Свойства оксида железа. Железо и его соединения

ОКСИД ЖЕЛЕЗА (III)

Применение

Применяется как сырьё при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель аналоговой и цифровой информации (напр. звука и изображения) на магнитных лентах (ферромагнитный?-Fe 2 O 3), как полирующее средство (красный крокус) для стали и стекла.

В пищевой промышленности используется в качестве пищевого красителя (E172).

В ракетомоделизме применяется для получения катализированого карамельного топлива, которое имеет скорость горения на 80% выше, чем обычное топливо.

Является основным компонентом железного сурика (колькотара).

Колькотар

Колькотар -- коричневая минеральная краска. Другие названия: парижская или английская красная краска, caput mortuum vitrioli, крокус, железный сурик; в алхимии -- красный лев.

По составу колькотар представляет более или менее чистую безводную окись железа. Хотя безводная окись железа и встречается в природе в очень больших количествах (красный железняк, железный блеск), но ценные сорта этой краски вырабатываются искусственно или получаются как побочный продукт при добывании нордгаузенской кислоты из железного купороса, а также при прокаливании основных серножелезных солей, выделяющихся из раствора при приготовлении железного купороса из купоросного камня.

Получение и синтез

1. Fe2O3 образуется при прокаливании на воздухе всех гидратов и кислородных соединений железа, а также Fe(NO3)3 и FeSO4. Так, например, прокаливают в течение 2 час. на полном пламени бунзеновской горелки Fe(OH)3, полученный по методу Г. Гюттига и Г. Гарсайда.

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

2. По указанию Д. Н. Финкельштейна 100 г Fe(NO3)3 * 9H2O нагревают в большом фарфоровом тигле на электрической плитке. Вначале соль спокойно плавится, образуя бурую жидкость, постепенно испаряющуюся. При 121° жидкость начинает кипеть, выделяя постоянно кипящую 68%-ную HNO3.

Постепенно жидкость начинает загустевать и необходимо частое перемешивание, чтобы избежать толчков и разбрызгивания. Начиная со 130°, непрерывно перемешивают жидкость фарфоровым шпателем, причем она загустевает, образуя пасту (без перемешивания жидкость внезапно затвердевает в сплошную массу). При 132° паста сразу рассыпается в порошок, продолжая выделять пары HNO 3 .

Не переставая перемешивать, продолжают нагревание до полного высушивания; весь процесс занимает 20--25 мин. Сухую массу растирают, переносят в тигель и прокаливают в муфеле при 600--700° в течение 8--10 час. При достаточной чистоте исходного нитрата железа полученный продукт отвечает квалификации х. ч. Выход 95--98% теоретического, т. е. около 19 г.

3. Для приготовления чистого препарата к нагретому до кипения раствору закисной соли железа прибавляют вычисленное количество горячего раствора щавелевой кислоты, причем выпадает закисное щавелевокислое железо. Его отфильтровывают, тщательно промывают водой, высушивают и прокаливают при доступе воздуха, непрерывно перемешивая. Выход 90--93% теоретического. Получаемый препарат содержит 99,79--99,96% Fe 2 O 3 .

4. В фарфоровый котелок емкостью 4 л, снабженный крышкой, помещают раствор 500 г Fe(NO 3) 3 * 9Н 2 О в 2 л воды. Через трубку, проходящую до дна котелка, пропускают не слишком сильный ток NH 3 , промытого щелочью и водой. Время от времени перемешивают жидкость газоотводящей трубкой.

По окончании осаждения жидкости дают отстояться, раствор декантируют и промывают осадок горячей водой до удаления NO 3 в промывных водах. Отмытый Fe(OH) 3 просушивают в фарфоровых чашках, после чего прокаливают в течение 5--6 час. при 550--600°. Выход 96 г (96--97% теоретического).

5. При получении Fe 2 O 3 , служащего сырьем для приготовления Fe высокой чистоты, исходный нитрат железа должен быть исключительно чист. Путем многократной перекристаллизации Fe(NO 3) 3 * 9Н 2 О Кливс и Томпсон получили препарат, содержащий всего 0,005% Si и менее 0,001% других примесей.

6. По Брандту целесообразнее всего исходить из химически чистого железа. Последнее растворяют в НСl, раствор при нагревании обрабатывают сероводородом, фильтруют и в фильтрате двухвалентное железо окисляют в трехвалентное кипячением с небольшим количеством HNO 3 . Смесь дважды выпаривают с концентрированной HCl и, растворив остаток в избытке разбавленной НСl, несколько раз взбалтывают раствор с эфиром в большой делительной воронке.

Если исходный материал содержал Со, то содержимому воронки дают отстояться, спускают через кран нижний (водный) слой и к оставшейся в воронке эфирной вытяжке прибавляют часть по объему смеси, полученной встряхиванием НСl (уд. в. 1,104) с эфиром. Сильно встряхивают, снова сливают нижний слой и операцию повторяют.

Очищенную эфирную вытяжку фильтруют, эфир отгоняют (или просто удаляют нагреванием на водяной бане), и оставшийся раствор FeCl 3 несколько раз выпаривают с НNО 3 . Последнее выпаривание ведут с добавлением NH 4 NO 3 .

Выпаривание целесообразно проводить в плоской фарфоровой чашке.

После выпаривания остается хрупкая соляная масса, легко отделяющаяся от чашки. Ее истирают в ступке и порциями по 40--50 г умеренно прокаливают в платиновой чашке. Остаток несколько раз смешивают с сухим углекислым аммонием и вновь прокаливают при слабом красном калении, часто перемешивая.

Эту операцию повторяют до приблизительно постоянного веса (точно постоянный вес не может быть достигнут, так как незначительное количество Fe 2 O 3 уносится парами (NH 4) 2 СО 3).

железо металл оксид минерал

В организме человека содержится около 5 г железа, большая часть его (70%) входит в состав гемоглобина крови.

Физические свойства

В свободном состоянии железо - серебристо-белый металл с сероватым оттенком. Чистое железо пластично, обладает ферромагнитными свойствами. На практике обычно используются сплавы железа - чугуны и стали.


Fe - самый главный и самый распространенный элемент из девяти d-металлов побочной подгруппы VIII группы. Вместе с кобальтом и никелем образует «семейство железа».


При образовании соединений с другими элементами чаще использует 2 или 3 электрона (В = II, III).


Железо, как и почти все d-элементы VIII группы, не проявляет высшую валентность, равную номеру группы. Его максимальная валентность достигает VI и проявляется крайне редко.


Наиболее характерны соединения, в которых атомы Fe находятся в степенях окисления +2 и +3.


Способы получения железа

1. Техническое железо (в сплаве с углеродом и другими примесями) получают карботермическим восстановлением его природных соединений по схеме:




Восстановление происходит постепенно, в 3 стадии:


1) 3Fe 2 O 3 + СО = 2Fe 3 O 4 + СO 2


2) Fe 3 O 4 + СО = 3FeO +СO 2


3) FeO + СО = Fe + СO 2


Образующийся в результате этого процесса чугун содержит более 2% углерода. В дальнейшем из чугуна получают стали - сплавы железа, содержащие менее 1,5 % углерода.


2. Очень чистое железо получают одним из способов:


а) разложение пентакарбонила Fe


Fe(CO) 5 = Fe + 5СО


б) восстановление водородом чистого FeO


FeO + Н 2 = Fe + Н 2 O


в) электролиз водных растворов солей Fe +2


FeC 2 O 4 = Fe + 2СO 2

оксалат железа (II)

Химические свойства

Fe - металл средней активности, проявляет общие свойства, характерные для металлов.


