Статистические методы анализа и управления качеством. Методы Тагути. Основные элементы философии качества Тагути


Методам Тагути в нашей стране пока не очень везет. Пер-  

Адлер Ю.П., Ролев С.С. Приложение методов Тагути к про-  

Метод Тагути для идентификации значений па-  

Метод Тагути - эмпирический метод повыше-  

Робастное проектирование. Метод Тагути  

Д4 Необходимый и полезный инструмент, но как часть общей TQ -программы Методы Тагути для управления процессами  

Методы Г.Тагути можно отнести к инженерно-экономическим  

По методу д-ра Тагути за восемь недель с помощью всего  

Спецификации на изготовляемую ТРИЗ, план сит концепций, мего FMEA, стоимост 1 сза первичны Стюарта Пут 1ЫЙ анализ Оптимальна тсхнологичсс схема i-й one t а, Корреляционные кая матрицы, методы Тагути рации 4  

Центр пропаганды методов Тагути. В задачи этой корпора-  

Как-то мы спросили японского профессора X. Цубаки В чем секрет успехов Японии в области качества - в использовании статистических методов , методов Тагути, кружков качества или чего-то еще Он ответил Все, что вы перечислили, играет свою важную роль, но, пожалуй, самое главное - это прекрасно поставленная система обучения персонала как внутри, так и вне предприятия, а также особая система мотивации . При этом он посетовал, что сейчас в связи с ослаблением в Японии системы пожизненного найма возникли определенные проблемы с обучением. Ведь предприниматели рассматривают обучение как инвестиции в персонал и потому не хотят вкладывать их в тех, кто может уйти от них.  

Методы Тагути (термин методы Тагути появился в США, сам же Тагути называет свою концепцию инжиниринг качества) представляют собой один из принципиально новых подходов к решению вопросов качества. Главное в философии Тагути - это повышение качества с одновременным снижением расходов. Согласно Тагути, экономический фактор (стоимость) и качество анализируются совместно. Оба фактора связаны общей характеристикой , называемой функцией потерь . Методология Тагути опирается на признание фактора неравноценности значений показателя внутри допуска. Функция потерь качества является параболой с вершиной (потери равны нулю) в точке наилучшего значения (номинала), при удалении от номинала потери возрастают и на границе поля достигают своего максимального значения - потери от замены изделия. При анализе рассматриваются потери как со стороны потребителя, так и со стороны производителя. Методы Тагути позволяют проектировать изделия и процессы, нечувствительные к влиянию так называемых шумов, т. е. переменных факторов, вызывающих разброс значений параметров, которые трудно, невозможно или дорого изменить. С экономической точки зрения любые, даже самые малые шумы уменьшают прибыль, поскольку при этом растут производственные издержки и затраты на гарантийное обслуживание . Такую устойчивость принято называть робастностью (от англ, robust - крепкий, устойчивый). Тагути акцентирует внимание на  

Идеи Тагути в течение 30 лет составляли базу инженерного образования в Японии, где издано его 7-томное собрание сочинений. В США эти методы стали известны в 1983 г. после того, как компания Ford Motors впервые начала знакомить с ними своих инженеров. Невнимание к методам Тагути - одна из причин серьезного отставания от Японии многих производственных компаний США и Европы.  

В 1950 - 1980-е гг. даже самые широкомасштабные внутрифирменные системы за рубежом еще называются системами контроля качества TQ - всеобщий контроль качества (Фейнгенбаум), WQ -контроль качества в масштабе всей компании (К. Исикава, семь инструментов качества), Q - ir les -кружки контроля качества (методы Тагути), QFD - развертывание функции качества. Именно в этот период начинается активное сближение методов

Вы узнаете:

  • что такое робастное проектирование параметров;
  • чем характеризуются потери качества и как их оценивают количественно;
  • каким образом использование элементов нечеткой логики повышает эффективность применения методов Тагути для проектирования продукции, характеризующейся многочисленными откликами.

Методы оптимизации проектирования продукции и производства были разработаны Гэнити Тагути — родоначальником технического обеспечения качества, успешно применившим эффективные прикладные статистические методы для повышения стабильности технологических процессов и увеличения их производственных возможностей.

Он предложил проактивный подход к проектированию продукции и процессов, основанный на измерениях, анализе, прогнозировании и профилактике и направленный на встраивание качества в продукцию и процессы, а не на их контроль. В методах Тагути значительный акцент делается на удовлетворенность потребителя.

Г. Тагути осознавал важность выпуска продукции, соответствующей заданным параметрам, и подчеркивал, что излишняя вариация показателей деятельности является корневой причиной низкого качества и контрпродуктивна для общества в целом.

В дальнейшем он пришел к выводу, что вариация, или отклонение от целевого значения, обернется неизбежными потерями в виде раннего износа продукции, проблемами при ее обслуживании и взаимодействии с другими изделиями, а также заставит создавать запасы «на всякий случай» и т. п. Ее игнорирование станет причиной неудовлетворенности потребителя и потери репутации компании. Иными словами, Тагути подчеркнул значимость уменьшения вариабельности процесса относительно целевых показателей и приведения его средних значений к заданным. Это возможно, только если сделать процесс нечувствительным к различным источникам шума. Данная процедура называется робастным проектированием параметров.

Вместо того чтобы уменьшить вариабельность отдельных составляющих, устанавливая жесткие границы допустимых отклонений от нормы, Тагути рассматривал вопрос тщательного отбора параметров проектирования, или факторов, результатом которого становится более надежная конструкция, способная противостоять вариациям, вызванным нежелательными причинами. Чтобы этого достичь, он предложил результативный метод определения параметров проектирования, сочетания которых могут уменьшить вариацию характеристик продукции. Таким образом, метод планирования эксперимента, предложенный Тагути, является эффективным подходом к оптимизации проектных решений с целью повышения качества, улучшения деятельности и сокращения затрат.

ЭВОЛЮЦИЯ

Концепция качества эволюционировала с течением времени. Сегодня качество, в работу над которым вовлечены все сотрудники организации, стало философским понятием, охватывающим различные аспекты. Качество — больше не результат простого контроля, это концепция общего менеджмента компании.

Следовательно, программы улучшения качества стали частью процесса стратегического планирования многих успешных компаний.

В прошлом инспекционный контроль был единственным способом обеспечения соответствия требованиям, однако рост производительности в ходе индустриальной революции показал, что необходимо обновить механизм контроля качества.

В 1911 г. концепция качества получила новое развитие благодаря Ф. Тейлору, который представил несколько важных концепций, таких как функциональная специализация, анализ времени протекания процесса и перемещений, которые совершает работник в ходе его выполнения, инспекционный контроль качества и др. . Ф. Тейлор делал акцент на повышении производительности, его идеи ознаменовали начало эволюции в управлении качеством.

В 20-х гг. прошлого столетия д-р У. Шухарт определил, что контроль качества должен быть встроен в процесс и иметь профилактическую функцию, а не быть результатом только приемочного контроля. Он применил теорию статистики к менеджменту качества, разработал первую контрольную карту и продемонстрировал, что устранение вариации процесса ведет к улучшению качества конечного продукта.

Чтобы устранить вариацию, прежде всего следует выявить ее источник, для чего необходимо изучить эффекты различных контролируемых факторов. Как правило, эффект конкретного фактора исследовался посредством изменения фактора во времени. Эта практика привела к фундаментальному прорыву, совершенному в 1920 г., когда английский специалист по статистике сэр Р.А. Фишер предложил при планировании эксперимента изменять все факторы (входные переменные) одновременно, чтобы можно было наблюдать соответствующие изменения на выходе, т. е. факторы отклика.

Предполагается, что все входные переменные взаимодействуют друг с другом . Таким образом, в эксперименте исследуются все возможные единовременные взаимодействия между входными переменными. Полученные данные затем анализируются для принятия обоснованных и адекватных решений. Метод также называется полным факторным экспериментом и включает проведение различных тестов. С целью уменьшения объема работ стал использоваться дробный факторный эксперимент, при котором реализуется только отобранная часть комбинаций условий, необходимых для проведения полного факторного эксперимента, однако экономия (два-четыре фактора) получалась несущественной. С изобретением в Англии в 1940 г. ортогональной матрицы, с помощью которой проверялась минимальная совокупность всех возможных комбинаций, объем вычислений значительно уменьшился.

Наконец в 50-х гг. Г. Тагути успешно применил план эксперимента, предложенный сэром Фишером, и ортогональные матрицы для эффективной разработки продукта, объединив преимущества обоих методов. Кроме того, он высказал идею учитывать в ходе эксперимента влияние факторов шума на продукцию или процесс, тем самым достигая их робастности .

КОНЦЕПЦИЯ РОБАСТНОГО ПРОЕКТИРОВАНИЯ

Считается, что продукция качественная, если потребитель ею удовлетворен. Тагути никогда не оценивал качество продукции только с точки зрения стоимости производства, числа дефект ных единиц, попадания ее характеристик в заданные пределы. Свои суждения он строил, исходя из наблюдаемых отклонений отклика продукции от целевых значений.

Данный отклик называется характеристикой качества. Если имеет место отказ продукции до конца срока службы или ее характеристики со временем ухудшаются, то речь идет о значительных потерях качества .

