Спиральные галактики в картинках и фотографиях. Схема строения спиральной галактики

Разновидность галактик в последовательности Хаббла , которые характеризуются следующими физическими свойствами:

  • значительный суммарный вращательный момент ;
  • состоят из центрального балджа (почти сферического утолщения), окружённого диском:
    • балдж имеет сходство с эллиптической галактикой , содержащей множество старых звёзд - так называемое «Население II » - и нередко сверхмассивную чёрную дыру в центре;
    • диск является плоским вращающимся образованием, состоящим из межзвёздного вещества , молодых звёзд «Населения I » и рассеянных звёздных скоплений .

Спиральные галактики названы так, потому что имеют внутри диска яркие рукава звёздного происхождения, которые почти логарифмически простираются из балджа. Хотя иногда их нелегко различить (например, во флоккулентных спиралях), эти рукава служат основным признаком, по которому спиральные галактики отличаются от линзообразных галактик , для которых характерно дисковое строение и отсутствие ярко выраженной спирали. Спиральные рукава представляют собой области активного звездообразования и состоят по большей части из молодых горячих звёзд; именно поэтому рукава хорошо выделяются в видимой части спектра. Абсолютное большинство наблюдаемых спиральных галактик вращается в сторону закручивания спиральных ветвей .

Диск спиральной галактики обычно окружён большим сфероидальным гало , состоящим из старых звёзд «Населения II », большинство которых сосредоточено в шаровых скоплениях , вращающихся вокруг галактического центра. Таким образом, спиральная галактика состоит из плоского диска со спиральными рукавами, эллиптического балджа и сферического гало, диаметр которого близок к диаметру диска.

Многие (в среднем две из трёх) спиральные галактики имеют в центре перемычку («бар» ), от концов которой отходят спиральные рукава . В рукавах содержится значительная часть пыли и газа, также множество звёздных скоплений . Вещество в них вращается вокруг центра галактики под действием гравитации.

Масса спиральных галактик достигает 10 12 масс Солнца. Крупнейшей открытой на текущий момент спиральной галактикой является NGC 6872 , общая протяженность которой составляет 522 тысяч световых лет, что в пять раз больше, чем диаметр Млечного пути .

Спиральные рукава

Известен следующий парадокс: время обращения звёзд вокруг ядра галактики составляет порядка 100 миллионов лет; возраст самих галактик в несколько десятков раз больше. Между тем спирали закручены как правило на небольшое число оборотов. Парадокс объясняется тем, что принадлежность звёзд спиралям не постоянна: звёзды входят в область, занимаемую спиральным рукавом, на некоторое время замедляют своё движение в этой области, и покидают спираль. Между тем спираль, как область повышенной плотности вещества в диске спиральной галактики, может существовать неограниченно долго - спирали подобны стоячим волнам.

Спирали галактик могут несильно отличаться по количеству звёзд от окружающего их диска, но могут быть существенно ярче. Газовые облака , пересекая спираль, испытывают сжатие или расширение, порождающие ударные волны в газе. Всё это приводит к нарушению равновесия в облаках и интенсивному звёздообразованию в области спирали. А если учесть, что время жизни ярчайших гигантов и сверхгигантов в тысячи раз меньше, чем возраст Солнца, то получается что большинство ярких голубых звёзд собрано в небольшом объёме спирального рукава.

Д-р. Дэнни Фолкнер

Со времени своего открытия галактики не перестают удивлять человеческий разум. Многие из них имеют форму прекрасных спиралей. Но если бы они вращались на протяжении миллиардов лет, разве не утратили бы они свои отчетливые формы рукавов спирали?

Огромные звездные острова, называемые «галактиками» парят в черном, как смоль, космосе. Предполагаемое количество видимых галактик составляет около 170 миллиардов, и каждая из них содержит в себе миллиарды или даже триллионы отдельных звезд. Созерцая это мерцающее чудо, мы задаемся вопросом: «Откуда взялись эти сияющие драгоценности?»

В первой главе книге Бытия нам дан безошибочный ответ: в четвертый день Создатель сотворил звезды (Бытие 1:16 ). Астрономы, отрицающие историю, данную нам Богом, не могут найти альтернативного объяснения происхождению звезд.

Одной из главных проблем для них являются прекрасные рукава спирали, украшающие многие галактики. Проще говоря, эти спирали должны были бы утратить свою форму, если бы они существовали в древней вселенной . Но на самом деле присутствие рукавов спиралей доказывает, что вселенная очень молода.