Уникальной особенностью является способность к «ржавлению» во влажном воздухе:



В отсутствие влаги с сухим воздухом железо начинает заметно реагировать лишь при Т > 150°С; при прокаливании образуется «железная окалина» Fe 3 O 4:


3Fe + 2O 2 = Fe 3 O 4


В воде в отсутствие кислорода железо не растворяется. При очень высокой температуре Fe реагирует с водяным паром, вытесняя из молекул воды водород:


3 Fe + 4Н 2 O(г) = 4H 2


Процесс ржавления по своему механизму является электрохимической коррозией. Продукт ржавления представлен в упрощенном виде. На самом деле образуется рыхлый слой смеси оксидов и гидроксидов переменного состава. В отличие от пленки Аl 2 О 3 , этот слой не предохраняет железо от дальнейшего разрушения.

Виды коррозии


Защита железа от коррозии


1. Взаимодействие с галогенами и серой при высокой температуре.

2Fe + 3Cl 2 = 2FeCl 3


2Fe + 3F 2 = 2FeF 3



Fe + I 2 = FeI 2



Образуются соединения, в которых преобладает ионный тип связи.

2. Взаимодействие с фосфором, углеродом, кремнием (c N 2 и Н 2 железо непосредственно не соединяется, но растворяет их).

Fe + Р = Fe x P y


Fe + C = Fe x C y


Fe + Si = Fe x Si y


Образуются вещества переменного состава, т к. бертоллиды (в соединениях преобладает ковалентный характер связи)

3. Взаимодействие с «неокисляющими» кислотами (HCl, H 2 SO 4 разб.)

Fe 0 + 2Н + → Fe 2+ + Н 2


Поскольку Fe располагается в ряду активности левее водорода (Е° Fe/Fe 2+ = -0,44В), оно способно вытеснять Н 2 из обычных кислот.


Fe + 2HCl = FeCl 2 + Н 2


Fe + H 2 SO 4 = FeSO 4 + Н 2

4. Взаимодействие с «окисляющими» кислотами (HNO 3 , H 2 SO 4 конц.)

Fe 0 - 3e - → Fe 3+


Концентрированные HNO 3 и H 2 SO 4 «пассивируют» железо, поэтому при обычной температуре металл в них не растворяется. При сильном нагревании происходит медленное растворение (без выделения Н 2).


В разб. HNO 3 железо растворяется, переходит в раствор в виде катионов Fe 3+ а анион кислоты восстанавливется до NO*:


Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2Н 2 O


Очень хорошо растворяется в смеси НСl и HNO 3

5. Отношение к щелочам

В водных растворах щелочей Fe не растворяется. С расплавленными щелочами реагирует только при очень высоких температурах.

6. Взаимодействие с солями менее активных металлов

Fe + CuSO 4 = FeSO 4 + Cu


Fe 0 + Cu 2+ = Fe 2+ + Cu 0

7. Взаимодействие с газообразным монооксидом углерода (t = 200°C, P)

Fe(порошок) + 5CO (г) = Fe 0 (CO) 5 пентакарбонил железа

Соединения Fe(III)

Fe 2 O 3 - оксид железа (III).

Красно-бурый порошок, н. р. в Н 2 O. В природе - «красный железняк».

Способы получения:

1) разложение гидроксида железа (III)


2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O


2) обжиг пирита


4FeS 2 + 11O 2 = 8SO 2 + 2Fe 2 O 3


3) разложение нитрата


Химические свойства

Fe 2 O 3 - основный оксид с признаками амфотерности.


I. Основные свойства проявляются в способности реагировать с кислотами:


Fe 2 О 3 + 6Н + = 2Fe 3+ + ЗН 2 О


Fe 2 О 3 + 6HCI = 2FeCI 3 + 3H 2 O


Fe 2 О 3 + 6HNO 3 = 2Fe(NO 3) 3 + 3H 2 O


II. Слабокислотные свойства. В водных растворах щелочей Fe 2 O 3 не растворяется, но при сплавлении с твердыми оксидами, щелочами и карбонатами происходит образование ферритов:


Fe 2 О 3 + СаО = Ca(FeО 2) 2


Fe 2 О 3 + 2NaOH = 2NaFeО 2 + H 2 O


Fe 2 О 3 + MgCO 3 = Mg(FeO 2) 2 + CO 2


III. Fe 2 О 3 - исходное сырье для получения железа в металлургии:


Fe 2 О 3 + ЗС = 2Fe + ЗСО или Fe 2 О 3 + ЗСО = 2Fe + ЗСO 2

Fe(OH) 3 - гидроксид железа (III)

Способы получения:

Получают при действии щелочей на растворимые соли Fe 3+ :


FeCl 3 + 3NaOH = Fe(OH) 3 + 3NaCl


В момент получения Fe(OH) 3 - красно-бурый слизистоаморфный осадок.


Гидроксид Fe(III) образуется также при окислении на влажном воздухе Fe и Fe(OH) 2:


4Fe + 6Н 2 O + 3O 2 = 4Fe(OH) 3


4Fe(OH) 2 + 2Н 2 O + O 2 = 4Fe(OH) 3


Гидроксид Fe(III) является конечным продуктом гидролиза солей Fe 3+ .

Химические свойства

Fe(OH) 3 - очень слабое основание (намного слабее, чем Fe(OH) 2). Проявляет заметные кислотные свойства. Таким образом, Fe(OH) 3 имеет амфотерный характер:


1) реакции с кислотами протекают легко:



2) свежий осадок Fe(OH) 3 растворяется в горячих конц. растворах КОН или NaOH с образованием гидроксокомплексов:


Fe(OH) 3 + 3КОН = K 3


В щелочном растворе Fe(OH) 3 может быть окислен до ферратов (солей не выделенной в свободном состоянии железной кислоты H 2 FeO 4):


2Fe(OH) 3 + 10КОН + 3Br 2 = 2K 2 FeO 4 + 6КВr + 8Н 2 O

Соли Fe 3+

Наиболее практически важными являются: Fe 2 (SO 4) 3 , FeCl 3 , Fe(NO 3) 3 , Fe(SCN) 3 , K 3 4- желтая кровяная соль = Fe 4 3 берлинская лазурь (темно-синий осадок)


б) Fe 3+ + 3SCN - = Fe(SCN) 3 роданид Fe(III) (р-р кроваво-красного цвета)

Оксидами железа называют соединения железа с кислородом.

Наиболее известны три оксида железа: оксид железа (II) – FeO ,оксид железа (III ) – Fe 2 O 3 и оксид железа (II , III ) – Fe 3 O 4 .

Оксид железа (II)


Химическая формула оксида двухвалентного железа - FeO . Это соединение имеет чёрный цвет.

FeO легко реагирует с разбавленной соляной кислотой и концентрированной азотной кислотой.

FeO + 2HCl → FeCl 2 + H 2 O

FeO + 4HNO 3 → Fe(NO 3) 3 + NO 2 + 2H 2 O

С водой и с солями в реакцию не вступает.

При взаимодействии с водородом при температуре 350 о С и коксом при температуре выше 1000 о С восстанавливается до чистого железа.

FeO +H 2 → Fe + H 2 O

FeO +C → Fe + CO

Получают оксид железа (II) разными способами:

1. В результате реакции восстановления оксида трёхвалентного железа угарным газом.

Fe 2 O 3 + CO → 2 FeO + CO 2

2. Нагревая железо при низком давлении кислорода

2Fe + O 2 → 2 FeO

3. Разлагая оксалат двухвалентного железа в вакууме

FeC 2 O 4 → FeO +CO + CO 2

4. Взаимодействием железа с оксидами железа при температуре 900-1000 о

Fe + Fe 2 O 3 → 3 FeO

Fe + Fe 3 O 4 → 4 FeO

В природе оксид двухвалентного железа существует как минерал вюстит.