Потери качества — это затраты на переработку, затраты по гарантийному обязательству, временнЫе и финансовые затраты потребителя на ремонт, жалобы потребителей, их неудовлетворенность и, как следствие, — потеря рыночной доли и репутации компании. Для количественной оценки этих потерь используется функция потерь качества, зависящая от среднего квадратичного отклонения ó и отклонения характеристики продукции от целевого значения (μ - μ 0):

Q = K "[(μ - μ 0) 2 + σ 2 ]. (1)

Тагути утверждает, что если устранить отклонения характеристик продукции от их средних значений, то потери качества сократятся. Сокращение вариации достигается посредством регулирования среднего значения относительно целевого с помощью поправочного коэффициента:

Q п " = h = 10 Log 10 [μ 2 /ó 2 ], (2)

Выражение (μ/ó) 2 — показатель отношения «сигнал/шум», где μ — желаемое целевое значение, ó2 — вариация, т. е. шум. Показатель отношения «сигнал/шум» зависит от характеристик качества, которые необходимо оптимизировать в данном эксперименте .

Основные типы этого показателя следующие (рисунок):

. чем меньше, тем лучше (smaller the better — STB). Этот тип соответствует нежелательным характеристикам (дефектам), значение которых в идеале равно нулю.

n = -10 Log 10 [среднее значение суммы квадратов разности измеренного и оптимального значений];

. чем больше, тем лучше (larger the better —

LTB). Этот тип соответствует желательным характеристикам, чьи значения должны быть как можно больше.

n = -10 Log 10 [среднее значение суммы квад ратов обратной величины измеренных данных];

. оптимально заданное значение (nominal

the better — NTB). Соответствует характеристикам, для которых наиболее предпочтительно определенное значение.

n = -10 Log 10 [квадрат среднего/величина отклонения].

Тип STB (в противоположность типу LTB)

выбирается, когда необходимо, чтобы значения данных были как можно меньше предельного значения, а тип NTB — когда требуется, чтобы значения данных были как можно ближе к целевым. Данный тип наиболее предпочтителен, и для него характеристики качества должны определяться соответствующим образом .

Параметры, влияющие на характеристики качества, называются факторами. Они могут быть трех типов: сигнал, напрямую влияющий на заданное значение отклика продукта μ; шум, который сложно или дорого контролировать и который вызывает вариацию ó отклика; контролируемые факторы — выбор их оптимальных значений позволяет уменьшить чувствительность отклика продукции ко всем факторам шума (схема 1) .

Проекты, реализуемые в рамках робастного проектирования, в которых сигнал остается постоянным, называются статическими проектами, а проекты, в которых пользователь может варьировать сигнал, — динамическими.

Проектирование продукции или процесса происходит в три этапа.

Концептуальное проектирование . Подбор технического решения (для продукции) или технологии (для процесса) и изучение начальных условий.

Проектирование параметров . Определение оптимальных уровней контролируемых факторов для увеличения робастности и последующего улучшения показателей работы. Включает следующие этапы.

1. Выбор параметров для проведения эксперимента. Проводится анализ системы с целью отбора подходящих характеристик качества.

Они должны представлять собой непрерывную и неизменную функцию, быть легкоизмеримы и являться прямым индикатором передачи энергии в системе. Целевая функция (отношение «сигнал/шум») выбирается исходя из типа характеристики качества. Определяются контролируемые факторы, их уровни и факторы шума. Робастность продукции достигается путем выбора (в ходе испытаний) условий, которые сглаживают действие различных факторов шума. Соотношение «сигнал/шум» должно быть определено таким образом, чтобы оно включало не только средний уровень отклика, но и наблюдаемую на этом уровне вариацию вследствие действия факторов шума. Один и тот же эксперимент может быть повторен несколько раз для получения различных откликов, соответствующих преднамеренно созданной вариации в факторах шума. При этом учитываются старение и внешние шумы .

2. Выбор ортогональной матрицы для проведения эксперимента. Ортогональные матрицы позволяют производителю подбирать значения параметров при минимальном числе экспериментов. В столбцах ортогональной матрицы представлены изучаемые факторы, а в рядах — уникальное сочетание уровней фактора данного эксперимента . Если матрица ортогональна, то для любой пары столбцов все комбинации уровней фактора появляются одинаковое число раз, т. е. все факторы одинаково представлены во всех экспериментах. Для выбора подходящей ортогональной матрицы потребуется общее число степеней свободы.

Степень свободы — это совокупность значений параметра процесса, которые допускается варьировать для получения его заданного среднего значения.

В ортогональной матрице, необходимой для эксперимента, число рядов должно, как минимум, соответствовать сумме чисел степеней свободы всех факторов и общего среднего.

После выбора ортогональной матрицы проводятся эксперименты, для каждого из них вычисляется и записывается соотношение «сигнал/шум».

3. Анализ наблюдений, полученных в ходе эксперимента.

В ходе анализа средних (ANOM) для всех экспериментов определяется общее среднее значение m . Это сбалансированный показатель, поскольку все уровни каждого из факторов одинаково представлены в общей совокупности экспериментов. Для каждого влияющего фактора отдельно вычисляется эффект m i каждого его уровня. Эффект уровня фактора — это отклонение m i от общего среднего значения m . Уровень фактора, оказывающий больший положительный эффект на среднее, признается оптимальным . Таким образом, анализ средних используется для получения оптимальной комбинации всех воздействующих факторов.

Ортогональная структура эксперимента позволяет применять аддитивную модель для расчета отклика для любой отдельной комбинации факторов. Согласно аддитивной модели, совокупный эффект всех уровней фактора может быть получен путем суммирования отклонений, вызванных отдельными уровнями фактора, и общего среднего.

Дисперсионный анализ (ANOVA) — это совокупность экспериментов, схожих с разложением сигнала в ряд Фурье. Анализ Фурье позволяет определить соответствующую значимость различных гармоник, которые образует сигнал. При этом сигнал представляется как сумма различных независимых ортогональных гармоник. Согласно ANOVA общая дисперсия показателя отношения «сигнал/шум» является суммой дисперсий каждого фактора и дисперсии ошибки. ANOVA используется для расчета значимости каждого фактора. Для поддержания качества продукции наиболее значимые факторы должны строго контролироваться.

4. Верификационный эксперимент. После выбора оптимальной комбинации различных факторов проводится верификационный эксперимент для сравнения расчетных и полученных в результате наблюдения откликов. Если они согласованы, то оптимальные значения принимаются, в противном случае аддитивная модель признается несостоятельной и должна быть изучена общая зависимость между факторами;

5. Дальнейшая оптимизация с помощью метода итераций. В экспериментах, проводимых по методам Тагути, используются дискретные уровни факторов, что исключает возможность получить больше значений показателя отношения «сигнал/шум» на каком-либо промежуточном уровне между предварительно выбранными уровнями . Чтобы компенсировать это, далее выполняется эксперимент с выбором новых уровней относительно оптимального уровня, определенного ранее. Если начальный диапазон значений уровней фактора максимально широк, то такие итерации могут существенно улучшить показатель отношения «сигнал/шум».

Проектирование допустимых отклонений . Данный этап служит для уменьшения уязвимости продукции к действию факторов, наиболее влияющих на нее, посредством применения улучшенных материалов и включения дополнительных элементов для контроля этих факторов .

ПРИМЕНЕНИЕ МЕТОДОВ ТАГУТИ

Благодаря своей простоте и робастности методы Тагути нашли применение в широком диапазоне различных областей, некоторые из которых представлены на схеме 2.

Производство . Методы Тагути хорошо зарекомендовали себя при робастном проектировании некоторых производственных процессов, один из которых — точечная контактная

сварка . Этот эффективный способ соединения металлических листов используется в автомобильной отрасли, при изготовлении бытовых электроприборов и др. В основе метода — воздействие электрическим током с целью локального повышения температуры, приводящего к плавлению металлических листов и соединению их краев.

Данные процесса робастного проектирования

Качество сварного соединения определяется его прочностью на разрыв и зависит от диаметра сварки. Метод робастного проектирования Тагути может быть применен к процессу точечной контактной сварки для улучшения качества сварки посредством выбора оптимальных значений контролируемых факторов. Данные процесса робастного проектирования могут быть представлены, как показано в таблице .

Таким образом, оптимизация процесса по методу Тагути позволила улучшить показатель отношения «сигнал/шум» на 4,16 дБ, т. е. примерно в два раза увеличить предел прочности благодаря использованию оптимизированных значений факторов. Для определения факторов, за которыми необходимо тщательно наблюдать, можно провести дисперсионный анализ .

