиография.

Ультразвуковые колебания при частоте 500 кГц и выше глубоко проникают через ткани будучи образованными излучателями ультразвука, приложенными к поверхности грудной клетки. Ультразвук отражается от тканей различной плотности - от наружной и внутренней поверхности сердца, от сосудов, от клапанов. Определяется время достижения отраженного ультразвука до улавливающего прибора.

Если отражающая поверхность перемещается, то время возвращения ультразвуковых колебаний изменяется. Этот метод можно использовать для регистрации изменений конфигурации структур сердца при его деятельности в виде кривых, записанных с экрана электроннолучевой трубки. Эти методики называются неинвазивными.

К инвазивным методикам относятся:

Катетеризация полостей сердца . В центральный конец вскрытой плечевой вены вводят эластичный зонд-катетер и проталкивают к сердцу (в его правую половину). В аорту или левый желудочек вводят зонд через плечевую артерию.

Ультразвуковое сканирование - источник ультразвука вводится в сердце с помощью катетера.

Ангиография представляет собой исследование движений сердца в поле рентгеновских лучей и др.

Механические и звуковые проявления сердечной деятельности. Тоны сердца, их генез. Поликардиография. Сопоставление во времени периодов и фаз сердечного цикла ЭКГ и ФКГ и механических проявлений сердечной деятельности.

Сердечный толчок. При диастоле сердце принимает форму эллипсоида. При систоле оно приобретает форму шара, продольный диаметр его уменьшается, поперечный увеличивается. Верхушка при систоле приподнимается и прижимается к передней грудной стенке. В 5 межреберье возникает сердечный толчок, который может быть зарегистрирован (верхушечная кардиография ). Изгнание крови из желудочков и ее движение по сосудам, вследствие реактивной отдачи вызывает колебания всего тела. Регистрация этих колебаний называется баллистокардиографией . Работа сердца сопровождается также звуковыми явлениями.

Тоны сердца. При выслушивании сердца определяются два тона: первый - систолический, второй - диастолический.

    Систолический тон низкий, протяжный (0,12 с). В его генезе участвуют несколько наслаивающихся компонентов:

1. Компонент закрытия митрального клапана.

2. Закрытия трехстворчатого клапана.

3. Пульмональный тон изгнания крови.

4. Аортальный тон изгнания крови.

Характеристику I тона определяет напряжение створчатых клапанов, напряжение сухожильных нитей, сосочковых мышц, стенок миокарда желудочков.

Компоненты изгнания крови возникают при напряжении стенок магистральных сосудов. I тон хорошо прослушивается в 5-ом левом межреберье. При патологии в генезе I тона участвуют:

1. Компонент открытия аортального клапана.

2. Открытие пульмонального клапана.

3. Тон растяжения легочной артерии.

4. Тон растяжения аорты.

Усиление I тона может быть при:

1. Гипердинамии: физические нагрузки, эмоции.

    При нарушении временных отношений между систолой предсердий и желудочков.

    При плохом наполнении левого желудочка (особенно при митральном стенозе, когда клапаны не полностью открываются). Третий вариант усиления I тона имеет существенное диагностическое значение.

Ослабление I тона возможно при недостаточности митрального клапана, когда створки неплотно смыкаются, при поражении миокарда и др.

    II тон - диастолический (высокий, короткий 0,08 с). Возникает при напряжении замкнутых полулунных клапанов. На сфигмограмме его эквивалент - инцизура . Тон тем выше, чем выше давление в аорте и легочной артерии. Хорошо прослушивается во 2-межреберье справа и слева от грудины. Он усиливается при склерозе восходящей аорты, легочной артерии. Звучание I и II тонов сердца наиболее близко передает сочетание звуков при произнесении словосочетании «ЛАБ-ДАБ».