В промышленности применяется при выплавке чугуна в домнах, в процессе чернения (воронения) стали. Входит он в состав красителей и керамики.

Оксид железа (III )


Химическая формула Fe 2 O 3 . Это соединение трёхвалентного железа с кислородом. Представляет собой порошок красно-коричневого цвета. В природе встречается как минерал гематит.

Fe 2 O 3 имеет и другие названия: окись железа, железный сурик, крокус, пигмент красный 101, пищевой краситель E172 .

В реакцию с водой не вступает. Может взаимодействовать как с кислотами, так и со щелочами.

Fe 2 O 3 + 6HCl → 2 FeCl 3 + 3H 2 O

Fe 2 O 3 + 2NaOH → 2NaFeO 2 + H 2 O

Оксид железа (III) применяют для окраски строительных материалов: кирпича, цемента, керамики, бетона, тротуарной плитки, линолеума. Добавляют его в качестве красителя в краски и эмали, в полиграфические краски. В качестве катализатора оксид железа используется в производстве аммиака. В пищевой промышленности он известен как Е172.

Оксид железа (II, III )


Химическая формула Fe 3 O 4 . Эту формулу можно написать и по-другому: FeO Fe 2 O 3 .

В природе встречается как минерал магнетит, или магнитный железняк. Он является хорошим проводником электрического тока и обладает магнитными свойствами. Образуется при горении железа и при действии перегретого пара на железо.

3Fe + 2 O 2 → Fe 3 O 4

3Fe + 4H 2 O → Fe 3 O 4 + 4H 2

Нагревание при температуре 1538 о С приводит к его распаду

2Fe 3 O 4 → 6FeO + O 2

Вступает в реакцию с кислотами

Fe 3 O 4 + 8HCl → FeCl 2 + 2FeCl 3 + 4H 2 O

Fe 3 O 4 + 10HNO 3 → 3Fe(NO 3) 3 + NO 2 + 5H 2 O

Со щелочами реагирует при сплавлении

Fe 3 O 4 + 14NaOH → Na 3 FeO 3 + 2Na 5 FeO 4 + 7H 2 O

Вступает в реакцию с кислородом воздуха

4 Fe 3 O 4 + O 2 → 6Fe 2 O 3

Восстановление происходит при реакции с водородом и монооксидом углерода

Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O

Fe 3 O 4 + 4CO → 3Fe +4CO 2

Магнитные наночастицы оксида Fe 3 O 4 нашли применение в магнитно-резонансной томографии. Они же используются в производстве магнитных носителей. Оксид железа Fe 3 O 4 входит в состав красок, которые производятся специально для военных кораблей, подводных лодок и другой техники. Из плавленного магнетита изготавливают электроды для некоторых электрохимических процессов.

Оксид железа(III)
200x300px
Haematite-unit-cell-3D-balls.png
Общие
Систематическое
наименование

Оксид железа(III)

Традиционные названия окись железа, колькотар, крокус, железный сурик
Хим. формула Fe 2 O 3
Рац. формула Fe 2 O 3
Физические свойства
Состояние твёрдое
Молярная масса 159,69 г/моль
Плотность 5,242 г/см³
Термические свойства
Т. плав. 1566 °C
Т. кип. 1987 °C
Классификация
Рег. номер CAS 1309-37-1
PubChem
Рег. номер EINECS Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).
SMILES
InChI
Кодекс Алиментариус Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).
RTECS Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).
ChemSpider Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).
Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Свойства

В природе встречается как широко распространённый минерал гематит , примеси которого обусловливают красноватую окраску латерита , красноземов , а также поверхности Марса ; другая кристаллическая модификация встречается как минерал маггемит .

Получение

Термическое разложение соединений солей железа(III) на воздухе:

texvc не найден; См. math/README - справку по настройке.): \mathsf{Fe_2(SO_4)_3 \rightarrow Fe_2O_3 + 3SO_3} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{4Fe(NO_3)_3\cdot9H_2O \rightarrow 2Fe_2O_3 + 12NO_2 + 3O_2 + 36H_2O}

Обезвоживание метагидроксида железа прокаливанием:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{2FeO(OH) \rightarrow Fe_2O_3+H_2O}

В природе - оксидные руды железа гематит Fe 2 O 3 и лимонит Fe 2 O 3 ·n H 2 O

Химические свойства

1. Взаимодействие с разбавленной соляной кислотой :

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{Fe_2O_3 + 6HCl \longrightarrow 2FeCl_3 + 3H_2O}.

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{Fe_2O_3 + Na_2CO_3 \longrightarrow 2NaFeO_2 + CO_2}

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{Fe_2O_3+3H_2 \xrightarrow{1000^\circ C} 2Fe+3H_2O}

Физические свойства

В ромбоэдральной альфа-фазе оксид железа является антиферромагнетиком ниже температуры 260 К; от этой температуры и до 960 K α -Fe 2 O 3 - слабый ферромагнетик . Кубическая метастабильная гамма-фаза γ -Fe 2 O 3 (в природе встречается как минерал маггемит) является ферромагнетиком .

Применение

В пищевой промышленности используется в качестве пищевого красителя (E172).

В ракетомоделизме применяется для получения катализированого карамельного топлива , которое имеет скорость горения на 80% выше, чем обычное топливо.

Является основным компонентом железного сурика (колькотара).

В нефтехимической промышленности используется в качестве основного компонента катализатора дегидрирования при синтезе диеновых мономеров .

См. также

Напишите отзыв о статье "Оксид железа(III)"

Примечания

Литература

  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. - М .: Советская энциклопедия, 1990. - Т. 2 (Даф-Мед). - 671 с. - ISBN 5-82270-035-5.

Отрывок, характеризующий Оксид железа(III)