Применение методов Тагути совместно с методами нечеткой логики (Fuzzy Logic) для проектирования продукции с множеством характеристик. В реальных условиях при проектировании продукции требуется оптимизация многих характеристик качества. Сочетание уровней контролируемого фактора, оптимальное для одной характеристики, необязательно будет таковым для других. Компромиссный выбор между несколькими оптимальными уровнями фактора, сделанный на основе инженерной оценки, может ухудшить некоторые характеристики качества. Метод Тагути эффективен только при оптимизации единичной рабочей характеристики. Поэтому после составления матрицы эксперимента для каждого эксперимента целесообразно преобразовать многочисленные итоговые значения отношения «сигнал/шум» в многооткликовый рабочий показатель (МРП). Эффективно выполнить такое преобразование поможет использование элементов нечеткой логики. Полученный показатель далее может быть рассмотрен как единичная рабочая характеристика, которую требуется оптимизировать . Аппарат нечеткой логики включает базу знаний (совокупность экспертных правил преобразования), необходимых для определения оптимального весового коэффициента различных рабочих характеристик в процессе их комбинирования.

Для каждой характеристики качества с помощью функций принадлежности определяются нечеткие множества: «малое», «среднее» и «большое». Значения отношения «сигнал/шум», полученные в ходе каждого эксперимента и соответствующие различным характеристикам качества, преобразуются через аппарат нечеткой логики в единый показатель (схема 3).

Схема 3. Преобразование множественных показателей «сигнал/шум» (с/ш) в единый МРП с помощью аппарата нечеткой логики

На первом этапе в ходе процедуры фаззификации определяется соответствие измеренных значений показателей отношения «сигнал/шум» значениям функции принадлежности нечетким множествам. Если значение показателя отношения «сигнал/шум», соответствующего характеристике, меньше по сравнению с наблюдаемым диапазоном его значений, то данный показатель получает большее значение принадлежности нечеткому множеству «малое» и меньшие значения в нечетких множествах «среднее» и «большое». Далее в рамках процедуры нечеткого логического вывода выполняются различные операции нечеткой логики.

С помощью базы правил значения функции принадлежности преобразуются в выходные нечеткие множества, в которых показатели МРП распределены по очень малым, малым, средним, большим и очень большим значениям. На заключительном этапе в процессе дефазификации значения принадлежности показателей МРП нечетким множествам преобразуются для каждого эксперимента в единое четкое значение, которое и необходимо оптимизировать .

Следует отметить, что ортогональная матрица, где МРП представлен как единственная характеристика, которую следует оптимизировать, может быть использована для проведения анализа средних и дисперсионного анализа.

Оптимальная комбинация уровней контролируемого фактора рассчитывается для максимального значения МРП.

Таким образом, при помощи элементов нечеткой логики можно расширить возможности применения методов Тагути и повысить их эффективность для проектирования продукции, характеризующейся многочисленными откликами.

Применение в телекоммуникациях . Радиосеть обеспечивается базовыми станциями, распределенными по небольшим географическим районам, называемым сотами. Планирование радиосети — настройка параметров этих станций, например регулировка угла антенны. При ограниченном диапазоне повторного использования частоты сложно настроить параметры всех сот, имеющих неодинаковые рельеф местности, площадь, неравномерную зону покрытия, а также найти для каждой базовой станции оптимальные значения параметров, которые улучшат заданные показатели работы.

Стандартными методами оптимизации при планировании радиосети являются алгоритм отжига и генетический алгоритм, основанные на локальном поиске. Однако для этих методов требуется эвристическое определение начальных значений параметров, которые зависят от смежной структуры текущих решений. Найти оптимальные значения без этой операции можно с помощью методов Тагути, в которых применяется ортогональная матрица, что значительно сокращает число экспериментов, экономит время и уменьшает затраты. Они могут быть использованы для оптимизации следующих типичных радиопараметров сети LTE 1:

1) мощность;

2) угол наклона передающей антенны;

3) ориентация передающей антенны по азимуту.

Поскольку методы Тагути дают возможность комбинировать любые типы параметров, они подходят для совокупной оптимизации различных параметров радиосети, например параметра управления уровнем мощности и ориентации антенны по азимуту. В ходе экспериментов было показано, что по сравнению с указанными выше алгоритмами, имеющими одинаковую сложность реализации и получаемую функцию оптимизации, методы Тагути позволяют достичь несколько лучшего решения постав ленной задачи .

Динамические системы. Системы, в которых требуется, чтобы отклик подчинялся уровням сигнального фактора по заранее уста нов ленному закону, называются динамическими. Управляющие системы, в которых выходная величина может скачкообразно переходить из одного состояния в другое (например, включено-выключено), называются релейными регуляторами. Примером может служить микро схема контроля температуры, как правило, состоящая из датчика, цепи управления и нагревательного элемента. Температурная характеристика датчика играет решающую роль в определении отклика нагревательного элемента, непостоянство температуры которого усложняет работу динамической системы. Метод Тагути может быть использован для решения задач такого типа. Для этого вычисляются уровни общего фактора шума, далее каждый уровень сигнального фактора испытывается на каждом из уровней общего фактора шума.

Проводится регрессионный анализ, и для начальных параметров контролируемых факторов рассчитывается показатель отношения «сигнал/шум». Подобная процедура повторяется для всех комбинаций контролируемых факторов в ортогональной матрице, и выбирается наилучшая из них, результатом чего становится значительное улучшение показателя отношения «сигнал/шум».

Искусственная нейронная сеть . Искусственная нейронная сеть (ИНС) — система обработки информации, состоящая из большого числа сильно взаимозависимых элементов, называемых нейронами, работающих синхронно для выполнения определенных задач. Нейроны имеют весовой коэффициент, показывающий степень влияния, которую каждый из нейронов оказывает на принятие решения. Метод Тагути может быть применен для обучения ИНС выполнению определенных задач, например распознаванию символов. Для этого весовые коэффициенты ИНС образуют элементы ортогональной матрицы.

Далее с помощью метода Тагути и анализа ошибок находится оптимальное сочетание весовых коэффициентов сети. Каждому нейрону предварительно присваивается определенный символ, и нейрон учат распознавать этот символ с минимальной ошибкой. Процесс распознавания инициируется, и на основании записанных результатов делается вывод о соответствии выбранной совокупности весовых коэффициентов заданным условиям.

Метод Тагути позволяет за гораздо меньшее время достигать требуемого результата по сравнению с другими алгоритмами, в частности решать общие задачи распознавания символов до 10 раз быстрее алгоритма обратного распространения. Кроме того, он предоставляет пользователям эффективные средства для анализа внутренних операций сети с помощью статистики и расчета взаимодействий различных элементов.

ЗАКЛЮЧЕНИЕ

В статье был представлен подробный обзор методов Тагути с точки зрения их эволюции, философии, этапов реализации и возможностей межотраслевого применения. В этих эффективных методах интегрированы статистические инструменты управления качеством и приоритет отдается проектированию качества при создании продукции в противовес исследованию несоответствующей продукции на последующих стадиях. Они предполагают количественное решение задачи определения параметров проектирования с целью оптимизации качества и сокращения затрат. Их использование не ограничивается конкретной областью, например сферами производства или услуг. По сравнению с другими методами, интуитивными и более трудоемкими, методы Тагути — мощный инструмент, охватывающий большое число областей применения.

Вы не обязаны делать все это.

Выживание - дело добровольное.

Э. Деминг

Методы Тагути

Термин «методы Тагути» появился в США, сам же Генити Тагути называл свою концепцию «инжиниринг качества» (от англ, engineering - инженерное искусство), основанный на «робастном проектировании» (от англ, robust - крепкий, устойчивый). Оно не требуется при производстве уникальных изделий, изготавливаемых в единственном экземпляре. Если же потребители ожидают от предприятия однородности их качества, то в этом случае робастное проектирование необходимо.

Г. Тагути с конца 1940-х гг. изучал вопросы совершенствования процессов производства и разработал систему, цель которой - быстрое повышение экономических показателей компании и качества продукции путем оптимизации конструкции изделий и процессов их изготовления. В 1996 г. Тагути опубликовал девять заповедей качества, первая звучит так: все недостатки продукта закладываются в него на этапе разработки из-за недостаточного качества проектных работ. Прежде чем производить продукцию, методом математического моделирования ее свойств следует обнаружить и устранить конструкторские и технологические дефекты. Эта методология, включающая и философию, и набор практических инструментов управления качеством, получила название «Методы Тагути».

Принципы Тагути сводятся к следующему.

  • 1. Мера качества изделия - общие потери, которые несет из-за него общество.
  • 2. Для выживания в бизнесе необходимо непрерывное улучшение качества и снижение затрат.
  • 3. Для непрерывного улучшения качества требуется непрерывное уменьшение разброса выходных характеристик изделия относительно их заданных значений.
  • 4. Потери потребителя из-за разброса выходной характеристики пропорциональны квадрату величины разброса.
  • 5. Качество и цена изделия в значительной степени определяются инженерным проектированием изделия и процесса его изготовления.
  • 6. Разброс выходных характеристик изделия (или процесса) может быть уменьшен путем использования нелинейности влияния параметров изделия (или процесса) на эти характеристики.
  • 7. Чтобы идентифицировать значения параметров изделия (или процесса), которые уменьшают разброс выходных характеристик, можно использовать статистически планируемые эксперименты.

Главное в философии Тагути - это повышение качества с одновременным снижением расходов, при этом качество и стоимость рассматриваются совместно. Они связаны общей характеристикой, называемой функцией потерь (Loss Function), причем одновременно рассматриваются потери как со стороны потребителя (вероятность аварий, отказов, невыполнения основных функций, неудовлетворение требований заказчика и т.д.), так и со стороны производителя (затраты ресурсов и т.п.). Задачей проектирования является удовлетворение обеих сторон.