Строение галактик

Любое здравое толкование происхождения галактик требует длительного объяснения. Галактики расположены далеко друг от друга, и кажется, что между ними нет материи. Например, наша галактика, которая называется Млечный Путь, отделена от ближайшей галактики значительного размера - Андромеды (M 31)- расстоянием в два миллиона световых лет.

В каждой галактике присутствует огромное количество звезд. Млечный путь и M 31, которые являются обычными галактиками, состоят из около 200 миллиардов звезд каждая, и простираются от края до края на 100 000 световых лет. Довольно интересен тот факт, что другие галактики меньшего размера вращаются по орбите вокруг более крупных галактик, таких как наша и галактика M 31.

Галактики разделяются на два основных вида – спиральные и эллиптичные. Эллиптичные галактики, как следует из названия, имеют форму эллипса. Спиральные галактики, в свою очередь, имеют густую концентрацию звезд в центре, который называется ядром, и изящные рукава спирали, исходящие от ядра ко внешнему краю. Это придает галактике вид завихрения. Откуда же взялось такое расположение и многообразие?

Спирали порождают больше всего споров среди ученых-астрономов. Начиная с 30х годов предыдущего столетия, ученые начали спорить о строении и происхождении рукавов спирали и эти споры продолжаются и сегодня.

Открывая молодую вселенную

Прежде, чем разобраться с техническими трудностями, мы должны рассмотреть одно общепринятое заблуждение. Многие люди считают, что звезд много внутри рукава спирали, однако между рукавами они практически отсутствуют. На самом же деле, кучность звезд между рукавами и внутри рукава практически одинакова.

Если это так, то почему рукава спирали кажутся на вид такими яркими? Причина заключается в том, что в рукаве спирали находятся очень горячие и яркие синие звезды. Свет этих звезд доминирует в видимом спектре, поэтому рукава спирали так выделяются на фотографиях. Особенно это касается старых черно-белых фотографий, которые были очень чувствительны к синему цвету. На более современных цветных фотографиях в инфракрасной области спектра рукава спиралей не так сильно выделяются, так как более многочисленные красные звезды доминируют.

Кроме ярких синих звезд, в рукавах спирали присутствует также множество пыли и газа. Иногда пыль и газ концентрируются в «облака», которые называются «туманностями». Астрономы называют туманности и синие звезды «спутниками спирали», так как они вычерчивают местоположения рукавов спирали.

Однако еще в 1930-х годах астрономы столкнулись с одной проблемой. Внешним звездам требовалось больше времени, чтобы завершить движение по своей орбите, чем звездам, находящимся внутри спирали. Поскольку расстояние от центра галактики увеличивается, рукава спирали должны становиться нестабильными. То есть, после нескольких вращений, рукава спирали, должны были бы рассеяться.

Астрономы многие годы спорили о направлении движения рукавов спирали, пытаясь определить - они закручиваются или раскручиваются. Но не зависимо от того, какого взгляда они не придерживались, если бы возраст галактик составлял как минимум десять миллиардов лет, как обычно предполагается, то рукавов спиралей сейчас уже не должно было быть.

Неудачные предположения

К концу 1960-х годов астрономам показалось, что они нашли ответ на свой вопрос. Они разработали теорию волновой плотности спирали. Согласно этой концепции, рукава спирали ведут себя в межзвездном пространстве подобно звуковым волнам. Если некие внешние силы сжимают межзвездное пространство, в рукавах спирали возникают облака газа и пыли. Кроме того, из-за компрессии газа, предположительно, образовывались звезды.

В соответствии с этим мировоззрением, некоторые новые звезды должны были стать массивными синими звездами с очень коротким жизненным циклом (в лучшем случае, в несколько миллионов лет). Такие звезды были очень важны для подтверждения данной теории, однако, поскольку, предположительно, они существуют не долго, времени для того, чтобы «волна» перемещалась и оставляла после себя синие звезды, оказывается недостаточно. Поэтому в своей теории они предположили, что здесь на сцену выходила гравитация галактики и завершала процесс сбора материала и формирования звезд.

Детали теории волновой плотности спирали трудно доказать, однако у данного мировоззрения до сих пор есть непреклонные приверженцы. К 1990 годам ученые изучили небольшие галактики-спутники, и пришли к выводу, что они могут быть тем самым механизмом, который поддерживает форму спирали, однако и эту теорию доказать детально довольно сложно.

Темная материя?