Вдруг я увидела очень красивый замок, стены которого были местами повреждены катапультами, но в основном замок оставался целым. Весь внутренний двор был валом завален трупами людей, утопавших в лужах собственной и чужой крови. У всех было перерезано горло...
– Это Лавур (Lavaur), Изидора... Очень красивый и богатый город. Его стены были самыми защищёнными. Но озверевший от безуспешных попыток главарь крестоносцев Симон де Монтфор позвал на помощь весь сброд, какой только смог найти, и... 15 000 явившихся на зов «солдат Христовых» атаковали крепость... Не выдержав натиска, Лавур пал. Все жители, в том числе 400 (!!!) Совершенных, 42 трубадура и 80 рыцарей-защитников, зверски пали от рук «святых» палачей. Здесь, во дворе, ты видишь лишь рыцарей, защищавших город, и ещё тех, кто держал в руках оружие. Остальных же (кроме сожжённых Катар) зарезав, просто оставили гнить на улицах... В городском подвале убийцы нашли 500 спрятавшихся женщин и детей – их зверски убили прямо там... не выходя наружу...
Во двор замка какие-то люди привели, закованную цепями, симпатичную, хорошо одетую молодую женщину. Вокруг началось пьяное гиканье и хохот. Женщину грубо схватили за плечи и бросили в колодец. Из глубины тут же послышались глухие, жалобные стоны и крики. Они продолжались, пока крестоносцы, по приказу главаря, не завалили колодец камнями...
– Это была Дама Джиральда... Владелица замка и этого города... Все без исключения подданные очень любили её. Она была мягкой и доброй... И носила под сердцем своего первого нерождённого младенца. – Жёстко закончил Север.
Тут он посмотрел на меня, и видимо сразу же понял – сил у меня просто больше не оставалось...
Ужас тут же закончился.
Север участливо подошёл ко мне, и, видя, что я всё ещё сильно дрожу, ласково положил руку на голову. Он гладил мои длинные волосы, тихо шепча слова успокоения. И я постепенно начала оживать, приходя в себя после страшного, нечеловеческого потрясения... В уставшей голове назойливо кружился рой незаданных вопросов. Но все эти вопросы казались теперь пустыми и неуместными. Поэтому, я предпочитала ждать, что же скажет Север.
– Прости за боль, Изидора, но я хотел показать тебе правду... Чтобы ты поняла ношу Катар... Чтобы не считала, что они легко теряли Совершенных...
– Я всё равно не понимаю этого, Север! Так же, как я не могла понять вашу правду... Почему не боролись за жизнь Совершенные?! Почему не использовали то, что знали? Ведь почти что каждый из них мог одним лишь движением истребить целую армию!.. Зачем же было сдаваться?
– Наверное, это было то, о чём я так часто с тобой говорил, мой друг... Они просто не были готовы.
– Не готовы к чему?! – по старой привычке взорвалась я. – Не готовы сохранить свои жизни? Не готовы спасти других, страдавших людей?! Но ведь всё это так ошибочно!.. Это неверно!!!
– Они не были воинами, каким являешься ты, Изидора. – Тихо произнёс Север. – Они не убивали, считая, что мир должен быть другим. Считая, что они могли научить людей измениться... Научить Пониманию и Любви, научить Добру. Они надеялись подарить людям Знание... но не всем, к сожалению, оно было нужно. Ты права, говоря, что Катары были сильными. Да, они были совершенными Магами и владели огромной силою. Но они не желали бороться СИЛОЙ, предпочитая силе борьбу СЛОВОМ. Именно это их и уничтожило, Изидора. Вот почему я говорю тебе, мой друг, они были не готовы. А если уж быть предельно точным, то это мир не был готов к ним. Земля, в то время, уважала именно силу. А Катары несли Любовь, Свет и Знание. И пришли они слишком рано. Люди не были к ним готовы...
– Ну, а как же те сотни тысяч, что по всей Европе несли Веру Катар? Что тянулись к Свету и Знаниям? Их ведь было очень много!
– Ты права, Изидора... Их было много. Но что с ними стало? Как я уже говорил тебе раннее, Знание может быть очень опасным, если придёт оно слишком рано. Люди должны быть готовы, чтобы его принять. Не сопротивляясь и не убивая. Иначе это Знание не поможет им. Или ещё страшнее – попав в чьи-то грязные руки, оно погубит Землю. Прости, если тебя расстроил...
– И всё же, я не согласна с тобою, Север... Время, о котором ты говоришь, никогда не придёт на Землю. Люди никогда не будут мыслить одинаково. Это нормально. Посмотри на природу – каждое дерево, каждый цветок отличаются друг от друга... А ты желаешь, чтобы люди были похожи!.. Слишком много зла, слишком много насилия было показано человеку. И те, у кого тёмная душа, не хотят трудиться и ЗНАТЬ, когда возможно просто убить или солгать, чтобы завладеть тем, что им нужно. За Свет и Знание нужно бороться! И побеждать. Именно этого должно не хватать нормальному человеку. Земля может быть прекрасной, Север. Просто мы должны показать ей, КАК она может стать чистой и прекрасной...
Север молчал, наблюдая за мной. А я, чтобы не доказывать ничего более, снова настроилась на Эсклармонд...
Как же эта девочка, почти ещё дитя, могла вынести такое глубокое горе?.. Её мужество поражало, заставляя уважать и гордиться ею. Она была достойной рода Магдалины, хотя являлась всего лишь матерью её далёкого потомка.

ВВЕДЕНИЕ


Данная работа посвящена изучению свойств оксида железа (III) Fe2O3, также известного как минералы: гематит (?-Fe2O3), лимонит (Fe2O3H2O), входит в состав магнетита (FeOFe2O3).

Тема курсовой работы представляет практический и теоретический интерес. Проект будет полезен предприятиям, синтезирующим вещество Fe2O3 в промышленных масштабах.

Также проект полезен как сборник информации о железе, некоторых его оксидах, оксиде железа (III) в частности, и минералах, в состав которых он входит.

Цели, выполнение которых необходимо достичь по окончании работы над проектом: собрать наиболее полную информацию об оксиде железа (III), изучить его свойства и способы синтеза.

Задачи проекта:

Собрать полноценную и актуальную информацию по теме.

Изучить свойства железа и его оксида (III) Fe2O3, на основе чего узнать о применении этих веществ.

Рассмотреть все возможные способы синтеза и выделить наиболее выгодный из них.

По окончании данного проекта следует сделать заключение по проделанной работе, указать какие задачи были выполнены, а какие нет.



Железо было известно еще до нашей эры. Люди древнего Египта и Северной Америки пользовались предметами, сделанными из метеоритного железа. В те времена железо было самым распространенным материалом после бронзы.

Считается, что народы Кавказа и Туркестана первыми получили железо из минералов. Позже железо распространилось в Вавилон, Египет, Грецию и Рим. Железо, полученное примитивным способом (который состоял в нагревании железной руды с древесным углем в ямах или печах из глины), было загрязнено шлаком и очищалось долгой ковкой.

На древнем Востоке при выплавке железа использовались печи, оснащенные мехами для подачи воздуха. В XV в. за счет увеличения потока подаваемого воздуха была увеличена температура выплавки. Благодаря этому удалось получить чугун, который был очень хрупок и ломался от удара молотка. Позже было получено ковкое железо путем нагревания чугуна с древесным углем в горне в токе воздуха.

Огромным скачком в металлургии железа является замена древесного угля коксом - восстановителем, источником углерода и одновременно горючим материалом. Уже в XIX в. были разработаны технологические процессы получения стали.


1.1 Нахождение в природе


В природе железо практически не встречается в свободном состоянии. Обычно оно входит в состав минералов в виде различных соединений. Его содержание в земной коре составляет 4,7 вес. %.

Наиболее типичными минералами железа являются: Сидерит, Лимонит, Гематит, Магнетит. Также существуют и другие минералы: Вюстит, Пирит, Марказит, Лёллингит, Миспикель, Мелантерит, Вивианит и пр.

Залежи полезных ископаемых, содержащих минералы железа, находятся в разных странах: России, Швеции, Норвегии, Франции, Греции, Италии, Кубе, Турции и пр.

Процентное содержание железа в минералах колеблется от 25 до 70%. Руды, содержащие менее 45% железа, относятся к бедным и в промышленности не используются. Обогащают руды магнитным способом. Гематит или лимонит превращают в магнетит термической обработкой и пропускают через магнитное поле для отделения от пустой природы.

Железо входит в состав гемоглобина - компонента эритроцитов крови живых организмов. У некоторых видов вместо железа в молекуле гемоглобина присутствует медь.


1.2 Получение и применение


Чистое мало окисляемое металлическое железо может быть получено восстановлением оксида железа (III) Fe2O3 водородом при нагревании:


Fe2O3+3H2=2Fe+3H2O


Восстанавливая Fe2O3 водородом при 278-340°С, получают пирофорное железо, при 550-650°С - железо, свыше 700°С - спекшуюся массу губчатого металлического железа.

Чисто железо можно получить путем термического разложения пентакарбонила железа Fe(CO)5 без доступа кислорода и при температуре свыше 140°С, а также электролизом водного раствора FeCl2·4H2O с добавлением NH4Cl при 30°С.

Загрязненное металлическое железо может быть получено алюмо- или кремнетермическим восстановлением оксида железа (III) Fe2O3 и оксидов железа (II, III) Fe3O4.