Прямой путь к постоянному совершенствованию - это снижение вариабельности процессов. Заданное значение должно быть определено как идеальное значение выходной характеристики, кстати говоря, оно не обязательно должно быть в середине интервала допуска. Чем больше разброс параметров продукции на выходе процесса, тем с меньшей вероятностью предприятие может прогнозировать, что каждое отдельно взятое изделие будет соответствовать техническим требованиям.

Пусть у - выходная характеристика; т - заданное значение у; /(у) - потери (например, в денежном выражении), которые несет потребитель в течение срока службы изделия из-за отклонения у от т.

Классический подход к качеству предполагает наличие номинального значения и поля допуска (допустимого отклонения от номинала). При переходе через границы допуска изделие признается бракованным. В связи с этим делались попытки увеличения качества изделий путем уменьшения поля допуска (на этом, в частности, строились военные стандарты). Традиционный взгляд, сформировавшийся в соответствии с системой Тейлора, предполагает, что изделия считаются в равной степени качественными (потери отсутствуют), если их характеристики находятся внутри поля допуска (лежат в диапазоне между у н и у в), и некачественными, когда они выходят за пределы этого поля. Причем величина потерь не зависит от того, насколько далеко выходит характеристика за пределы допуска (рис. 27).

Постулат Тагути заключается в том, что качество меняется постоянно, как только характеристики начинают отклоняться от номинального значения, любое отклонение от номинала приводит к прямым или косвенным потерям для предприятия-изготовителя, гарантийных служб или потребителей. Чем больше отклонение выходной характеристики у от ее заданного значения т, тем больше потери потребителя /(у). По сути дела он предлагает уходить от «допускового мышления»: попали в допуск, и ладно. Очень важно еще знать - куда попали, насколько близко к границам.

Рис. 27.

Определить действительный вид функции Ну) трудно. По принципам Тагути потери потребителя из-за вариации выхода пропорциональны квадрату отклонения выходной характеристики от ее заданного значения. Иными словами, функция потерь определяется как коэффициент затрат, умноженный на квадрат разности между заданным и измеренным значениями характеристики качества.

Простейшая квадратичная аппроксимация функции потерь (рис. 28) имеет вид Ну) = к(у - т ) 2 + 1^ п, где / - потери (например, в рублях);

у - значение характеристики;

к - константа Тагути (коэффициент потерь);

/ min - минимальные потери при оптимальном значении характеристики;

т - оптимальное значение характеристики.

Неизвестную константу к можно определить, если Ну) известно для конкретного значения у. Предположим, что интервал - А, т + Д) - допуск потребителя, т.е. изделие функционирует неудовлетворительно, если у выходит за границы этого интервала, а затраты потребителя на ремонт или замену изделия оставляют Л долларов. Тогда А = кА 2 , к = А/А 2 . Методы Тагути позволяют проектировать изделия и процессы, нечувствительные к влиянию так называемых «шумов» - переменных факторов, вызывающих разброс значений параметров.

Тагути стало отношение сигнал/шум, принятое в радиотехнике, которое в данном случае, как отношение «идеальное производство/ действительное состояние», стало основным инструментом инжиниринга качества. У потребителя существует вполне определенное мнение относительно того, как должна функционировать продукция в идеале, или об идеальной функции.


Рис. 28.

Назовем фактор, выбранный в качестве аргумента для идеальной функции, сигналом, характеризующим не только продукцию, но и режим эксплуатации. Как и в радиотехнике, шум в данном случае представляет собой явление случайное и безусловно вредное. Отношение «сигнал/шум» интерпретируется всегда одинаково: чем больше отношение, тем лучше. По существу, эта величина связана с коэффициентом вариации относительно заданного значения. Тагути вводит понятие отклоняющего фактора (или «шума»), являющегося причиной разброса характеристик. Шумы можно разбить на четыре группы: две характеризуют внутренние причины вариации по отношению к продукции и две - внешние. Как внутренние, так и внешние причины могут быть объективными и субъективными.

Одна группа внутренних шумов обусловлена теми различиями, которые закладываются в продукцию при производстве, например, параметры варьируются в пределах наперед заданных допусков (субъективные причины), другая - процессами старения в эксплуатации: сопротивление резисторов в электрических цепях с течением времени растет, пружины - слабеют, автомобильные шины - изнашиваются и т.п. (объективные причины).

Внешние шумы обусловлены различиями в условиях применения продукции: одна группа вызывается особенностями эксплуатации продукции (субъективные причины, например, нарушение инструкции по эксплуатации), другая - параметрами окружающей среды (причины объективные).

Тагути разбивает управление качеством на три стадии.

Системное проектирование (проектирование конструкции) - процесс применения научных и инженерных знаний к разработке изделия. По модели изделия определяются начальные значения параметров изделия. При этом учитываются как требования потребителя, так и условия производства.

Параметрическое проектирование - процесс идентификации таких значений параметров изделия (или процесса), которые уменьшают чувствительность конструкции к источникам вариации («шумам»).

Проектирование допусков - процесс определения допусков вблизи номинальных значений, которые идентифицированы на стадии параметрического проектирования.

Основная концепция методов Тагути заключается в следующем: в процессе проектирования должны быть рассмотрены критерии качества с учетом отклонений в процессах производства и эксплуатации; производственный процесс должен быть усовершенствован за счет совершенствования процесса его проектирования, внедрения статистических методов, а не за счет контроля.

Резюмируя, можно назвать робастным проектированием такое, которое направлено на снижение вариаций в функционировании продукции за счет уменьшения шумов. Методы Тагути входят в другое направление, известное как «Шесть сигм», в котором составляют раздел, представляющий методы проектирования продукции и процессов - Design for Six Sigma (DFSS).

Идеи Тагути в течение 30 лет составляли базу инженерного образования в Японии. В США эти методы стали известны в 1983 г. после того, как компания FORD Motors впервые начала знакомить с ними своих специалистов. Невнимание к методам Тагути - одна из причин серьезного отставания от Японии многих производственных компаний США и Западной Европы.

План

8.1. Метод экспертных оценок

8.2. Подбор экспертов

8.3. Опрос экспертов

8.6. Метод Тагути

8.1. Метод экспертных оценок

Возрастающая сложность управления организациями требует тща­тельного анализа целей и задач деятельности, путей и средств их достиже­ния, оценки влияния различных факторов на повышение эффективности и качества работы. Это приводит к необходимости широкого применения экспертных оценок в процессе формирования и выбора решений.

Экспертиза как способ получения информации всегда использова­лась при выработке решений. Однако научные исследования по ее рацио­нальному проведению были начаты всего три десятилетия назад. Результа­ты этих исследований позволяют сделать вывод о том, что в настоящее время экспертные оценки являются в основном сформировавшимся науч­ным методом анализа сложных неформализуемых проблем.

Сущность метода экспертных оценок заключается в рациональной организации проведения экспертами анализа проблемы с количественной оценкой суждений и обработкой их результатов. Обобщенное мнение группы экспертов принимается как решение проблемы.

В процессе принятия решений эксперты выполняют информацион­ную и аналитическую работу по формированию и оценке решений. Все многообразие решаемых ими задач сводится к трем типам: формирование объектов, оценка характеристик, формирование и оценка характеристик объектов.

Формирование объектов включает определение возможных событий и явлений, построение гипотез, формулировку целей, ограничений, вари­антов решений, определение признаков и показателей для описания свойств объектов и их взаимосвязей и т.п. В задаче оценки характеристик эксперты производят измерения достоверности событий и гипотез, важно­сти целей, значений признаков и показателей, предпочтений решений. В задаче формирования и оценки характеристик объектов осуществляется комплексное решение первых двух типов задач. Таким образом, эксперт выполняет роль генератора объектов (идей, событий, решений и т.п.) и из­мерителя их характеристик.

При решении рассмотренных задач все множество проблем можно разделить на два класса: с достаточным и недостаточным информацион­ным потенциалом. Для проблем первого класса имеется необходимый объем знаний и опыта по их решению. Поэтому по отношению к этим про­блемам эксперты являются качественными источниками и достаточно точ­ными измерителями информации. Для таких проблем обобщенное мнение группы экспертов определяется осреднением их индивидуальных сужде­ний и является близким к истинному.

В отношении проблем второго класса эксперты уже не могут рас­сматриваться как достаточно точные измерители. Мнение одного эксперта может оказаться правильным, хотя оно сильно отличается от мнения всех остальных экспертов. Обработка результатов экспертизы при решении проблем второго класса не может основываться на методах осреднения.

Метод экспертных оценок применяется для решения проблем прогнозирования, планирования и разработки программ деятельности, нормирования труда, выбора перспективной техники, оценки качества продукции и др.

Для применения метода экспертных оценок в процессе принятия решений необходимо рассмотреть вопросы подбора экспертов, проведения опроса и обработки его результатов. Эти вопросы излагаются в следую­щих параграфах.