За последнее десятилетие астрономы получили доказательства существования темной материи, что только усложняет общую картину. Темная материя интересна тем, что она не излучает света, однако ее общая масса намного превышает общую массу освещенной материи, а ее гравитация оказывает величайшее влияние на структуры тел внутри галактики, а также на весь космос.

Факты свидетельствуют о том, что темная материя находится во внешних слоях галактик. Большинство астрономов на сегодняшний день считают, что именно темная материя помогает спиралям галактик поддерживать жизнь. Однако даже самое лучшее доказательство существования темной материи – более высокая скорость обращения внешних слоев галактик, нежели предполагалось – может только усугубить, а не разрешить проблему существования спиралей.

Креационисты давно утверждают, что рукава спирали не должны существовать в древней вселенной, поэтому наличие рукавов спирали указывает на очень молодой возраст вселенной. Однако, поскольку большинство астрономов-эволюционистов начинают свои исследования с предположения о том, что возраст вселенной составляет миллиарды лет, они убеждены в существовании неких механизмов, которые продолжают поддерживать спиральную форму галактик. Если бы у них на самом деле были бы убедительные ответы на все эти вопросы, они перестали бы выдвигать все новые предположения. Их ошибки свидетельствуют о том, что аргументы креационистов не следует сбрасывать со счетов.

В недавние годы был разработан еще один метод. Астрономы фотографировали отдаленные галактики, находящиеся на расстоянии в 12 миллионов световых лет от Земли. Предположив, что примерно 13,7 миллиардов лет назад произошел «большой взрыв», они считают, что эти галактики являются самыми молодыми во вселенной. Они практически ничем не отличаются от соседних (и, предположительно, более старых) галактик, и практически идентичны на вид. Иначе говоря, и здесь мы не наблюдаем эволюционных процессов.

Опираясь на теорию недавнего сотворения, мы можем предполагать, что дальние галактики должны выглядеть практически так же, как и ближние, однако эволюционная модель этого не может допустить. Скажем еще раз: Божье Слово проливает незыблемый свет на происхождение и строение Его великой вселенной.

Доктор Дэнни Фолкнер является профессором физики и астрономии при Ланкастерском университете штата Южная Каролина. Он написал множество статей для астрономических журналов, а также является автором книги «Вселенная, созданная по разумному замыслу ».

Ядро - крайне малая область в центре галактики. Когда речь заходит о ядрах галактик, то чаще всего говорят об активных ядрах галактик, где процессы нельзя объяснить свойствами сконцентрированных в них звёзд.

Диск - относительно тонкий слой, в котором сконцентрировано большинство объектов галактики. Подразделяется на газопылевой диск и звёздный диск. галактика ядро межзвёздный гравитационный

Балдж (англ.. bulge - вздутие) - наиболее яркая внутренняя часть сфероидального компонента.

Гало -- внешний сфероидальный компонент. Граница между балджем и гало размыта и достаточно условна.

Другие возможные элементы.

Полярное кольцо - редкий компонент. В классическом случае галактика с полярным кольцом имеет два диска, вращающихся в перпендикулярных плоскостях. Центры этих дисков в классическом случае совпадают. Причина возникновения полярных колец до конца не ясна.

Сфероидальный компонент - сфероподобное распределение звёзд.

Спиральная ветвь (спиральный рукав) - уплотнение из межзвёздного газа и преимущественно молодых звёзд в виде спирали. Скорее всего, являются волнами плотности, вызванными различными причинами, однако вопрос об их происхождении до сих пор окончательно не решён.

Бар (перемычка) - выглядит как плотное вытянутое образование, состоящее из звёзд и межзвёздного газа. По расчётам, главный поставщик межзвёздного газа к центру галактики. Однако почти все теоретические построения основываются на факте, что толщина диска много меньше его размеров, иными словами, диск плоский, и почти все модели - упрощённые двумерные модели, расчётов трёхмерных моделей дисков крайне мало. А трёхмерный расчёт галактики с баром и газом в известной литературе всего один. По данным автора данного расчёта, газ не попадает в центр галактики, а проходит довольно далеко.

Эволюция галактик

Эволюцией галактики называется изменение её интегральных характеристик со временем: спектра, цвета, химического состава, поля скоростей. Описать жизнь галактики непросто: на эволюцию галактики влияют не только эволюция отдельных её частей, но также и её внешнее окружение. Вкратце процессы, влияющие на эволюцию галактики, можно представить следующей схемой.


Эволюция протекает на лет быстрее при протогалактическое сжатие, большом мёрджинге (слияние галактик), давлении горячего межгалактического газа.