Fe2O3+2Al=2Fe+Al2O3

Fe3O4+8Al=9Fe+4Al2O3


Для получения различных ферросплавов (феррохрома, ферровольфрама, ферромолибдена и др.) применяются алюмо- или кремнетермическое восстановление смеси Fe2O3 с оксидами соответствующих металлов (Cr2O3, WO3, MoO3 и т.д.). При кремнетермическом восстановлении используют элементарный кремний или ферросилиций.

Для получения сверхчистого железа (10-6% примесей) используют метод зонной плавки.

Для получения чугуна или сырого железа (сплавы железа с углеродом) используются минералы, не содержащие серу, мышьяк и фосфор: гематит, лимонит, магнетит, сидерит.

Получение чугуна путем восстановления железных руд осуществляется в доменных печах. Процесс превращения чугуна (сырого железа) в ковкое железо проходит путем окисления и частичного удаления примесей (S, P, As, Si и пр.), т.е. путем аффинажа по процессу Пудделя, Бессемера, Томаса или Мартена.

Доменная печь имеет форму двух усеченных конусов, которые соединены основаниями. Ее высота - 65 м, диаметр 5-11м. Рабочий объем печи - 200-2000 м3, производительность - около 2000 т чугуна в сутки. Верхний конус печи называется шахтой. Он сделан из огнеупорных кирпичей и имеет в верхней части так называемый «колошник» - автоматическое устройство для удаления доменных газов. Нижний конус сделан из огнеупорного силикатного кирпича. В его нижней части находится горн, имеющий цилиндрическую форму. Сама печь поддерживается металлическими конструкциями, так как имеет достаточной большой вес.

Процесс выплавки чугуна проходит так: сверху в доменную печь загружают измельченную железную руду, которую послойно перемешивают с коксом; снизу под давлением поступает предварительно нагретый воздух, в котором сгорает кокс. Образующийся при горении оксид углерода восстанавливает железо из его оксидов:


CO+Fe2O3=2Fe+3CO2?


Так как реакция обратима, в соответствии с принципом Ле-Шателье, равновесие смещается влево при повышенной температуре. Поэтому реакция осуществляется, в основном, в верхней части печи, где температура ниже. Часть Fe2O3 восстанавливается только до FeO:


Fe2O3+CO=2FeO+CO2?


В нижней части печи, где температура очень высокая, восстановителем является непосредственно углерод:



Вследствие очень высокой температуры в нижней части печи железо плавится и стекается вниз. Пространство, освобожденное в связи с этим, заполняют сверху новыми слоями руды и кокса.

Железо и его сплавы активно применяются во всех отраслях промышленности в связи с его возможностью сохранять механические и физико-химические свойства при температурах до 900 °C. Сплавы железа бывают нескольких типов: магнитные, немагнитные, кислотостойкие, твердые, нержавеющие, жаропрочные и др.

Стали используются в производстве электровозов, вагонов, железно-дорожных рельсов, тракторов, буровых установок, подъемных кранов и применяются во многих других отраслях.

Помимо стали и чугуна известны сплавы, содержащие 4-6,5% железа, такие как латунь и бронза. В них железо служит добавкой для модификации прочности, пластичности, твердости, ковкости, скорости старения и др. свойств.

Железо и его сплавы для современной техники имеют огромное значение. Расход железа превышает 100 млн. тонн в год во всем мире.


3Физические свойства и химические свойства


Чистое железо в компактном состоянии представляет собой серебристо-серый металл с синеватым отливом, имеющий плотность 7,867 г/см3, твердость 4-5 по шкале Мооса, т. пл. 1536°C и т. кип. 3250°C. Железа существует в виде четырех аллотропных модификаций, а именно: ?-Fe, устойчивое до 768°C, ?-Fe, устойчивое в интервале 768-906°C, ?-Fe, устойчивое в интервале 906-1401°C, и ?-Fe, устойчивое в интервале 1401-1536°С.

Модификация ?, ?, ? имеют кубическую объёмноцентрированную кристаллическую структуру, а модификация ?-гранецентрированную кубическую структуру решетки. Модификация ? и ? - ферромагнитны, а ? и ? - диамагнитны. Ферромагнетизм исчезает, когда железо нагрето до точки Кюри 768°C.

В тонко измельченном состоянии металлическое железо обладает пирофорными свойствами и образуется в результате перегонки амальгамы железа или восстановления Fe2O3 водородом примерно при 270°.

Горячее пирофорное железо самопроизвольно загорается на воздухе, поскольку, будучи тонкоизмельченным и имея водород включения, энергично взаимодействует с кислородом воздуха.

Известно очень большое число сплавов (чугуны, стали и др.), образуемых железом с различными металлами (Со, Ni, Мn, Сr, Мо, W, V, Nb, Zr, Sb, Ti, Sn, Pb, Al, Be, Mg, Zn и Cu), а также с неметаллами - углеродом, кремнием, азотом, фосфором, серой, водородом.

Было замечено, что железо в легированных сталях образует твердые растворы, эвтектические твердые сплавы и интерметаллические соединения с многочисленными элементами. Примеры интерметаллических соединений: Fe3Mo2, Fe5Nb3, FeCr, FeZn7, Fe5Zn21, Fe2Sn, FeSn, FeSn2, Fe2W, Fe3W2, Fe3Zr2, Fe3Ti, FeAl3, Fe2N, Fe4N, Fe3P, Fe3C, Fe2C, Fe3Si2, FeSi, FeSi2 и Fe2Si.

Основным легирующим элементом железа является углерод. Введенный в относительно небольших количествах углерод существенно изменяет характер и свойства железа. Уже говорилось о том, что сплавы железа с другими элементами, содержащие 0-1,7% углерода, относятся к сталям, а содержащие 1,7-6,7% углерода,- к чугунам. Углерод может находиться в железе в виде графита (элементный углерод) или в форме цементита.

Системы железо - углерод с содержанием углерода более 6,67% не рассматриваются, поскольку в технике используются только сплавы, содержащие примерно до 5% углерода. Углерод способствует увеличению прочности, твердости, сопротивления и уменьшению пластичности.

Механические свойства железа зависят от степени его чистоты. В чистом состоянии железо достаточно мягко, ковко, тягуче, вязко, оно хорошо проводит тепло и электричество. При загрязнении железа различными неметаллами или металлами механические свойства его в значительной степени меняются.

В компактном состоянии чистое железо устойчиво в сухом воздухе и ржавеет во влажном воздухе, превращаясь в Fe2O3 · n Н2O (где n имеет значение, близкое к единице) - ржавчину; последняя образует пористую, рыхлую пленку, которая не предохраняет железо от действия кислорода.



Когда загрязненное железо соприкасается с влагой и двуокисью углерода из атмосферы, на поверхности металла образуются гальванические пары, в которых железо, являясь отрицательным элементом, разрушается. Из-за электрохимической коррозии поверхность загрязненного железа во влажном воздухе за короткое время покрывается ржавчиной. Ионы Fe2+ с анионами ОН- (из воды) или СО32- (образовавшимися при растворении СO2 в воде) образуют Fe(OH)2 или FeCO3, которые в водной среде и в присутствии кислорода превращаются в Fe(OH)3 (или в Fe2O3·3H2O).

Для предохранения железа от действия коррозионных агентов его покрывают слоем масляной краски, эмали или другого металла: Zn (цинкование), Sn (лужение), Сr (хромирование), Ni (никелирование), Cd (кадмирование), РЬ (свинцевание) - либо проводят поверхностное окисление расплавленным NaNO3 или KNO3.

Пары воды разлагаются нагретым докрасна железом выше 700° по обратимому уравнению:


Fe+4H2O=Fe3O4+4H2?