8.2. Подбор экспертов

В зависимости от масштаба решаемой проблемы организацию экс­пертизы осуществляет ЛПР или назначаемая им группа управления. Под­бор количественного и качественного состава экспертов производится на основе анализа широты проблемы, требуемой достоверности оценок, ха­рактеристик экспертов и затрат ресурсов.

Широта решаемой проблемы определяет необходимость привлече­ния к экспертизе специалистов различного профиля. Следовательно, ми­нимальное число экспертов определяется количеством различных аспек­тов, направлений, которые необходимо учесть при решении проблемы.

Достоверность оценок группы экспертов зависит от уровня знаний отдельных экспертов и количества членов. Если предположить, что экс­перты являются достаточно точными измерителями, то с увеличением чис­ла экспертов достоверность экспертизы всей группы возрастает.

Затраты ресурсов на проведение экспертизы пропорциональны коли­честву экспертов. С увеличением числа экспертов увеличиваются времен­ные и финансовые затраты, связанные с формированием группы, проведе­нием опроса и обработкой его результатов. Таким образом, повышение достоверности экспертизы связано с увеличением затрат. Располагаемые финансовые ресурсы ограничивают максимальное число экспертов в груп­пе. Оценка числа экспертов снизу и сверху позволяет определить границы общего количества экспертов в группе.

Характеристики группы экспертов определяются на основе индиви­дуальных характеристик экспертов: компетентности, креативности, от­ношения к экспертизе, конформизма, конструктивности мышления, кол­лективизма, самокритичности.

В настоящее время перечисленные характеристики в основном оце­ниваются качественно. Для ряда характеристик имеются попытки ввести количественные оценки.

Компетентность - степень квалификации эксперта в определенной области знаний. Компетентность может быть определена на основе анали­за плодотворной деятельности специалиста, уровня и широты знакомства с достижениями мировой науки и техники, понимания проблем и перспектив развития.

Для количественной оценки степени компетентности используется коэффициент компетентности, с учетом которого взвешивается мнение эксперта. Коэффициент компетентности определяется по априорным и апостериорным данным. При использовании априорных данных оценка коэффициента компетентности производится до проведения экспертизы на основе самооценки эксперта и взаимной оценки со стороны других экспер­тов. При использовании апостериорных данных оценка коэффициента компетентности производится на основе обработки результатов эксперти­зы.

Существует ряд методик определения коэффициента компетентности по априорным данным. Наиболее простой является методика оценки отно­сительных коэффициентов компетентности по результатам высказывания специалистов о составе экспертной группы. Сущность этой методики за­ключается в следующем. Ряду специалистов предлагается высказать суж­дение о включении лиц в экспертную группу для решения определенной проблемы. Если в этот список попадают лица, не вошедшие в первона­чальный список, то им также предлагается назвать специалистов для уча­стия в экспертизе. Проведя несколько туров такого опроса, можно соста­вить достаточно полный список кандидатов в эксперты. По результатам проведенного опроса составляется матрица, в ячейках которой проставля­ются переменные , равные

Причем каждый эксперт может включать или не включать себя в экспертную группу. По данным матрицы вычисляются коэффициенты компетентности как относительные

где к 1 - коэффициент компетентности 1-го эксперта, т - количество экспертов (размерность матрицы ||хц ||). Коэффициенты компетентности нормированы так, что их сумма равна единице:

Содержательный смысл коэффициентов компетентности, вычислен­ных по данным таблицы || ху ||, состоит в том, что подсчитывается сумма единиц (число “голосов”), поданных за і-го эксперта, и делится на общую сумму всех единиц. Таким образом, коэффициент компетентности опреде­ляется как относительное число экспертов, высказавши хся за включение і- го эксперта в список экспертной группы.

Креативность - это способность решать творческие задачи. В на­стоящее время кроме качественных суждений, основанных на изучении деятельности экспертов, нет каких-либо предложений по оценке этой ха­рактеристики.

Конформизм - это подверженность влиянию авторитетов. Особенно сильно конформизм может проявиться при проведении экспертизы в виде открытых дискуссий. Мнение авторитетов подавляет мнение лиц, обла­дающих высокой степенью конформизма.

Отношение к экспертизе является очень важной характеристикой качества эксперта при решении данной проблемы. Негативное или пассив­ное отношение специалиста к решению проблемы, большая занятость и другие факторы существенно сказываются на выполнении экспертами сво­их функций. Поэтому участие в экспертизе должно рассматриваться как плановая работа. Эксперт должен проявлять интерес к рассматриваемой проблеме.

Конструктивность мышления - это прагматический аспект мыш­ления. Эксперт должен давать решения, обладающие свойством практич­ности. Учет реальных возможностей решения проблемы очень важен при проведении экспертного оценивания.

Коллективизм - должен учитываться при проведении открытых дискуссий. Этика поведения человека в коллективе во многих случаях су­щественно влияет на создание положительного психологического климата и тем самым на успешность решения проблемы.

Самокритичность эксперта проявляется при самооценке степени своей компетентности, а также при учете мнений других экспертов и при­нятии решения по рассматриваемой проблеме.

Перечисленные характеристики эксперта достаточно полно описы­вают необходимые качества, которые влияют на результаты экспертизы. Однако их анализ требует очень кропотливой и трудоемкой работы по сбору информации и ее изучению. Кроме того, как правило, часть характе­ристик эксперта оценивается положительно, а часть - отрицательно. Воз­никает проблема согласования характеристик и выбора экспертов с учетом противоречивости их качеств. Причем, чем больше характеристик прини­мается во внимание, тем труднее принять решение о том, что важнее и что допустимо для эксперта. Для устранения указанной трудности необходимо сформулировать обобщенную характеристику эксперта, учитывающую его важнейшие качества, с одной стороны, и допускающую непосредственное ее измерение, с другой стороны. В качестве такой характеристики можно принять достоверность суждений эксперта, которая определяет его как “измерительный прибор”. Однако применение такой обобщенной характе­ристики требует информации о прошлом опыте участия эксперта в решении проблем.

где N1 - число случаев, когда 1-й эксперт дал решение, приемлемость которого подтвердилась практикой, N - общее число случаев участия 1-го эксперта в решении проблем.

Вклад каждого эксперта в достоверность оценок всей группы опре­деляется по формуле

где т - число экспертов в группе. В знаменателе стоит средняя дос­товерность группы экспертов.

8.3. Опрос экспертов

Опрос экспертов представляет собой заслушивание и фиксацию в содержательной и количественной форме суждений экспертов по решае­мой проблеме. Проведение опроса является основным этапом совместной работы групп управления и экспертов. На этом этапе выполняются сле­дующие процедуры:

организационно-методическое обеспечение опроса; постановка задачи и предъявление вопросов экспертам; информационное обеспечение работы экспертов.

Вид опроса по существу определяет разновидность метода эксперт­ной оценки. Основными видами опроса являются: анкетирование, интер­вьюирование, метод Дельфы, мозговой штурм, дискуссия.

Выбор того или иного вида опроса определяется целями экспертизы, сущностью решаемой проблемы, полнотой и достоверностью исходной информации, располагаемым временем и затратами на проведение опроса. Рассмотрим содержание и технологию проведения перечисленных выше видов опроса.

Анкетирование. Анкетирование представляет собой опрос экспер­тов в письменной форме с помощь ю анкет. В анкете содержатся вопросы, которые можно классифицировать по содержанию и типу. По содержанию вопросы делятся на три группы:

объективные данные об эксперте (возраст, образование, должность, специальность, стаж работы и т.п.);

основные вопросы по сути анализируемой проблемы;

дополнительные вопросы, позволяющие выяснить источники ин­формации, аргументацию ответов, самооценку компетентности эксперта и т. п.

По типу основные вопросы классифицируются на открытые, закры­тые и с веером ответов. Открытые вопросы предполагают ответ в произ­вольной форме. Закрытые вопросы - это такие вопросы, на которые ответ может быть дан в виде “да”, “нет”, “не знаю”. Вопросы с веером ответов предполагают выбор экспертами одного из совокупности предполагаемых ответов.

Открытые вопросы целесообразно применять в случае большой не­определенности проблемы. Этот тип вопросов позволяет широко охватить рассматриваемую проблему, выявить спектр мнений экспертов. Недостат­ком открытых вопросов является возможное большое разнообразие и про­извольная форма ответов, что существенно затрудняет обработку анкет.

Закрытые вопросы применяются в случае рассмотрения четко опре­деленных двух альтернативных вариантов, когда требуется по существу определить степень большинства мнений по этим альтернативам. Обра­ботка закрытых вопросов не вызывает каких-либо трудностей.

Вопросы с веером ответов целесообразно использовать при наличии нескольких достаточно четко определенных альтернативных вариантов. Эти варианты формируют для ориентации экспертов по возможному кругу направлений в решении проблемы. Для получения более детальной ин­формации по каждому вопросу могут быть предложены порядковая и балльная шкалы. Эксперт по каждому ответу выбирает значение порядко­вой и балльной оценок. Например, значениями порядковой шкалы могут быть “очень хорошо”, “хорошо”, “удовлетворительно”, “неудовлетвори­тельно”, или “значительно”, “незначительно”, “не влияет” и т.п. Обработка анкет с вопросами этого типа по сложности занимает промежуточное ме­сто между открытыми и закрытыми вопросами.