Эволюция протекает медленнее на лет при продолжительности аккреции на диске, малом слиянии, приливном взаимодействии галактик. А также, если эволюция вызвана неустойчивостью бара, темным гало, черной дырой, спиральными ветвями, галактическими ветрами и фонтанами.

На протяжении эволюционного развития возникают другие процессы важные для галактики: формирование звезд, обогащение металлами, обратная связь через сверхновые и активные ядра, возобновление газа.

В 1845 году английским астрономом лордом Россом был обнаружен целый класс туманностей спирального типа. Их природу установили только в начале двадцатого века. Учеными было доказано, что данные туманности являются огромными звездными системами, похожими на нашу Галактику, однако они удалены от нее на многие миллионы световых лет.

Общая информация

Спиральные галактики (фото, приведенные в этой статье, демонстрируют особенности их структуры) своим внешним видом напоминают пару сложенных вместе тарелок или двояковыпуклую линзу. В них можно обнаружить как массивный звездный диск, так и гало. Центральную часть, которая визуально напоминает вздутие, принято называть балджем. А темную полосу (непрозрачную прослойку межзвездной среды), идущую вдоль диска, называют межзвездной пылью.

Спиральные галактики принято обозначать литерой S. Кроме того, их принято делить по степени структуры. Для этого к основному символу добавляют литеры a, b или c. Так, Sa соответствует галактике с малоразвитой спиральной структурой, однако с большим ядром. Третий класс - Sc - относится к противоположным объектам, со слабым ядром и мощными спиральными ветвями. У некоторых звездных систем в центральной части может находиться перемычка, которую принято называть баром. В таком случае к обозначению добавляется символ В. Наша Галактика относится к промежуточному типу, без перемычки.

Каким образом сформировались спиральные дисковые структуры?

Плоские дискообразные формы объясняют вращением звездных скоплений. Существует гипотеза, что в процессе образования галактики препятствует сжатию так называемого протогалактического облака в перпендикулярном направлении к оси вращения. Также следует знать, что характер движения газов и звезд внутри туманностей неодинаков: диффузные скопления вращаются быстрее, чем старые звезды. Например, если характерная скорость вращения газа составляет 150-500 км/с, то звезда гало будет всегда двигаться медленнее. А балджи, состоящие из таких объектов, будут иметь скорость в три раза ниже, чем диски.

Звездный газ

Сильно сжатые системы

Если описанный выше процесс происходит в сильно сжатой звездной системе, то диффузная материя должна осесть на основную плоскость галактики, ведь именно здесь уровень потенциальной энергии является наименьшим. Сюда же и собираются газовые и пылевые частицы. Далее диффузная материя начинает свое движение в основной плоскости звездного скопления. Перемещаются частицы практически параллельно по круговым орбитам. В результате столкновения здесь довольно редки. Если же они и происходят, то энергетические потери при этом незначительны. Из этого следует, что материя далее к центру галактики не перемещается, где потенциальная энергия имеет еще меньший уровень.

Слабо сжатые системы

Теперь рассмотрим, как ведет себя эллипсоидная галактика. Звездная система такого типа отличается совершенно иным развитием данного процесса. Здесь главная плоскость вовсе не является ярко выраженной областью с малым уровнем потенциальной энергии. Сильное снижение этого параметра происходит только в центральном направлении звездного скопления. А это значит, что межзвездные пыль и газ будут притягиваться в центр галактики. Как следствие, плотность диффузной материи здесь будет очень высока, гораздо больше, чем при плоском рассеивании в спиральной системе. Собравшиеся в центре скопления частицы пыли и газа под действием силы притяжения начнут сжиматься, тем самым сформируется малая по размерам зона плотного вещества. Ученые предполагают, что из данной материи в дальнейшем начинают формироваться новые звезды. Важным здесь является иное - малое по своим размерам облако газа и пыли, находящееся в ядре слабо сжатой галактики, не позволяет себя обнаружить в процессе наблюдения.

Промежуточные стадии

Мы рассмотрели два основных типа звездных скоплений - со слабым и с сильным уровнем сжатия. Однако существуют и промежуточные стадии, когда сжатие системы находится между этими параметрами. У таких галактик эта характеристика является недостаточно сильной для того, чтобы диффузная материя собралась вдоль всей основной плоскости скопления. И в то же время она недостаточно слабая и для того, чтобы частицы газа и пыли сконцентрировались в районе ядра. В таких галактиках диффузная материя собирается в небольшую плоскость, которая собирается вокруг ядра звездного скопления.