При комнатной температуре железо растворяет примерно 0,005% водорода. При этом образуется гидрид включения FeH, который способствует увеличению твердости железа:


Fe+4H2O=2FeH


Один грамм железа растворяет при 1530°C 0,272 см3 водорода, при 1550°-0,279 см3 водорода и при 1650°-0,310 см3 водорода.

Насыщенное водородом железо при нагревании на воздухе до 900° теряет значительную часть этого газа.

При обычной температуре сухой кислород не взаимодействует с железом. При нагревании полированной железной пластинки в кислороде выше 150° наблюдается потемнение ее поверхности, а при нагревании до белого каления образуется магнетит:


Fe+2O2=Fe3O4


При 1900° в присутствии кислорода железо полностью превращается в оксиды.

При? 900° растворимость кислорода в ?-Fe равна 0,18%, а в ?-Fe и ?-Fe она больше. Железо с небольшим содержанием кислорода образует твердые и хрупкие сплавы.

При нагревании железо взаимодействует с газообразным хлором, превращаясь в Fe2Cl6, но не вступает в реакцию с жидким хлором. При действии паров брома или йода на порошкообразное кристаллическое железо получают Fe3Br8 (или 2FeBr3 · FeBr2) и Fe3I8 (или 2FeI3·FeI2):


Fe+3Cl2=Fe2Cl6

Fe+4Br2=Fe3Br8


Нагреванием порошкообразного металлического железа в парах брома при 190° получают Fe2Br6:


Fe+3Br2=Fe2Br6


Тонко измельченное железо взаимодействует при нагревании с серой, образуя сульфиды FeS, FeS2:

Fe+S (ромбич.) = FeS Fe+2S (ромбич.) = FeS2


Сера плохо растворима в железе, но сульфид железа FeS (из сплавов системы железо - сера) образует с железом эвтектику, которая содержит 30% серы, плавится при 985°, обладает ломкостью при красном калении и ухудшает качество железа (чугуна или стали).

При нагревании железного порошка в токе аммиака образуются нитриды Fe2N, Fe4N:

Фосфор, мышьяк и кремний образуют с железом при нагревании интерметаллические соединения, например Fe3P, Fe2P,FeP, Fe3As2, Fe2As, Fe3As4, Fe3Si2, FeSi, FeSi2, Fe2Si.

Поскольку нормальный потенциал системы Fe/Fe2+ равен -0,44 в, железо относится к легко окисляемым металлам. Под действием разбавленных неорганических кислот (НСl, H2SO4 и др.) оно превращается в соответствующие соли железа (II) с выделением водорода:


Fe+2HCl - FeCl2 +H2 Fe + H2SO4 = FeSO4 + H2


Разбавленная азотная кислота, взятая в избытке, взаимодействует с железом по уравнению:


4Fe+10HNO3= 4Fe(NO3)2+NH4NO3+3H2O


Концентрированные кислоты, такие, как HNO3 и H2SO4, взаимодействуют с железом при нагревании по уравнениям:


Fe + 4HNO3 = Fe(NO3)3 + NO + 2H2O

2Fe + 6H2SO4 = Fe2(SO4)3 + 3SO2 + 6H2O


Нормальный потенциал системы Fe/Fe3+ равен -0,036 в.

Под действием концентрированных кислот HNO3, H2SO4, Н2СгO4 железо становится пассивным благодаря образованию плотной защитной пленки на поверхности металла, меняющей значение электрохимического потенциала.

Железо подвергается действию концентрированных растворов щелочей. Разбавленные растворы щелочей действуют на железо только в присутствии двуокиси углерода.

Железо вытесняет металлы Bi, Sb, Pb, Sn, Cu, Ag, Hg, и Au из растворов их солей.

С физиологической точки зрения железо имеет особое значение для организма человека и животных, поскольку является катализатором процесса дыхания. Как уже упоминалось, железо входит в состав молекулы гемоглобина. Молекула гемоглобина состоит из интерциклического соединения гема, которое содержит двухвалентное железо, и белка глобина. В легких человека гемоглобин присоединяет кислород, превращаясь в оксигемоглобин, который разносится кровью, снабжая кислородом все клетки организма.


2. МИНЕРАЛЫ


Магнетит, Fe3O4, содержит до 72% железа и представляет собой черные кубические кристаллы со слабым металлическим блеском, плотностью 4,9-5,2 г/см3, твердостью 5,6-6 по шкале Мооса и магнитными свойствами.

Гематит, ?-Fe2O3 (от греческого слова hematikos, что означает «кровавый»), содержит до 65% железа и представляет собой красно-черные ромбоэдрические кристаллы с плотностью 5-5,3 г/см3, твердостью 5,5-6 по шкале Мооса. ?-Fe2O3 легко восстанавливается при нагревании под действием Н2, С, СО, А1, Si и др.

Лимонит (гетит), Fe2O3H2O или HFeO2, содержит до 60% железа и представляет собой кристаллы, гранулы, оолиты или конкреции черно-коричневого цвета. Плотность лимонита 3,3-4 г/см3, твердость 1-4 по шкале Мооса. Плотность гетита 4-4,4г/см3, твердость 4,5-5,5 по шкале Мооса. В отличие от других железосодержащих руд лимонит и гетит легче всех восстанавливаются до металлического железа.

Сидерит, FeCO3, содержит примерно 35% железа, обладает желтовато-белым (с серым или коричневым оттенком в случае загрязнения) цветом, плотностью 3,9 г/см3 и твердостью 3,5-4,5 по шкале Мооса.

Пирит, FeS2, содержит 46,6% железа и встречается в виде кубических кристаллов, желтых, как латунь, с металлическим блеском (желтовато-коричневым оттенком), плотностью 4,9-5,2 г/см3, твердостью 6-6,5 по шкале Мооса. Он содержит в небольшом количестве Со, Ni, As, Sb и иногда Сu, Ag, Аu.

Марказит, FeS2, также содержит 46,6% железа, но встречается в виде желтых, как латунь, бипирамидальных ромбических кристаллов с плотностью 4,6-4,9 г/см3 и твердостью 5-6 по шкале Мооса. При температуре 450° он превращается в пирит.

Лёллингит, FeAs2, содержит 27,2% железа и встречается в виде серебристо-белых бипирамидальных ромбических кристаллов с плотностью 7,0 - 7,40 г/см3 и твердостью 5 - 5,5 по шкале Мооса.

Миспикель, FeAsS, содержит 34,3% железа и встречается в виде белых моноклинных призм с плотностью 5,6-6,2 г/см3 и твердостью 5,5-6 по шкале Мооса.

Мелантерит, FeSO47H2O, реже встречается в природе и представляет собой зеленые (или серые из-за примесей) моноклинные кристаллы, обладающие стеклянным блеском, хрупкие, с плотностью 1,8-1,9 г/см3.

Вивианит, Fe3(PO4)22O, встречается в виде сине-серых или зелено-серых моноклинных кристаллов с плотностью 2,95 г/см3 и твердостью 1,5-2 по шкале Мооса.

Помимо описанных, известны и другие минералы, например: ильменит FeTiO3, магномагнетит (Fe, Mg), фиброферрит FeSO4(OH)4,5Н2O, ярозит KFe3(SO4)2(OH)6, кокимбит Fe2(SO4)32O, рёмерит Fe2+Fe3/2+(SO4)414H2O, графтонит (Fe, Мn)3(РO4)2, скородит Fe3+AsO42O, штренгит FePO42H2O, фаялит Fe2SiO4, альмандит Fe3Al23, андрадит Ca3Fe23, гиперстен (Fe, Mg)2, геденбергит (Са, Fe), эгирин (Na, Fe) , шамозит Fe42+Al(OH)2nH2O.