Если анкетирование проводится в несколько туров, то целесообразно при большой сложности и неопределенности проблемы вначале использо­вать открытые типы вопросов, а на последующих турах - с веером ответов и закрытые типы.

Кроме анкеты экспертам представляется обращение - пояснительная записка, в которой разъясняются цели и задачи экспертизы, дается необхо­димая эксперту информация, приводятся инструкции по заполнению анкет и необходимые организационные сведения.

Интервьюирование - это устный опрос, проводимый в форме бесе­ды-интервью. При подготовке беседы интервьюер разрабатывает вопросы эксперту. Характерной особенностью этих вопросов является возможность быстрого ответа на них экспертом, поскольку он практически не имеет времени на его обдумывание.

Тематика интервью может сообщаться эксперту заранее, но конкрет­ные вопросы ставятся непосредственно в процессе беседы. Целесообразно в связи с этим готовить последовательность вопросов, начиная от простого и постепенно их углубляя и усложняя, но вместе с тем и конкретизируя.

Достоинством интервью является непрерывный живой контакт ин­тервьюера с экспертом, что позволяет быстро получить необходимую ин­формацию путем прямых и уточняющих вопросов в зависимости от отве­тов эксперта.

Недостатками интервью являются возможность сильного влияния интервьюера на ответы эксперта, отсутствие времени для глубокого про­думывания ответов и большие затраты его на опрос всего состава экспер­тов.

Интервьюер должен хорошо знать анализируемую проблему, уметь четко формулировать вопросы, создавать непринужденную обстановку и уметь слушать.

Метод Дельфы представляет собой многотуровую процедуру анке­тирования с обработкой и сообщением результатов каждого тура экспер­там, работающим инкогнито по отношению друг к другу. Метод назван по имени греческого города, в котором в древности жил знаменитый оракул.

Известные примеры применения метода Дельфы связаны с поста­новкой вопросов, требующих в качестве ответов числовой оценки пара­метров.

В первом туре опроса методом Дельфы экспертам предлагаются во­просы, на которые они дают ответы без аргументирования. Полученные от экспертов данные обрабатываются с целью выделения среднего или ме­дианы и крайних значений оценок. Экспертам сообщаются результаты об­работки первого тура опроса с указанием расположения оценок каждого эксперта. Если оценка эксперта сильно отклоняется от среднего значения, то его просят аргументировать свое мнение или изменить оценку.

Во втором туре эксперты аргументируют или изменяют свою оценку с объяснением причин корректировки. Результаты опроса во втором туре обрабатываются и сообщаются экспертам. Если после первого тура произ­водилась корректировка оценок, то результаты обработки второго тура со­держат новые средние и крайние значения оценок экспертов. В случае сильного отклонения индивидуальных оценок от средних эксперты долж­ны аргументировать или изменить свои суждения, пояснив причины кор­ректировки.

Проведение последующих туров осуществляется по аналогичной процедуре. Обычно после третьего или четвертого тура оценки экспертов стабилизируются, что и служит критерием прекращения дальнейшего оп­роса.

Итеративная процедура опроса с сообщением результатов обработки после каждого тура обеспечивает лучшее согласование мнений экспертов, поскольку эксперты, давшие сильно отклоняющиеся оценки, вынуждены критически осмыслить свои суждения и обстоятельно их аргументировать. Необходимость аргументации или корректировки своих оценок не означа­ет, что целью экспертизы является получение полной согласованности мнений экспертов. Конечным результатом может оказаться выявление двух или более групп мнений, отражающих принадлежность экспертов к различным научным школам, ведомствам или категориям лиц. Получение такого результата является также полезным, поскольку позволяет выяснить наличие различных точек зрения и поставить задачу на проведение иссле­дований в данной области.

При проведении опроса в методе Дельфы сохраняется анонимность ответов экспертов по отношению друг к другу. Это обеспечивает исключе­ние влияния конформизма, т. е. подавления мнений за счет “веса” научного авторитета или должностного положения одних экспертов по отношению к другим.

Для повышения эффективности проведения экспертизы по методу Дельфы необходимо автоматизировать процесс фиксации, обработки и со­общения экспертам информации. Это достигается путем использования ЭВМ.

Мозговой штурм представляет собой групповое обсуждение с це­лью получения новых идей, вариантов решения проблемы. Мозговой штурм часто называют также мозговой атакой, методом генерации идей. Характерной особенностью этого вида экспертизы является активный творческий поиск принципиально новых решений в трудных тупиковых ситуациях, когда известные пути и способы решения оказываются непри­годными. Для поддержания активности и творческой фантазии экспертов категорически запрещается критика их высказываний.

Основные правила организации и методика проведения мозгового штурма заключаются в следующем. Осуществляется подбор экспертов в группу до 20-25 человек, в которую включаются специалисты по решаемой проблеме и люди с широкой эрудицией и богатой фантазией, причем не­обязательно хорошо знающие рассматриваемую проблему. Желательно включение в группу лиц, занимающих одинаковое служебное и общест­венное положение, что обеспечивает большую независимость высказыва­ний и создание атмосферы равноправия.

Для проведения сеанса назначается ведущий, основной задачей ко­торого является управление ходом обсуждения для решения поставленной проблемы. Ведущий в начале сеанса объясняет содержание и актуальность проблемы, правила ее обсуждения и предлагает для рассмотрения одну-две идеи.

Сеанс продолжается примерно 40-45 минут без перерыва. Для вы­ступления предоставляется 2-3 минуты и они могут повторяться. В каждом выступлении эксперты должны стремиться выдвинуть как можно больше новых, может быть, на первый взгляд фантастических идей или развивать ранее высказанные идеи, дополняя и углубляя их. Важным требованием к выступлениям является конструктивный характер идей и предложений. Они должны быть направлены на решение проблемы. Ведущи й и все чле­ны группы должны своими действиями и высказываниями способствовать созданию всеобщей синхронно работающей коллективной мысли, возбуж­дению мыслительных процессов, что существенно влияет на результатив­ность обсуждения.

В процессе генерирования идей и их обсуждения прямая критика за­прещена, однако она имеет место в неявной форме и выражается в степени поддержки и развития высказываний.

Выступления экспертов фиксируются путем стенографирования или магнитофонной записи и после окончания сеанса подвергаются анализу, который заключается в группировке и классификации высказанных идей и решений по различным признакам, оценке степени полезности и возмож­ности реализации. Примерно через сутки - двое после проведения сеанса экспертов просят сообщить, не возникли ли еще какие-нибудь новые идеи и решения. Эксперименты показывают, что если в процессе сеанса была создана хорошая творческая атмосфера с активным участием в работе всех экспертов, то после окончания обсуждения в мозге человека продолжается процесс генерации и анализа своих и других предложений, который проте­кает не только осознанно, но и подсознательно. В результате сопоставле­ния высказываний, проведения аналогий и обобщения часто, примерно че­рез сутки, эксперты формулируют наиболее ценные предложения и идеи. Поэтому сбор информации по возможным новым идеям способствует по­вышению эффективности метода мозгового штурма.

Существует ряд разновидностей мозгового штурма, в которых пред­лагается чередовать пятиминутные штурмы с обдумыванием его результа­тов, чередовать периоды генерации с дискуссиями и групповым принятием решений, применять последовательные этапы выдвижения предложений и их обсуждения, включать в группу экспертов “усилителей” и “подавите­лей” идей и т.п.

Мозговой штурм применяется для решения разнообразных приклад­ных проблем.

Дискуссия. Этот вид экспертизы широко применяется на практике для обсуждения проблем, путей их решения, анализа различных факторов и т.п. Для проведения дискуссии формируется группа экспертов не более 20 человек. Группа управления проводит предварительный анализ проблем дискуссии с целью четкой формулировки задач, определения требований к экспертам, их подбора и методики проведения дискуссии.

Сама дискуссия проводится как открытое коллективное обсуждение рассматриваемой проблемы, основной задачей которого является всесто­ронний анализ всех факторов, положительных и отрицательных последст­вий, выявление позици й и интересов участников.

В ходе дискуссии разрешается критика.

Большую роль в дискуссии играет ведущи й. От его умения создать творческую благожелательную атмосферу, четко выступить с постановкой проблемы, кратко и глубоко резюмировать выступления и, главное, умело направить ход дискуссии на решение проблемы существенно зависит эф­фективность результатов обсуждения.

Дискуссия может проводиться в течение нескольких часов, поэтому необходимо определить регламент работы: время на доклад ведущего и выступления, проведение перерывов. Следует иметь в виду, что во время перерывов дискуссия продолжается, т.е. имеют место кулуарные обсужде­ния. В связи с этим не следует делать перерывы слишком короткими, по­скольку локальные обсуждения дают положительный эффект.

Результаты дискуссии фиксируются в виде стенограмм или магнит­ной записи. После окончания дискуссии проводится анализ этих записей для более четкого представления основных результатов, выявления разли­чий во мнениях. В дискуссиях также примерно через сутки после оконча­ния может собираться дополнительная информация от экспертов.