Яблучанский Н.И. «Интерпретация в клинической физиологии сердца»

Функциональные исследования — фундамент клинической физиологии сердца. Они поставляют значительное количество показателей о его состоянии, кровообращении. Малая часть их представлена в нижеследующих таблицах главы, но и они далеко не все учитываются врачем одновременно. По разным обстоятельствам. Более того, квалифицированный врач использует разумным образом отобранное ограниченное число показателей, диктуемое ситуацией и некоторыми общими принципами оптимального менеджмента пациента. Не все методы в конкретной ситуации доступны. Предпочтение имеют неинвазивные.
Заметим снова, одни и те же показатели могут быть получены разными методами. Геометрия сердца доступна томографическим методам, фазовая структура сердечного цикла и того более, — семействам методов, вскрывающим разные стороны физиологии кровообращения. При выборе метода учитывается множество факторов, но всегда результат должен быть максимальным при минимальной цене (снова оптимизация). Функциональные показатели — производные от гемодинамических, биомеханических, электрофизиологических и иных функций. Они есть значения этих функций, взятые в конкретные (опорные) моменты (реперы) сердечного цикла. Наиболее часто — это границы фаз и периодов цикла. Цель книги — интерпретация, но не сами показатели. Глава поэтому больше имеет демонстративное в поставленной задаче значение.

2.1 Показатели фазовой структуры сердечного цикла

Каждый сердечный цикл состоит из систолы, отвечающей сокращению миокарда желудочков, и диастолы — его расслаблению. Цикловая биомеханика не только сердца, но ССС «привязывается» к цикловой структуре желудочков сердца.
Систола желудочков:

период изоволюмического сокращения (ICP)
фаза асинхронного сокращения (ACF)
фаза изоволюмического сокращения (ICF)
период изгнания (EP)
фаза быстрого изгнания (QEF)
фаза медленного изгнания (SEF)

Диастола желудочков:
период изоволюмического расслабления (IRF)
период диастолического наполнения:
период пассивного наполнения (PFP):
фаза быстрого наполнения (QFF)
фаза медленного наполнения (SFF)
систола предсердий (ASF).

Результирующие временные характеристики сердечного цикла — длительность (HT) и обратная к ней величина — частота сердечных сокращений (HR). Единица измерения цикловых временных характеристик — ms, и только HR — 1/min. Естественно фазовый анализ биомеханики сердца дополнять измерением на ECG длины PQ-сегмента, как меры продолжительности атриовентрикулярного проведения, а также — QT и TQ, как мер электрических систолы и диастолы. QT измеренный обычно сравнивают с должным (метод Базета).
Показатели фазовой структуры сердечного цикла сведены в табл. 2.1.1.
На сегодня наиболее полный и одновременно удобный метод определения цикловой организации сердечного ритма — одномерная эхокардиографическая регистрация движения створок митрального и аортального клапанов, синхронизированная, однако, с электрокардиографической записью.
Таблица 2.1.1
Показатели фазовой структуры сердечного цикла

Показатель Формула Размерность Название
ICP ms период изоволюмического сокращения
EP ms период изгнания
QEF ms фаза быстрого изгнания
SEF ms фаза медленного изгнания
IRР ms период изоволюмического расслабления
PFP ms период пассивного наполнения
FF ms фаза быстрого наполнения
SFF ms фаза медленного наполнения
ASF ms систола предсердий
HT sum(t) ms длительность сердечного цикла
HR 60/HT 1/min частота сердечных сокращений
PQ ms время атриовентрикулярного проведения
QT изм. ms продолжительность электрической систолы
долж. k?HT, k=0.37 для жужчин,k=0.39 для женщин и детей, HT ms продолжительность электрической систолы должная для данного HR
TR ms продолжительность электрической диасистолы

2.2 Функциональные показатели левого сердца

В клинике, если не считать специализированных подразделений, при изучении сердца большее внимание уделяется функциональному состоянию LV. В повседневной практике именно с этими проблемами наиболее часто встречается врач. LV в значительной мере определяет, а следовательно, и представляет системную гемодинамику. Далее за ним следует LA. И только затем правые камеры. Если, конечно, речь не касается врожденных пороков и/или правое сердце не вовлекается серьезным образом в патологический процесс. Естественно определять одинаковые по смыслу гемодинамические и биомеханические показатели разных камер сердца и естественно поэтому остановиться на таковых LV.