Галактики с перемычками

Известен еще один подтип спиральных галактик - это звездное скопление с перемычкой. Его особенность состоит в следующем. Если у обычной спиральной системы рукава выходят непосредственно из дискообразного ядра, то у данного типа центр располагается в середине прямой перемычки. А ветви такого скопления начинаются из концов данного отрезка. Еще их принято называть галактиками пересеченных спиралей. Между прочим, физическая природа данной перемычки до сих пор остается неизвестной.

Кроме того, ученым удалось обнаружить еще один вид звездных скоплений. Они характеризуются ядром, как и у спиральных галактик, однако рукавов у них нет. Наличие ядра говорит о сильном сжатии, но все остальные параметры напоминают эллипсоидные системы. Такие скопления получили название чечевицеобразных. Ученые предполагают, что эти туманности образуются в результате потери спиральной галактикой своей диффузной материи.


Спиральная структура галактик

Спиральные ветви (рукава) - характерная особенность т.н. спиральных галактик, к к-рым принадлежит и наша . Ветви содержат сравнительно малую часть всех звезд галактики, но они явл. одним из наиболее заметных галактич. образований, т.к. в них сосредоточены почти все горячие звезды высокой светимости. Звезды этого типа относят к молодым, поэтому спиральные ветви можно считать местом образования звезд. Кроме молодых звезд в рукавах сосредоточена большай часть межзвездного газа галактики, из к-рого, по совр. представлениям, и образуются звезды. По характеру спиральных ветвей и по нек-рым др. особенностям спиральные галактики делятся на классы. В галактиках класса Sa (по классификации Хаббла, см. ) ветви относительно тонки (200-300 пк) и туго навиты, у галактик класса Sc они более размыты (диффузны) и круто удаляются от центарльной области. К спиральным галактикам близки галактики с перемычкой (баром), от концов к-рой обычно отходят спиральные ветви. Одна из распространенных классификаций спиральных галактик принадлежит франц. астроному Ж. Вокулеру, она приведена на рис. 1. Буквы A, B, AB характеризуют семейства спиральных галактик. SA обозначает нормальную спиральную галактику, SB - с перемычкой (баром), SAB - переходные формы. Кроме семейств, как видно из рис. 1, учитываются разновидности (кольцевая - r , спиральная s , смешанная - rs ).

Газ в спиральных рукавах состоит в основном из водорода. Обычно он практически неионизован (нейтральный водород, HI), но вокруг горячих звезд водород ионизован (). Газ часто образует плотные диффузные туманности, также служащие ориентиром при определении вида спиральных ветвей. Еще одним признаком ветвей явл. рассеянная в газе , обнаруживаемая по производимому ею поглощению. Она видна как тонкая темная полоса по внутреннему (ближе к центру галактики) краю спиральной ветви. Кроме того, в рукавах наблюдаются тонкие полоски, пересекающие рукава (рис. 2) и отдельные темные массы. Концентрация звезд, образующих галактич. диск, тоже несколько увеличивается в ветвях, но не так сильно, как концентрация газа.

Звезды, газ и др. объекты галактич. диска движутся по орбитам, близким к круговым. Экспериментально установлено, что угловая скорость этого движения как ф-ция радиуса, т.е. , убывает с удалением от центра галактики. При таком характере вращения большие газовые облака или др. протяженные образования растягиваются и становятся похожими на часть спиральной ветви. Однако спиральные ветви не могли возникнуть таким путем. Дифференциальное вращение способно создать структуры, похожие на наблюдаемые рукава, меньше чем за 10 9 лет. В течение неск. оборотов Галактики, возраст к-рой превышает 10 10 лет, такие структуры должны были разрушиться, пространственнное распределение водорода, пыли и горячих звезд стать нерегулярным, чего в большинстве случаев не наблюдается.

Б. Линдблад (Швеция) первым высказал идею о том, что спиральные ветви могут быть волнами плотности. В 1964 г. Ц. Лин и Ф. Шу (США) показали, что в галактиках действительно могут существовать волны плотности спиралевидной формы, вращающиеся с угловой скоростью (т.е. форма фронта таких волн не искажается дифференциальным вращением галаактич. диска) и распространяющиеся по радиусу с определенной групповой скоростью v гр. Поскольку в Галактике газа мало (2-5%), то волны распространяются по звездному населению, в к-ром они могут возбуждаться, а газ уже реагирует на возмущение , связанного с волнами, бегущими по системе звезд, т.е. его движение в гравитац. поле рукавов явл. несамосогласованным.

