Угарный газ строение молекулярное. Угарный газ: формула и свойства

ОКСИД УГЛЕРОДА (УГАРНЫЙ ГАЗ). Углерода(II) оксид (угарный газ) СО, несолеообразующий оксид углерода. Это означает, что не существует кислоты, соответствующей этому оксиду. Оксид углерода(II) – газ без цвета и запаха, сжижающийся при атмосферном давлении при температуре –191,5о С и затвердевающий при –205о С. Молекула СО по своему строению аналогична молекуле N2: обе содержит равное число электронов (такие молекулы называются изоэлектронными), атомы в них соединены тройной связью (две связи в молекуле СО образованы за счет 2р-электронов атомов углерода и кислорода, а третья – по донорно-акцепторному механизму с участием неподеленной электронной пары кислорода и свободной 2р-орбитали углерода). В результате физические свойства СО и N2 (температуры плавления и кипения, растворимость в воде и т.д.) очень близки.

Оксид углерода(II) образуется при сгорании углеродсодержащих соединений при недостаточном доступе кислорода, а также при соприкосновении раскаленного угля с продуктом полного сгорания – углекислым газом: С + СО2 → 2СО. В лаборатории СО получают дегидратацией муравьиной кислоты действием концентрированной серной кислоты на жидкую муравьиную кислоту при нагревании, либо пропусканием паров муравьиной кислоты над Р2О5: НСООН → СО + Н2О. Получают СО и разложением щавелевой кислоты: Н2С2О4 → СО + СО2 + Н2О. От других газов СО легко отделить пропусканием через раствор щелочи.
При обычных условиях СО, как и азот, химически довольно инертен. Лишь при повышенных температурах проявляется склонность СО к реакциям окисления, присоединения и восстановления. Так, при повышенных температурах он реагирует со щелочами: CO + NaOH → HCOONa, CO + Ca(OH)2 → CaCO3 + H2. Эти реакции используются для удаления СО из технических газов.

Оксид углерода(II) – высококалорийное топливо: горение сопровождается выделением значительного количества теплоты (283 кДж на 1 моль СО). Смеси СО с воздухом взрываются при его содержании от 12 до 74%; к счастью, на практике такие смеси встречаются исключительно редко. В промышленности для получения СО проводят газификацию твердого топлива. Например, продувание водяного пара через слой раскаленного до 1000o С угля приводит к образованию водяного газа: С + Н2О → СО + Н2, обладающего очень высокой теплотворной способностью. Однако сжигание – далеко не самое выгодное использование водяного газа. Из него, например, можно получить (в присутствии различных катализаторов под давлением) смесь твердых, жидких и газообразных углеводородов – ценное сырье для химической промышленности (Реакция Фишера – Тропша). Из той же смеси, обогатив ее водородом и применив нужные катализаторы, можно получить спирты, альдегиды, кислоты. Особое значение имеет синтез метанола: СО + 2Н2 → СН3ОН – важнейшего сырья для органического синтеза, поэтому эту реакцию проводят в промышленности в больших масштабах.

Реакции, в которых СО является восстановителем, можно продемонстрировать на примере восстановления железа из руды в ходе доменного процесса: Fe3O4 + 4CO → 3Fe + 4CO2. Восстановление оксидов металлов оксидом углерода(II) имеет большое значение в металлургических процессах.

Для молекул СО характерны реакции присоединения к переходным металлам и их соединениям с образованием комплексных соединений – карбонилов. Примерами могут служить жидкие или твердые карбонилы металлов Fe(CO)4, Fe(CO)5, Fe2(CO)9, Ni(CO)4, Cr(CO)6 и др. Это очень ядовитые вещества, при нагревании вновь распадающиеся на металл и СО. Так можно получить порошкообразные металлы высокой чистоты. Иногда на конфорке газовой плиты видны «подтеки» металла, это – следствие образования и распада карбонила железа. В настоящее время синтезированы тысячи разнообразных карбонилов металлов, содержащих, помимо СО, неорганические и органические лиганды, например, PtCl2(CO), K3, Cr(C6H5Cl)(CO)3.

Для СО характерна также реакция соединения с хлором, которая на свету идет уже при комнатной температуре с образованием исключительно ядовитого фосгена: CO + Cl2 → COCl2. Реакция эта цепная, она идет по радикальному механизму с участием атомов хлора и свободных радикалов COCl. Несмотря на ядовитость, фосген широко применяется для синтеза многих органических соединений.

Оксид углерода(II) – сильный яд, так как образует с металлсодержащими биологически активными молекулами прочные комплексы; при этом нарушается тканевое дыхание. Особенно страдают клетки центральной нервной системы. Связывание СО с атомами Fe(II) в гемоглобине крови препятствует образованию оксигемоглоблина, который и переносит кислород из легких к тканям. Уже при содержании в воздухе 0,1% СО этот газ вытесняет из оксигемоглобина половину кислорода. В присутствии СО может наступить смерть от удушья даже при наличии большого количества кислорода. Поэтому СО получил название угарного газа. У «угоревшего» человека в первую очередь страдают головной мозг и нервная система. Для спасения необходим прежде всего чистый воздух, не содержащий СО (а еще лучше – чистый кислород), при этом связанный с гемоглобином СО постепенно замещается молекулами О2 и удушье проходит. Предельно допустимая среднесуточная концентрация СО в атмосферном воздухе составляет 3 мг/м3 (около 3.10–5%), в воздухе рабочей зоны – 20 мг/м3.