Наиболее важные гемодинамические и биомеханические функции LV — давление и обьем крови, активные деформации и напряжения в миокарде. Чтобы судить о величине давления и его циклических изменениях, достаточно знать его в характерные моменты сердечного цикла. Это давление в начале периода изгнания систолы (BEVP), максимальное за период изгнания систолы (SEVP), в конце периода изгнания систолы (EEVP), среднее за период изгнания систолы (MEVP), конечно-диастолическое (EDVP). В практической работе наиболее часто используют конечнодиастолическое и максимальное систолическое давление. По первому судят о преднагрузке на сердце, по второму — о гемодинамических потенциях LV. Помимо самого давления анализу подвергают и ее первую производную. Модули экстремумов (максимума и минимума) производной называются индексами сократимости (IC) и релаксации (IR). Используются также нормированные индексы и постоянные времен сократимости и релаксации. Нормированный индекс сократимости (NIC) — индекс, деленный на давление в конце периода изоволюмического сокращения и умноженный на продолжительность этого периода. Соответственно, нормированный индекс релаксации (NIR) — индекс, деленный на давление в начале периода изоволюмической релаксации и умноженный на продолжительность этого периода. Нормированные индексы отражают неравномерность процессов изоволюмических сокращения и расслабления (релаксации). Постоянные времен изоволюмических сокращения (TC) и релаксации (TR) LV — времена, на протяжении которых, соответственно, изоволюмическое сокращение и изоволюмическая релаксация совершаются ровно наполовину.
Значения обьема крови LV в конце диастолы и систолы называются, соответственно, конечно-систолическим (ESV) и конечно-диастолическим (EDV). Разность между ними представляет собой ударный объем (SV). В случае порока аортального и (или) митрального клапана, ударный обьем представляют обьемом выброса (SFV) и обьемом регургитации (RV). Естественно выполнение условия SV=SFV+RV. Точное значение SFV есть интеграл по времени периода изгнания от обьемной скорости кровотока через аортальный клапан. Номированный на площаль поверности тела SV называют ударным индексом (SI). Используют также нормирование ударного на конечно-диастолический обьем LV. Этот показатель выражают в процентах и называют фракцией изгнания (EF). Если SV умножить на HR, получится обьем крови LV за одну минуту — минутный объем крови (MV).
Деление его на площадь поверхности тела дает нормированный показатель — сердечный индекс (CI). По аналогии с SI и EF целесообразно построить аналог CI в виде EF, умноженной на HR. Ее можно назвать минутной фракцией (MF).
Дополнительную информацию дает анализ фазовой петли «обьем-давление» крови в LV. Площадь, ограниченная петлей, есть ударная работа сердца (SW) по изгнанию крови в сосуды BCC.
Давление и обьем крови в камерах сердца определяется либо прямыми (инвазивными) изменениями, либо ультразвуковыми методами в дополнении с математическим моделированием.
Эхокардиография в числе других томографических методов дополнительно позволяет определить толщину стенок сердца, например, в конце диастолы (DWT) и (SWT), их массу (MM). Так как масса стенок сердца существенно определяется конституциональными особенностями, вводят понятие нормированной массы, отнесенной к площади поверхности тела (NMM). Измерениям подлежат систолические и диастолические размеры выносящих трактов и клапанного аппарата желудочков, аорты и легочного ствола.
О диастолической функции LV помимо давления и обьема судят по показателям трансмитрального кровотока — наиболее употребимы скрости Е, А, отношение Е/А). Из других показателей диастолы SLV и SVVM необходимо обязательно «привязывать» к ее фазовым процессам. В естественных условиях они максимальны в фазу быстрого наполнения (QDF). При повышении диастолической жесткости миокарда LV — в систолу предсердий (AS). Митральную регургитацию характеризуют максимальная линейная (SRLVM), максимальная объемная (SRVVM), средняя линейная (MRLVM) и средняя объемная (MRVVM) скорости. Важной количественной мерой регургитации является ее обьем (LFR).
Активные деформации (степень актомиозинового сокращения) оценивают в конце периодов изоволюмического сокращения (ССL) изгнания систолы (ECL). Показателями, отражающими напряженно-деформированное состояние LV, являются максимальные (MCS), конечнодиастолические (EDCS) и конечносистолические эндокардиальные тангенциальные («окружные») напряжения (ESCS), конечнодиастолические (EDCD) и конечносистолические эндокардиальные тангенциальные («окружные») деформации (ESCD). Используют также показатели диастолической (DMR) и систолической (SMR) ригидности миокарда LV.
Гемодинамические и биомеханические показатели левого сердца сведены в табл. 2.2.1.