Кроме этих минералов, многие алюмосиликаты, какими являются глины, загрязнены соединениями железа.


3. ОКСИДЫ ЖЕЛЕЗА


Оксид железа (II), FeO, получают окислением металлического железа, термическим разложением FeC2O4·2H2O без доступа воздуха, восстановлением оксида железа (III) Fe2O3 оксидом углерода при 500° или водородом при 700-800°, прокаливанием (650-700° в отсутствие воздуха) смеси стехиометрически необходимых количеств Fe2O3 и порошка металлического железа, нагреванием FeCO3 при 490-581°:

Соединение FeO представляет собой диамагнитный черный неустойчивый кристаллический порошок (структура типа NaCl). Оно превращается в Fe2O3 при нагревании до 200-250° на воздухе, диспропорционирует на Fe3O4 и металлическое железо при 570°, плавится примерно при 1360°; трудно растворимо в воде и щелочах, легко растворяется в кислотах с образованием солей железа (II); восстанавливается до металлического железа под действием H2 или CO при нагревании; разлагает при нагревании воду с образованием Fe2O3 и выделением H2:


FeO+H2O=Fe2O3+H2?


Оксид железа (II) образует с многочисленными оксидами металлов соединения типа шпинелей Fe2+ или перовскита Fe2+Me4+O3.

Оксид железа (III), Fe2O3, является самым устойчивым природным кислородсодержащим соединением железа, которое встречается в форме минералов гематита или красного железняка.

Известны три модификации оксида железа (III), а именно: ?-Fe2O3, ?-Fe2O3 и ?-Fe2O3. Модификация ?-Fe2O3 (соответствующая гематиту) парамагнитна и образуется окислением железа на воздухе при температуре выше 200°, а также нагреванием ?-Fe2O3 в течение 3 часов при 110° или сжиганием пирофорного железа на воздухе при комнатной температуре и давлении меньше 760 мм рт. ст. Модификация ?-Fe2O3 ферромагнитна и образуется окислением железа на воздухе при температуре ниже 200°, а также окислением Fe3O4 или нагреванием ?-Fe2O3 при 300°. Модификация ?-Fe2O3 ферромагнитна и образуется окислением растворов солей железа (II) в щелочах.

Модификации оксида железа(III) могут также быть получены прокаливанием гидроксида железа (III), Fe(OH)3 при 700°, нитрата Fe(NO3)32O при 600-800°, карбоната FeCO3 при 500° на воздухе, сульфата FeSO4 или пирита FeS2 на воздухе:

Нагревание порошкообразного железа или трихлорида железа в водном паре также дает Fe2O3.

Соединение ?-Fe2O3 представляет собой красный порошок с плотностью 5,24 г/см3, который плавится примерно при 1550°,трудно растворим в воде и может быть восстановлен до Fe3O4, FeO или металлического железа водородом, углеродом, оксидом углерода, металлическим алюминием или элементным кремнием. При восстановлении ?-, ?-, ?-Fe2O3 водородом (280-340°) образуется пирофорное металлическое железо, а при алюмо- или кремнетермическом восстановлении модификаций ?-, ?-, ?-Fe2O3 образуется загрязненное металлическое железо.

Растворимость ?-, ?-, ?-Fe2O3 модификаций в кислотах зависит от температуры и продолжительности прокаливания окиси перед растворением. Если оксид железа был слегка прокален, он растворяется в кислотах.

Окись железа под названием железный сурик, охра, мумия, применяется как пигмент приготовления для красок.

Оксид железа(II, III), Fe3O4, со структурой шпинели Fe2+ встречается в природе в виде минерала магнетита.

Соединение Fe3O4 можно получить прокаливанием других оксидов железа или восстановлением Fe2O3 (400-500°) водородом, насыщенным парами воды, или оксидом углерода (800°).3O4 представляет собой ферромагнитные ломкие (твердость 5,6-6,5 по шкале Мооса) черные кубические кристаллы с металлическим блеском; они трудно растворимы в воде и кислотах, имеют т. пл. 1538° и разлагаются при 1787°.

Оксид железа(II, III) устойчив в сухом воздухе и служит для изготовления электродов, поскольку является хорошим проводником электрического тока и устойчив к действию химических реагентов.


4. ОКСИД ЖЕЛЕЗА (III)


1 Применение


Применяется как сырьё при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель аналоговой и цифровой информации (напр. звука и изображения) на магнитных лентах (ферромагнитный ?-Fe2O3), как полирующее средство (красный крокус) для стали и стекла.

В пищевой промышленности используется в качестве пищевого красителя (E172).

В ракетомоделизме применяется для получения катализированого карамельного топлива, которое имеет скорость горения на 80% выше, чем обычное топливо.

Является основным компонентом железного сурика (колькотара).


2 Колькотар


Колькотар - коричневая минеральная краска. Другие названия: парижская или английская красная краска, caput mortuum vitrioli, крокус, железный сурик; в алхимии - красный лев.

По составу колькотар представляет более или менее чистую безводную окись железа. Хотя безводная окись железа и встречается в природе в очень больших количествах (красный железняк, железный блеск), но ценные сорта этой краски вырабатываются искусственно или получаются как побочный продукт при добывании нордгаузенской кислоты из железного купороса, а также при прокаливании основных серножелезных солей, выделяющихся из раствора при приготовлении железного купороса из купоросного камня.


4.3 Получение и синтез


Fe2O3 образуется при прокаливании на воздухе всех гидратов и кислородных соединений железа, а также Fe(NO3)3 и FeSO4. Так, например, прокаливают в течение 2 час. на полном пламени бунзеновской горелки Fe(OH)3, полученный по методу Г. Гюттига и Г. Гарсайда.


Fe(OH)3 = Fe2O3 + 3H2O


По указанию Д. Н. Финкельштейна 100 г Fe(NO3)3 9H2O нагревают в большом фарфоровом тигле на электрической плитке. Вначале соль спокойно плавится, образуя бурую жидкость, постепенно испаряющуюся. При 121° жидкость начинает кипеть, выделяя постоянно кипящую 68%-ную HNO3.

Постепенно жидкость начинает загустевать и необходимо частое перемешивание, чтобы избежать толчков и разбрызгивания. Начиная со 130°, непрерывно перемешивают жидкость фарфоровым шпателем, причем она загустевает, образуя пасту (без перемешивания жидкость внезапно затвердевает в сплошную массу). При 132° паста сразу рассыпается в порошок, продолжая выделять пары HNO3.

Не переставая перемешивать, продолжают нагревание до полного высушивания; весь процесс занимает 20-25 мин. Сухую массу растирают, переносят в тигель и прокаливают в муфеле при 600-700° в течение 8-10 час. При достаточной чистоте исходного нитрата железа полученный продукт отвечает квалификации х. ч. Выход 95-98% теоретического, т. е. около 19 г.

Для приготовления чистого препарата к нагретому до кипения раствору закисной соли железа прибавляют вычисленное количество горячего раствора щавелевой кислоты, причем выпадает закисное щавелевокислое железо. Его отфильтровывают, тщательно промывают водой, высушивают и прокаливают при доступе воздуха, непрерывно перемешивая. Выход 90-93% теоретического. Получаемый препарат содержит 99,79-99,96% Fe2O3.

В фарфоровый котелок емкостью 4 л, снабженный крышкой, помещают раствор 500 г Fe(NO3)3 2О в 2 л воды. Через трубку, проходящую до дна котелка, пропускают не слишком сильный ток NH3, промытого щелочью и водой. Время от времени перемешивают жидкость газоотводящей трубкой.