Галактики представляют собой т.н. бесстолкновительные звездные системы, т.к. время между двумя последовательными сближениями к.-л. звезды с др. звездой на 3-4 порядка больше возраста галактики. Поэтому возможность распространения волн в таких системах довольно необычна. Здесь упругость, необходимая для распространения волн плотности, обусловлена силами Кориолиса, приводящими к эпициклическому движению звезд, т.е. в конечном счете - вращению системы.

В волне концентрация звезд увеличивается незначительно (соответствующее изменение гравитац. потенциала 10-20%). Однако реакция межзвездного газа даже на столь значительное изменение гравитац. потенциала галактики велика: разгоняясь в поле спиральной волны звездной плотности, газ приобретает сверхзвуковую скорость и сжимается в неск. раз. Это может привести к возникновению глобальной (охватывающей большую часть диска) ударной волны в межзвездном газе. Одним из наблюдательных проявлений торможения газа в ударной волне (газ догоняет при своем галактич. движении рукава и затем тормозится) явл. темные полосы плотного газа с пылью на внутр. кромке спиральных рукавов (рис. 2). Сжатие газа может служить спусковым механизмом (триггером) для образования звезд. Действительно, индикаторами спиральной структуры обычно служат молодые OB-звезды и их ассоциации, зоны HII, остатки вспышек сверхновых, молекулярные темные облака, H 2 O-мазеры, источники -излучения (см. ). При протекании межзвездного газа через спиральные рукава в нем могут происходить своего рода фазовые переходы с образованием облачной структуры. Это проливает свет на происхождение сосуществующих одновременно различных фаз (холодной, теплой, горячей) межзвездного газа.

Волновая теория спиральной структуры галактик разработана достаточно детально и допускает количественное сравнение с наблюдениями. Однако имеется ряд нерешенных проблем. Регулярный спиральный узор наблюдается далеко не во всех галактиках, часто видна довольно нерегулярная структура, состоящая из многих коротких образований, к-рые лишь "в целом" формируют подобие спиральных рукавов. Регулярный глобальный спиральный узор наблюдается обычно у галактик, имеющих бар, и у галактик со "спутниками" (рис. 2). В этих случаях регулярная структура находит объяснение. Так, имеющийся в центре галактики бар действует как генератор, возбуждающий и поддерживающий волны плотности. Галактика-спутник, как показывают расчеты на ЭВМ, также может возбуждать спиральные волны плотности в осн. галактике, благодаря возникающим здесь приливным силам.

Несмотря на то что волновая интерпретация спирального узора галактик явл. практически общепринятой, в рамках самой волновой теории существуют точки зрения, окончательный выбор между к-рыми могут помочь сделать только наблюдения. Если Галактику со всеми ее подсистемами рассматривать как бесконечно тонкий диск с нек-рой ср. дисперсией скоростей звезд и споверхностной плотностью, соответствующей проекции полной плотности в данной точке, и приписать этой модели наблюдаемую кривую вращения галактики, то геометрия двухрукавного узора оказывается совпадающей с наблюдаемой при 13 км/(скпк) для определенного типа волн плотности. Согласно другой точке зрения, тип волн плотности определяется плоской подсистемой и дисперсией скоростей ее компонентов, к-рая намного меньше значения, принятого в первом случае. При этом геометрия наблюдаемого узора лучше описывается др. типом волн с 24 км/(скпк). Имеется ряд теоретич. соображений и данных наблюдений, свидетельствующих, по-видимому, в пользу того, что в Галактике реализуется второй случай. Если это так, то Солнце в Галактике находится в исключительном положении, что может иметь далеко идущие последствия для космогонии Солнечной системы и происхождения в ней жизни. Поскольку галактич. диск вращается дифференциально, а спиральные рукава - твердотельно, в Галактике должна существовать окружность, на к-рой угловые скорости диска и волны плотности равны. Такая окружность наз. коротационной (от англ. corotation - совместное вращение). Ее радиус R=R C определяется условием . Поскольку в каждой спиральной галактике может существовать только одна такая окружность, то, очевидно, она явл. выделенной. Угловая скорость вращения Солнца в Галактике 25 км/(скпк), расстояние Солнца до центра Галактики 10 кпк. Если 24 км/(скпк), то, согласно, модели Шмидта (1965 г.), напр., 10,3 кпк. Это значит, что галактич. орбита Солнечной системы близка к коротационной окружности и, следовательно, находится в особом положении.