Таблица 2.2.1
Гемодинамические и биомеханические показатели левого сердца*

Показатель Формула Размерность Название
BEVP mm Hg давление крови в LV в начале периода изгнания систолы
SEVP max(Q) mm Hg максимальное давление крови в LV в период изгнания систолы
EEVP mm Hg давление крови в LV в конце периода изгнания систолы
MEVP HW/SV mm Hg среднее давление крови в LV в период изгнания систолы
EDVP mm Hg конечно-диастолическое давление крови в LV
IC Max(dQ/dt) mm Hg/s индекс сократимости
NIC IC*T/D(Q) индекс равномерности сократимости
IR Max(dQ/dt) mm Hg/s индекс релаксации
NIR IR*T/D(Q) индекс равномерности релаксации
HW V*int(Q*dv/dt)dt mm Hg*ml работа сердца
HE (HW-V*int((Q-P)* dv/dt))dt/HW % Коэффициент полезного действия LV
SV EDVV-ESVV ml ударный объем крови LV
SI SV/F ml/m/m ударный индекс LV
MV HR*SV ml/min минутный объем крови LV
CI MV/F ml/min/s/s сердечный индекс
EF SV/EDVV*100 % фракция выброса крови LV
ESV ml конечно-систолический объем крови в LV
ESV ml конечно-диастолический объем крови в LV
WT mm толщина стенки LV в конце диастолы
MM VM g масса стенок LV
NMM VM/F g/m/m нормированная масса стенок LV
Е (SLVM) max(U) mm/s максимальная средняя по сечению линейная скорость кровотока через митральный клапан в период пассивного наполнения
SVVM max(U*f) ml/s максимальная объемная скорость кровотока через митральный клапан в период пассивного наполнения
А (РLVM) mm/s mm/s максимальная средняя по сечению линейная скорость кровотока через митральный клапан в систолу предсердий
Е/А n. u. отношение максимальных средних по сечению линейных скоростей кровотока через митральный клапан в период пассивного наполнения и систолу предсердий
MLVM mm/s средняя по сечению за диастолу линейная скорость кровотока через митральный клапан
MVVM mm/s
SRLVM mm/s средняя за диастолу объемная скорость кровотока через митральный клапан
SRLVM mm/s средняя по сечению максимальная линейная скорость регургитации крови через митральный клапан
SRVVM max(U*f) ml/s максимальная объемная скорость регургитации крови через митральный клапан
MRLVM mm/s средняя по сечению и за время регургитации линейная скорость регургитации крови через митральный клапан
MRVVM ml/s средняя за время регургитации объемная скорость регургитации крови через митральный клапан
DMR Q/P mm Hg диастолическая ригидность (жесткость) миокарда LV
SMR Q/P mm Hg систолическая ригидность миокарда LV
MCS max(S) mm Hg максимальные эндокардиальные тангенциальные напряжения в стенке LV
EDCS mm Hg конечно-диастолические эндокардиальные тангенциальные напряжения в стенке LV
EDCD конечно-диастолические эндокардиальные тангенциальные деформации в стенке LV
ESCS mm Hg конечно-систолические эндокардиальные тангенциальные напряжения в стенке LV
ESCD конечно-систолические эндокардиальные тангенциальные деформации в стенке LV
TC T/LD(Q) s постоянная времени изоволюмического сокращения LV
TR T/LD(Q) s постоянная времени изоволюмической релаксации LV
ССL активные деформации кардио-миоцитов LV в конце периода изоволюмического сокращения систолы
ECL активные деформации кардиомиоцитов LV в конце периода изгнания систолы