Рассмотренные виды опроса дополняют друг друга и в определенной степени являются взаимозаменяемыми. Для генерации новых объектов (идей, событий, проблем, решений) целесообразно применять мозговой штурм, дискуссии, анкетирование и метод Дельфы (первые два тура).

Всесторонний критический анализ имеющегося перечня объектов эффективно может быть проведен в форме дискуссии. Для количественной и качественной оценки свойств, параметров, времени и других характери­стик объектов применяются анкетирование и метод Дельфы. Интервьюи­рование целесообразно использовать для уточнения результатов, получен­ных другими видами экспертизы.

8.4. Обработка экспертных оценок

После проведения опроса группы экспертов осуществляется обра­ботка результатов. Исходной информацией для нее являются числовые данные, выражающие предпочтения экспертов, и содержательное обосно­вание этих предпочтений. Целью обработки является получение обобщен­ных данных и новой информации, содержащейся в скрытой форме в экспертных оценках. На основе результатов обработки формируется решение проблемы.

Наличие как числовых данных, так и содержательных высказываний экспертов приводит к необходимости применения качественных и количе­ственных методов обработки результатов группового экспертного оцени­вания. Удельный вес этих методов существенно зависит от класса про­блем, решаемых экспертным оцениванием. Мы рассмотрим методы обра­ботки проблем первого класса, характеризующихся достаточным инфор­мационным потенциалом. Эти проблемы наиболее распространены в прак­тике принятия решений.

В зависимости от целей экспертного оценивания при обработке ре­зультатов опроса решают следующие основные задачи: определение согласованности мнений экспертов; построение обобщенной оценки объектов; определение зависимости между суждениями экспертов; определение относительных весов объектов;

оценка надежности результатов экспертизы.

Определение согласованности оценок экспертов необходимо для подтверждения правильности гипотезы о том, что эксперты являются дос­таточно точными измерителями, и выявления возможных группировок в экспертной группе. Оценка согласованности мнений экспертов произво­дится путем вычисления количественной меры, характеризующей степень близости индивидуальных мнений. Анализ значений меры согласованно­сти способствует выработке правильного суждения об общем уровне зна­ний по решаемой проблеме и выявлению группировок мнений экспертов, обусловленных различием взглядов, концепций, существованием научных школ, характером профессиональной деятельности и т.п.

Задача построения обобщенной оценки объектов по индивидуаль­ным оценкам экспертов возникает при групповом экспертном оценивании. Если эксперты производили оценку объектов в количественной шкале, то задача построения групповой оценки заключается в определении среднего значения или медианы оценки. При измерении в порядковой шкале мето­дом ранжирования или парного сравнения целью обработки индивидуаль­ных оценок экспертов является построение обобщенного упорядочения объектов на основе осреднения оценок экспертов.

Обработкой результатов экспертного оценивания можно определять зависимости между суждениями различных экспертов. Выявление этих за­висимостей позволяет устанавливать степень близости во мнениях экспер­тов. Важное значение имеет также определение зависимости между оцен­ками объектов, построенными по различным показателям сравнения. Это дает возможность определить связанные между собой показатели сравне­ния и осуществить их группировку по степени взаимосвязи.

При решении многих задач недостаточно осуществить упорядочение объектов по одному или по группе показателей. Желательно также иметь количественные значения относительной важности объектов. Для решения этой задачи можно сразу применить метод непосредственной оценки (см. 3.2). Однако эту же задачу при определенных условиях можно решить пу­тем обработки результатов ранжировок или парных сравнений группы экспертов.

Оценки объектов, получаемые в результате обработки, представляют собой случайные величины, поэтому одной из важных задач является оп­ределение их достоверности, т.е. надежности результатов экспертизы.

Методы решения перечисленных задач рассматриваются в соответ­ствующей литературе.

Обработка результатов экспертизы вручную связана с большими трудовыми затратами (даже в случае решения простых задач упорядоче­ния), поэтому ее целесообразно проводить на базе вычислительной техни­ки. Применение ЭВМ выдвигает проблему разработки машинных про­грамм, реализующих алгоритмы обработки результатов экспертного оце­нивания. При организации обработки результатов опроса следует тщатель­но проанализировать трудоемкости решения задач с учетом разработки математического обеспечения для ЭВМ.

8.5. Определение согласованности экспертов

В качестве иллюстрации методов решения перечисленных выше за­дач рассмотрим задачу определения согласованности мнений экспертов.

При оценке объектов эксперты обычно расходятся во мнениях по решаемой проблеме. В связи с этим возникает необходимость количест­венной оценки степени согласия экспертов. Получение количественной меры согласованности позволяет более обоснованно интерпретировать причины расхождения мнений.

Оценка согласованности суждений экспертов основывается на ис­пользовании понятия компактности, наглядное представление о котором дает геометрическая интерпретация результатов экспертизы. Оценка каж­дого эксперта представляется как точка в некотором пространстве, в кото­ром имеется понятие расстояния. Если точки, характеризующие оценки всех экспертов, расположены на небольшом расстоянии друг от друга, т.е. образуют компактную группу, то, очевидно, можно это интерпретировать как хорошую согласованность мнений экспертов. Если же точки в про­странстве разбросаны на значительные расстояния, то согласованность мнений экспертов невысокая. Возможно, что точки - оценки экспертов - расположены в пространстве так, что образуют две или несколько ком­пактных групп. Это означает, что в экспертной группе существуют две или несколько существенно отличающихся точек зрения на оценку объектов.

Конкретизация изложенной идеи оценки согласованности мнений экспертов производится в зависимости от использования количественных или качественных шкал измерения и выбора меры степени согласованно­сти.

При использовании количественных шкал измерения и оценке всего одного параметра объекта все мнения экспертов можно представить как точки на числовой оси. Эти точки можно рассматривать как реализации случайной величины и поэтому для оценки группировки и разброса точек использовать хорошо разработанные методы математической статистики. Центр группировки точек можно определить как математическое ожида­ние (среднее значение) или как медиану случайной величины, а разброс количественно оценивается дисперсией случайной величины. Мерой со­гласованности оценок экспертов, т.е. компактности расположения точек на числовой оси, может служить отношение среднеквадратического отклоне­ния к математическому ожиданию случайной величины.

Если объект оценивается несколькими числовыми параметрами, то мнение каждого эксперта представляется как точка в пространстве пара­метров. Центр группировки точек опять определяется как математическое ожидание вектора параметров, а разброс точек - дисперсией вектора параметров. Мерой согласованности суждений экспертов служит в этом случае сумма расстояний оценок от среднего значения, отнесенная к расстоянию математического ожидания от начала координат. Мерой согласованности может также служить количество точек, расположенных в радиусе средне­квадратического отклонения от математического ожидания, ко всему ко­личеству точек. Различные методы определения согласованности количе­ственных оценок на основе понятия компактности рассматриваются в тео­рии группировок и распознавания образов.

При измерении объектов в порядковой шкале согласованность оце­нок экспертов в виде ранжировок или парных сравнений объектов также основывается на понятии компактности.

При ранжировке объектов в качестве меры согласованности мнений группы экспертов используется дисперсионный коэффициент конкордации (коэффициент согласия).

Будем рассматривать величины г 1 как реализации случайной величи­ны и найдем оценку дисперсии. Как известно, оптимальная по критерию минимума среднего квадрата ошибки оценка дисперсии определяется формулой:

Дисперсионный коэффициент конкордации определяется как отно­шение оценки дисперсии (7.1) к максимальному значению этой оценки:

Максимальное значение дисперсии равно

Данная формула определяет коэффициент конкордации для случая отсутствия связанных рангов.

Если в ранжировках имеются связанные ранги, то максимальное зна­чение дисперсии в знаменателе формулы становится меньше, чем при отсутствии связанных рангов. Доказано, что при наличии связанных рангов коэффициент конкордации вычисляется по формуле

В формуле Т - показатель связанных рангов в Б-й ранжировке, Н 8 - число групп равных рангов в Б-й ранжировке, И к - число равных ран­гов в к-й группе связанных рангов при ранжировке Б-м экспертом. Если совпадающих рангов нет, то Н 8 = 0, И к = 0 и, следовательно, Т 8 =0. В этом случае формула (7.8) совпадает с формулой (7.7).

Коэффициент конкордации равен 1, если все ранжировки экспертов одинаковы, и равен нулю, если все ранжировки различны. Коэффициент конкордации является оценкой истинного значения коэффициента и, следовательно, представляет собой случайную величину. Для определения значимости оценки коэффициента конкордации необходимо знать распределение частот для различных зна­чений числа экспертов й и количества объектов т. Распределение частот для Ш при различных значениях т и й может быть определено по известным статистическим таблицам. При числе объектов т > 7 оценка значимо­сти коэффициента конкордации может быть произведена по критерию х 2 . Величина d*(m-1) W имеет х = распределение с V = т-1 степенями свобо­ды.

При наличии связанных рангов х 2 = распределение с V = т-1 степе­нями свободы имеет значениеНаряду с дисперсионным коэффициентом конкордации используется в качестве меры согласованности суждений экспертов энтропийный коэф­фициент конкордации.