По окончании осаждения жидкости дают отстояться, раствор декантируют и промывают осадок горячей водой до удаления NO3 в промывных водах. Отмытый Fe(OH)3 просушивают в фарфоровых чашках, после чего прокаливают в течение 5-6 час. при 550-600°. Выход 96 г (96-97% теоретического).

При получении Fe2O3, служащего сырьем для приготовления Fe высокой чистоты, исходный нитрат железа должен быть исключительно чист. Путем многократной перекристаллизации Fe(NO3)32О Кливс и Томпсон получили препарат, содержащий всего 0,005% Si и менее 0,001% других примесей.

По Брандту целесообразнее всего исходить из химически чистого железа. Последнее растворяют в НСl, раствор при нагревании обрабатывают сероводородом, фильтруют и в фильтрате двухвалентное железо окисляют в трехвалентное кипячением с небольшим количеством HNO3. Смесь дважды выпаривают с концентрированной HCl и, растворив остаток в избытке разбавленной НСl, несколько раз взбалтывают раствор с эфиром в большой делительной воронке.

Если исходный материал содержал Со, то содержимому воронки дают отстояться, спускают через кран нижний (водный) слой и к оставшейся в воронке эфирной вытяжке прибавляют часть по объему смеси, полученной встряхиванием НСl (уд. в. 1,104) с эфиром. Сильно встряхивают, снова сливают нижний слой и операцию повторяют.

Очищенную эфирную вытяжку фильтруют, эфир отгоняют (или просто удаляют нагреванием на водяной бане), и оставшийся раствор FeCl3 несколько раз выпаривают с НNО3. Последнее выпаривание ведут с добавлением NH4NO3.

Выпаривание целесообразно проводить в плоской фарфоровой чашке.

После выпаривания остается хрупкая соляная масса, легко отделяющаяся от чашки. Ее истирают в ступке и порциями по 40-50 г умеренно прокаливают в платиновой чашке. Остаток несколько раз смешивают с сухим углекислым аммонием и вновь прокаливают при слабом красном калении, часто перемешивая.

Эту операцию повторяют до приблизительно постоянного веса (точно постоянный вес не может быть достигнут, так как незначительное количество Fe2O3 уносится парами (NH4)2СО3).

железо металл оксид минерал


ЗАКЛЮЧЕНИЕ


Цели, поставленные в начале исследовательской работы, были полностью выполнены:

)Собрана информация о железе, его оксидах и минералах:

Железо - ковкий, серебристо-белый металл с высокой реакционной способностью. В соединения проявляет степени окисления +2, +3, +6. Имеет оксиды: Fe+2O, Fe2+3O3, Fe3O4 (Fe+2O·Fe+32O3). Оксид железа (III) Fe2O3 помимо получения синтетическим путем, можно обнаружить в залежах природных руд. Он входит в состав некоторых минералов таких как: гематит, лимонит, магнетит.

)Изучены свойства Fe2O3 и сделаны выводы о его применении:

Вещество Fe2O3 используется для получения чистого мало окисляемого железа путем восстановления водородом, а так же в электронных носителях информации (вследствие магнитности), как полирующее средство (красный крокус) для стали и стекла, в пищевой промышленности и является основным компонентом колькотара (так как соединение является красящим).

)Изучены несколько способов синтеза вещества. Наибольший выход продукта равняется 98% от теоретического. Добиться этого результата можно по методу Д.Н. Финкельштейна, путем нагревания Fe(NO3)3 9H2O в большом фарфоровом тигле на электрической плитке при постоянном помешивании.


СПИСОК ЛИТЕРАТУРЫ


1)Рипан Р. Неорганическая химия: В 2-х т./Р. Рипан, И. Четяну; Перев. с рум. Д.Г. Батыра, Х.М. Харитона; Под ред. В.И. Спицына, И.Д. Колли. - М.: Издательство «Мир» 1972. - 2 т.

)Кнунянц И.Л. Краткая химическая энциклопедия: В 5-ти т. / Ред. кол. И.Л. Кнунянц (отв. ред.) и др. - М.: Издательство «Советская Энциклопедия», 1967 - 5 т.

)Лидин, Р.А. Химические свойства неорганических веществ: учеб. пособие для вузов / Р.А. Лидин, Молочко, Л.Л Андреева. Под ред. Р.А. Лидина.- М.: Химия, 2000 - 480 с.

)Некрасов Б.В. Основы общей химии Т. I. изд. 3-е, испр. и доп. Издательство «Химия», 1973 - 656 с.

)Реми Г. Курс неорганической химии в 2-х т. / Г. Реми; А.П. Григорьева, А.Г. Рыков; Под ред. А.В. Новоселовой. - М.: Издательство «Мир»,1966 - 2 т.

)Паффенгольц К.Н. Геологический словарь: в 2-х т./ Ред. ком. К.Н. Паффенгольц (отв.ред.), Л.И. Боровиков, А.И. Жамайда, И.И. Краснов и др.-М.: Издательство «Недра», 1978 - 2 т.

)Эфимов А.И. Свойства неорганических соединений. Справочник / А.И. Ефимов и др. - Л.: Химия, 1983 - 392 с.

)Брауэр Г. Руководство по неорганическому синтезу: в 6 т. Пер. с нем./ Под ред. Г Брауэр. - М.: Издательство «Мир», 1985 - 6 т.

)Карякин Ю.В. Чистые химические реактивы / Ю.В. Карякин, И.И. Ангелов. - М.: Государственная научно-техническое издательство химической литературы, 1955 - 585 с.

)Ключников Н.Г. Практикум по неорганическому синтезу. - М.: Издательство «Просвещение» , 1979 - 271 с.

)Терентьева Е.А. Неорганические синтезы: В 2-х т. / Пер. с англ. Е.А. Терентьевой, под ред. Д.И. Рябчикова, - М.: Издательство иностранной литературы, 1951 - 2т.

)Глинка Н.Л. Общая химия: Учебное пособие для вузов. - 23-е изд., испр./ Под ред. В.А. Робиновича. - Л.: Химия 1983-704 с.: ил.

)Захаров Л.Н. Начала техники лабораторных работ. - Л.: Химия, 1981 - 192 с.

)Спицын В.И. Неорганическая химия. Ч. I: Учебник - М.: Издательство МГУ, 1991 - 480 с.: ил.

)Рабинович В.А. Краткий химический справочник. - Л.: Химия, 1977.

)Ахметов Н.С. Общая и неорганическая химия. - М.: Высшая школа, 2004.

)Карапетянц М.Х., Дракин С.И. Общая и неорганическая химия. - М.: Химия, 1981.

)Практикум по общей и неорганической химии / Под ред. Воробьева А.А., Дракина С.И. - М.: Химия, 1984.

)Жарский И.М., Новиков Г.И. Физические методы исследования в неорганической химии. - М.: Высшая школа, 1988.

)Краснов К.С. Молекулы и химическая связь. - М.: Высшая школа, 1974.

)Коттон Ф., Уилкинсон Дж. Основы неорганической химии. - М.: Издательство «Мир», 1979.

)Исидоров В.А. Экологическая химия. - СПб.: Химиздат, 2001.

)Коттон Ф., Уилкинсон Дж. Современная неорганическая химия. Ч. 1 M.: Мир, 1969.

)Ливер Э. Электронная спектроскопия неорганических соединений, М.: Мир, 1987, 2 т.

)Лидин Р.А. и др. Химические свойства неорганических веществ. - 3-е изд., испр. - М.: Химия, 2000 - 480 с.

)Трифонов Д.Н., Трифонов В.Д. Как были открыты химические элементы - М.: Просвещение, 1980.

)Химия: Справ. изд. / В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. 2-е изд., стереотип. - М.: Химия, 2000.