*) Q,
P, U, V, T, f — являются текущими для указанного промежутка или момента времени t; D(x) — конечное приращение величины x за промежуток времени T; LD(x) — конечное приращение логарифма величины x за промежуток времени T; int()dt — интеграл; sqr() — квадратный корень; sqr3() — кубический корень; F — площадь поверхности тела; f — площадь отверстия для которого вычисляется объемная скорость; r — радиус отверстия; p — плотность крови; рi — число пи; v — текущий объем полости.

2.3 Функциональные показатели большого круга кровообращения

Наиболее доступным (сфигмоманометрия) для измерений является артериальное (кровяное) давление (BP). Различают систолическое (SBP), диастолическое (DBP), среднее (MBP) и пульсовое (PP) давление.
Ранее инвазивные, а сегодня ультразвуковые методы позволяют измерять скорость кровотока, оценивать давление и другие гемодинамические показатели в самых разных сосудах. Их дополнение методами математического моделирования позволяет расчитывать биомеханические показатели. Измеряются максимальныя линейная (SLV) и объемная (SVV), средние линейная (MLV) и объемная (MVV) скорости кровотока в аорте, максимальные линейная (SRLV) и объемная (SRVV), средние линейная (MRLV) и объемная (MRVV) скорости регургитации. Важной количественной мерой регургитации является ее обьем (АRV).
Импедансными методами, по данным ультразвукового исследования биомеханики сердца и крупных артериальных стволов в дополнении с методами математического моделирования рассчитывают периферическое сопротивление (PR), нормированное (на площадь поверхности тела) периферическое сопротивление (NPR), импеданс (IAS) — сопротивление BCC пульсовому распространению давления крови и жесткость стенки аорты (AWR).
Гемодинамические и биомеханические показатели большого круга кровообращения сведены в табл. 2.3.1

Таблица 2.3.1
Гемодинамические и биомеханические показатели большого круга кровообращения

Показатель Формула Размерность Название
SBP mm Hg систолическое артериальное давление
DBP mm Hg диастолическое артериальное давление
MBP (SPA+DPA)/2 mm Hg среднее артериальное давление
PR mm Hg*s/ml периферическое сопротивление
IAS kPa*s/ml импеданс
SLV max(U) mm/s максимальная средняя по сечению линейная скорость кровотока в аорте
SVV max(U*f) ml/s максимальная объемная скорость кровотока в аорте
MLV mm/s средняя по сечению и за период изгнания линейная скорость кровотока в аорте
MVV ml/s средняя за период изгнания объемная скорость кровотока в аорте
SRLV max(U) mm/s максимальная линейная скорость регургитации крови из аорты
SRVV max(U*f) ml/s максимальная объемная скорость регургитации крови из аорты
MRLV mm/s средняя по сечению и за время регургитации линейная скорость регургитации крови из аорты
MRVV ml/s средняя за время регургитации объемная скорость регургитации крови из аорты
ARD mm диаметр устья аорты
RV int(pi*r*r* *sqr(2*(Q-P)/p)* *sqr3((1+v)2))dt ml обьем регургитации крови из аорты в LV

*) Q, P, U, V, T, f — являются текущими для указанного промежутка или момента времени t; D(x) — конечное приращение величины x за промежуток времени T; LD(x) — конечное приращение логарифма величины x за промежуток времени T; int()dt — интеграл; sqr() — квадратный корень; sqr3() — кубический корень; F — площадь поверхности тела; f — площадь отверстия для которого вычисляется объемная скорость; r — радиус отверстия; p — плотность крови; рi — число пи; v — текущий объем полости.