Метод Тагути

Имя японского ученого Гэнити Тагути в настоящее время в табеле о рангах по популярности не уступает К. Исикаве, Дж. Джурану, А. Фейгенбауму. Это объясняется тем, что его идеи и подходы при обеспечении качества нашли широкое применение в промышленности Японии, а затем и в других странах.

Они характеризуются тем, что забота о качестве начинается на ранних этапах его формирования - при проектировании изделий и технологических процессов.

Основные элементы подхода Г. Тагути заключаются в следующих постулатах.

Важная мера качества изделия - это социальные потери, которые несет из-за него общество.

В конкурентной экономике постоянное улучшение качества и снижение затрат необходимы для выживания в бизнесе.

Программа постоянного улучшения качества включает в себя непрерывное уменьшение разбросов выходных характеристик изделия относительно их заданных значений.

Потери потребителя из-за разбросов выходной характеристики изделия пропорциональны квадрату отклонения этой характеристики от ее заданного значения.

Качество и цена изделия в значительной степени определяются инженерным проектированием изделия и процесса его изготовления.

Разброс выходных характеристик изделия или процесса может быть уменьшен путем использования фактора нелинейности влияния параметров изделия или процесса на эти характеристики.

Чтобы идентифицировать значения параметров изделия или процесса, которые уменьшают разброс выходных характеристик, можно использовать статистически планируемые эксперименты.

Прокомментируем приведенные выше элементы этой философии.

Г. Тагути считает, что качество - это потери, которые несет общество с того момента, как изделие отправлено потребителю. Чем меньше социальные потери из-за недоработок изделия, тем изделие более желательно потребителю. Постоянное улучшение качества и снижение затрат на протяжении жизненного цикла изделий - необходимые условия для выживания в глобальной экономике.

Постоянное улучшение качества невозможно без соответствующего уменьшения выбросов выходных характеристик изделия относительно их заданных значений. Чем меньше вариация выхода относительно заданного значения, тем выше качество. В свою очередь, заданное значение долино быть определено как идеальное значение выходной характеристики.

Эти характеристики измеряются как по непрерывной шкале, так и упорядоченным категориальным распределением (плохой, приемлемый, хороший, отличный). Оценка по непрерывной шкале более эффективна, но выходные данные, требующие субъективной оценки, измерить по ней невозможно.

4. Любые разбросы выходной характеристики изделия относительно ее заданного значения приводят к потерям потребителя. Простейшая квадратичная функция потерь (рис. 7.2) имеет вид:

Где к - константа, у - выходная характеристика, измеренная по непрерывной шкале; г - заданное значение у; l(у) - потери, выраженные в долларах, которые несет потребитель в течение срока службы изделия из-за отклонения y от т. Очевидно, что чем больше отклонение выходной характеристики V от ее заданного значения т, тем больше потери потребителя l(у). Средние потери потребителя из-за вариации выхода получаются статистическим усреднением квадратичной функции потерь, связанной с возможными значениями у. В случае квадратичной функции потерь средние потери из-за вариации выхода пропорциональны средней квадратичной ошибке у относительно заданного значения т.

Концепция квадратичных потерь показывает важность непрерывного уменьшения вариации выхода.

5. В связи с увеличением сложности современных изделий проектирование изделий и процессов производства играет решающую роль (робастное проектирование) . В процессе производства отклонения от номинальных значений неизбежны, и они влияют на вариацию выхода изделий. Уменьшение влияния различных отрицательных факторов наиболее эффективно на стадии проектирования изделия и процессов.

Улучшение проектирования процессов, усиление контроля приведет к уменьшению разброса из-за влияния источников изменчивости.

Начиная с первой стадии цикла разработки изделия, контроль качества должен стать неотъемлемой частью проектирования и сопровождать все последующие стадии. При этом используются такие методы, как проверка чувствительности, испытания прототипа изделия, ускоренные испытания долговечности и испытания на надежность.

Г. Тагути ввел трехстадийный подход к установлению номинальных значений параметров изделия и процесса и допусков на них: системное проектирование, параметрическое проектирование и проектирование допусков. Системное проектирование - процесс применения научных и инженерных знаний к разработке модели изделия. Модель изделия определяет начальные значения параметров изделия или процесса. Системное проектирование включает учет как требований потребителя, так и производственных условий.

Параметрическое проектирование - процесс идентификации таких значений параметров изделия или процесса, которые уменьшают чувствительность конструкции к источникам изменения параметров. Проектирование допусков - процесс определения допусков вблизи номинальных значений, которые идентифицированы с помощью параметрического проектирования.

Для идентификации значений параметров изделия или процесса, которые уменьшают вариацию выхода, могут быть использованы статистически планируемые эксперименты. Г. Тагути разработал новый подход к использованию статистически планируемых экспериментов.

Г. Тагути предлагает использовать критерий, который он назвал «отношение сигнал/шум» (s/n), в качестве выходной статистики.

Он определил три типа отношения s/n для трех типов функции потерь: как можно меньшее, как можно большее или некоторое конечное.

Г. Тагути применяет специальные планы эксперимента с использованием отношения «сигнал/шум». Подробнее о методах Тагути можно прочитать в.

В нашей стране методы Тагути получили известность после публикаций Ю. П. Адлера

Контрольные вопросы к теме 8

1. В чем заключается сущность метода экспертных оценок?

2. Какие типы задач решаются экспертами?

3. Какие классы проблем рассматриваются с использованием метода экспертных оценок?

4. Перечислите этапы реализации метода экспертных оценок.

5. Кто осуществляет организацию экспертизы?

6. На основе каких факторов осуществляется подбор состава экспер­тов?

  • CИТУАЦИОННЫЕ ЗАДАЧИ С ПРИМЕРАМИ РЕШЕНИЯ. 1. На 3-м месяце беременности произошел выкидыш
  • CИТУАЦИОННЫЕ ЗАДАЧИ С ПРИМЕРАМИ РЕШЕНИЯ. 1. Объем легких при выдохе уменьшается, в результате чего они освобож­даются от воздуха, насыщенного СО2
  • CИТУАЦИОННЫЕ ЗАДАЧИ С ПРИМЕРАМИ РЕШЕНИЯ. 1. Под действием ультрафиолетовых лучей кожа европейцев приобретаем коричневый цвет

  • Японский ученый Г. Тагучи в 1960 г. высказал мысль, что качество не может более рассматриваться как мера соответствия требованиям проектной/конструкторской документации. Соблюдения качества в терминах границ допусков недостаточно. Необходимо постоянно стремиться к номиналу, к уменьшению разброса даже внутри границ, установленных проектом.

    Г. Тагучи предложил, что удовлетворение требований допусков - отнюдь не достаточный критерий, чтобы судить о качестве. В конце концов, минимальными оказываются затраты на обслуживание продукта после его получения потребителем, т.е. минимизируются переделки, наладки и расходы по гарантийному обслуживанию.

    Управление, нацеленное лишь на достижение соответствия требованиям допусков, приводит в своим специфичным проблемам. Вместе с тем, нельзя не отметить, что допуски служили верную службу на протяжении многих лет: они позволяли производить предметы, которые были достаточно хороши в свою эпоху.

    • Метод Тагучи позволяет ранжироватьприоритеты в программе управления качеством
    • Количественно оценить улучшение качества

    Разберем, например, некоторые из проблем, которые могут возникнуть, если соответствие валов и отверстий не идеально. Если их сочленение соответствует более плотной посадке, в процессе работы машины возникнет избыточное трение. Для его преодоления потребуется большая мощность или расход топлива.

    При этом возможно возникновения локального перегрева, могущего привести к некоторым деформациям и плохой работе. Если посадка слишком свободная, то может происходить утечка смазки, которая может вызвать повреждение в других местах. Самое малое - замена смазки - может оказаться дорогостоящей процедурой как из-за стоимости самого смазывающего состава, так из-за необходимости более частой остановки машины для проведения техобслуживания. Слабая посадка может также привести к вибрациям, вызывающим шум, пульсирующие нагрузки, которые, весьма вероятно, приведут к уменьшению срока службы из-за отказов, вызванных напряжениями.

    Очевидно, необходим другой, качественно другой подход, который не требует искусственного определения годного и негодного, хорошего и плохого, дефектного и бездефектного. Такой подход, в свою очередь, предполагает, что существует наилучшее значение, и что любое отклонение от этого номинального значения вызывает некоторого вида потери или сложности в соответствии с типом зависимости, который был рассмотрен на примерах для диаметра валов и отверстий.

    Функция потерь Тагучи как раз и предназначена для этого. Графически функция потерь Тагучи обычно представляется в форме:

    Рис. 1. Графическая функция потерь Тагучи

    Значение показателя качества откладывается на горизонтальной оси, а вертикальная ось показывает "потери", или "вред", или "значимость", относящиеся к значениям показателей качества. Эти потери принимаются равными нулю, когда характеристика качества достигает своего номинального значения.

    Математический вид функции Тагучи представлен в заголовке графика, где x - измеряемое значение показателя качества; x0 - ее номинальное значение; L(x) - значение функции потерь Тагучи в точке х ; с - коэффициент масштаба.