2.4 Показатели вариабельности сердечного ритма (HRV)

В практическом применении выделяют пять групп показателей — пространственно -временные, статистические, пространственно-спектральные, теории хаоса, полученные в результате математического моделирования автономной нервной регуляции биомеханикой сердца. Пространственно-временные — средняя длина RR-интервалов, средняя HR, максимальная амплитуда колебаний длительности RR-интервалов, различия в средней длине «дневных» и «ночных» RR-интервалов, а также — в длине RR-интервалов при различных формах физического, ментального или фармакологического стресса.
Статистические — моменты различных порядков длительности RR-интервалов. Момент нулевого порядка — количество RR-интервалов на исследуемом временном промежутке, первого порядка — математическое ожидание или средняя продолжительность RR-интервалов на исследуемом промежутке (mRR),
второго порядка — дисперсия математического ожидания. Помимо дисперсии используют ее квадратный корень — стандартное или среднее квадратическое отклонение sdRR, а также вариацию, равную отношению sdRR к mRR. Вариация выражается в относительных единицах или процентах. Используют также среднее квадратическое отклонение средних длин RR-интервалов для последовательности кратковременных (5-минутных) промежутков, полученных при суточном мониторировании ECG, среднее для последовательности среднеквадратических отклонений длин RR- интервалов кратковременных промежутков в суточном мониторировании ECG. В качестве статистической меры HRV используют также показатель NN50 — число различий в интервалах из последовательности интервалов с длиной, большей 50 мс, и показатель рNN50, где первый нормируется на общее количество включенных в анализ интервалов ECG. Пространственно-спектральные — общая мощность спектра ВСР (ТР) и мощности ее четырех частотных зон: 1) Ultra Low Friquency (ULF) — сверх низких частот (0 — 0.0033 Гц), 2) Very Low Friquency (VLF) — очень низких частот (0.0033 — 0.05 Гц), 3) Low Friquency (LF) — низких частот (0.05 — 0.15 Гц), High Friequency (HF) — высоких частот (0.15 — 0.5 Гц). Частотную зону ULF анализируют в суточных и остальные в 5-15-минутных записях сердечного ритма. ULF не связана с быстрой регуляцией и ее происхождение до сих пор неизвестно. VLF связана с терморегуляцией и гуморальными системами, такими как ренин-ангиотензинальдостероновая. LF и HF определяются симпато-парасимпатическим балансом и парасимпатической регуляцией. На HF существенным образом влияет дыхательный центр. Подчиненность дыхательного центра корковым функциям опосредует прямые центральные влияния на сердечный спектр. Применяют различные способы оценки мощностей зон спектра — в абсолютных и относительных (при делении на мощность всего спектра) единицах.
В качестве примера меры стохастичности нейрогуморальной регуляции приведем канториан К. Из множества показателей HRV, получаемых с использованием математического моделирования, естественно привести нормированные интегральные мощности GRP — гуморального, SRP — симпатического и PsRP — парасимпатического звеньев регуляции. Именно этим методом дается наиболее точная оценка симпатовагального баланса (SPsB).
Большая часть из используемых в клинических приложениях показателей HRV, сведены в табл. 2.4.1.

Таблица 2.4.1
Показатели вариабельности сердечного ритма

Показатель Размерность Название
HR 1/min Частота сердечных сокращений
mRR ms Средняя длина RR-интервала
sdRR ms Стандартное отклонение средней длины RR-интервала
rMSSD ms Корень квадратный среднеквадратических отклонений последовательных RR-интервалов
pNN50 % Число последовательных пар RR-интервалов, отличающихся более, чем на 50 ms, деленное на общее число всех RR-инетрвалов
HRVTi Триангулярный индекс, как интеграл от плотности распределения, деленный на максимум плотностти распределения RR-интервалов
ТР ms 2 Общая мощность спектра ВСР, мера мощности нейрогуморальной регуляции
ULF ms 2 Мощность сверх низкочастотного домена спектра суточной ВСР, мера мощности циркадианных систем регуляции
VLF ms 2 Мощность очень низкочастотного домена спектра ВСР, мера мощности гуморального звена регуляции, терморегуляции, других долговременных систем регуляции
LF ms 2 Мощность низкочастотного домена спектра ВСР, мера мощности преимущественно симпатического звена регуляции
LFnorm % Нормированная LF на LF +HF
HF ms 2 Мощность высокочастотного домена спектра ВСР, мера мощности преимущественно парасимпатического звена регуляции
HFnorm % Нормированная НF на LF +HF
LF/HF Мера симпатовагального баланса
К Канториан, мера стохастичности нейрогуморальной регуляции
GRP n.u. Нормированная мощность гуморального звена регуляции (математическое моделирование)
SRP n.u. Нормированная мощность симпатического звена регуляции (математическое моделирование)
PsRP n.u. Нормированная мощность парасимпатического звена регуляции (математическое моделирование)
SPsB n.u. Симпатовагальный баланс (математическое моделирование)

2.5 Показатели циркадианной изменчивости биомеханики сердца и системы кровообращения

Функции и, соответственно, показатели биомеханики сердца и системы кровообращения, без исключения, претерпевают характерные околосуточные (циркадианные) изменения. В физиологических словиях днем больше и ночью меньше частота сердечных сокращений, систолическое и дистолическое артериальное давление, работа сердца, … Мерой циркадианных колебаний любой из функций, любого из показателей является циркадианный индекс, который есть отношение среднедневного значения показателя к средненочному. Циркадианные индексы дополняются среднедневными и средненочными показателями HRV. Определяются они с использованием метода холтеровского мониторирования. Наиболее доступные ему для анализа HR и BP.

(Visited 72 times, 1 visits today)

Минутный индекс)

показатель функции сердца, представляющий собой отношение минутного объема сердца к площади поверхности тела; выражается в л/мин∙м 2 .


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Сердечный индекс" в других словарях:

    - (син. минутный индекс) показатель функции сердца, представляющий собой отношение минутного объема сердца к площади поверхности тела; выражается в л/минм2 … Большой медицинский словарь

    Сердечный индекс - – отношение минутного объема сердца к площади поверхности тела, выражают в л/мин·м2, показатель функции сердца … Словарь терминов по физиологии сельскохозяйственных животных

    Вегетативный индекс, индекс Баевского, индекс напряжения параметр, показывающий, вегетативная нервная система какого типа преобладает у человека: симпатическая или парасимпатическая. Рассчитывается по электрокардиограмме с помощью… … Википедия

    См. Сердечный индекс … Большой медицинский словарь

    - (греч. orthos прямо, стоящий, поднявшийся + statos неподвижный) патологические изменения общей и регионарной гемодинамики, обусловленные недостаточностью приспособительных реакций системы кровообращения на гравитационное перераспределение крови в … Медицинская энциклопедия

    I Сердце Сердце (лат. соr, греч. cardia) полый фиброзно мышечный орган, который, функционируя как насос, обеспечивает движение крови а системе кровообращения. Анатомия Сердце находится в переднем средостении (Средостение) в Перикарде между… … Медицинская энциклопедия

    Эта страница глоссарий. # А … Википедия

    Действующее вещество ›› Карведилол* (Carvedilol*) Латинское название Carvetrend АТХ: ›› C07AG02 Карведилол Фармакологическая группа: Альфа и бета адреноблокаторы Нозологическая классификация (МКБ 10) ›› I10 I15 Болезни, характеризующиеся… … Словарь медицинских препаратов