Обычно в атмосфере содержание СО не превышает 10–5%. Этот газ попадает в воздух в составе вулканических и болотных газов, с выделениями планктона и других микроорганизмов. Так, из поверхностных слоев океана в атмосферу ежегодно выделяется 220 млн тонн СО. Высока концентрация СО в угольных шахтах. Много угарного газа образуется при лесных пожарах. Выплавка каждого миллиона тонн стали сопровождается образованием 300 – 400 т СО. В сумме техногенное выделение СО в воздух достигает 600 млн тонн в год, из них более половины приходится на автотранспорт. При неотрегулированном карбюраторе в выхлопных газах может содержаться до 12% СО! Поэтому в большинстве стран введены жесткие нормы на содержание СО в выхлопе автомобилей.

Образование СО всегда происходит при сгорании углеродсодержащих соединений, в том числе древесины, при недостаточном доступе кислорода, а также при соприкосновении раскаленного угля с углекислым газом: С + СО2 → 2СО. Такие процессы происходят и деревенских печах. Поэтому преждевременное закрывание дымохода печи для сохранения тепла часто приводит к отравлению угарным газом. Не следует думать что горожане, которые не топят печи, застрахованы от отравления СО; им, например, легко отравиться в плохо проветриваемом гараже, где стоит автомобиль с работающим мотором. Содержится СО и в продуктах сгорания природного газа на кухне. Многие авиационные катастрофы в прошлом произошли из-за износа двигателей или плохой их регулировки: в кабину пилотов проникал СО и отравлял экипаж. Опасность усугубляется тем, что СО невозможно обнаружить по запаху; в этом отношении угарный газ опаснее хлора!

Оксид углерода(II) практически не сорбируется активным углем и потому обычный противогаз не спасает от этого газа; для его поглощения необходим дополнительный гопкалитовый патрон, содержащий катализатор, который «дожигает» СО до СО2 с помощью кислорода воздуха. Катализаторами дожигания снабжается сейчас все больше легковых автомобилей, несмотря на высокую стоимость этих катализаторов на основе платиновых металлов.

Рассмотрены физические свойства угарного газа (окиси углерода CO) при нормальном атмосферном давлении в зависимости от температуры при отрицательных и положительных ее значениях.

В таблицах представлены следующие физические свойства CO: плотность угарного газа ρ , удельная теплоемкость при постоянном давлении C p , коэффициенты теплопроводности λ и динамической вязкости μ .

В первой таблице приведены значения плотности и удельной теплоемкости окиси углерода CO в диапазоне температуры от -73 до 2727°С.

Во второй таблице даны значения таких физических свойств угарного газа, как теплопроводность и его динамическая вязкость в интервале температуры от минус 200 до 1000°С.

Плотность угарного газа, как и , существенно зависит от температуры — при нагревании оксида углерода CO его плотность снижается. Например, при комнатной температуре плотность угарного газа имеет значение 1,129 кг/м 3 , но в процессе нагрева до температуры 1000°С, плотность этого газа уменьшается в 4,2 раза — до величины 0,268 кг/м 3 .

При нормальных условиях (температура 0°С) угарный газ имеет плотность 1,25 кг/м 3 . Если же сравнить его плотность с или другими распространенными газами, то плотность угарного газа относительно воздуха имеет меньшее значение — угарный газ легче воздуха. Он также легче и аргона, но тяжелее азота, водорода, гелия и других легких газов.

Удельная теплоемкость угарного газа при нормальных условиях равна 1040 Дж/(кг·град). В процессе роста температуры этого газа его удельная теплоемкость увеличивается. Например, при 2727°С ее значение составляет 1329 Дж/(кг·град).

Плотность угарного газа CO и его удельная теплоемкость
t, °С ρ, кг/м 3 C p , Дж/(кг·град) t, °С ρ, кг/м 3 C p , Дж/(кг·град) t, °С ρ, кг/м 3 C p , Дж/(кг·град)
-73 1,689 1045 157 0,783 1053 1227 0,224 1258
-53 1,534 1044 200 0,723 1058 1327 0,21 1267
-33 1,406 1043 257 0,635 1071 1427 0,198 1275
-13 1,297 1043 300 0,596 1080 1527 0,187 1283
-3 1,249 1043 357 0,535 1095 1627 0,177 1289
0 1,25 1040 400 0,508 1106 1727 0,168 1295
7 1,204 1042 457 0,461 1122 1827 0,16 1299
17 1,162 1043 500 0,442 1132 1927 0,153 1304
27 1,123 1043 577 0,396 1152 2027 0,147 1308
37 1,087 1043 627 0,374 1164 2127 0,14 1312
47 1,053 1043 677 0,354 1175 2227 0,134 1315
57 1,021 1044 727 0,337 1185 2327 0,129 1319
67 0,991 1044 827 0,306 1204 2427 0,125 1322
77 0,952 1045 927 0,281 1221 2527 0,12 1324
87 0,936 1045 1027 0,259 1235 2627 0,116 1327
100 0,916 1045 1127 0,241 1247 2727 0,112 1329

Теплопроводность угарного газа при нормальных условиях имеет значение 0,02326 Вт/(м·град). Она увеличивается с ростом его температуры и при 1000°С становится равной 0,0806 Вт/(м·град). Следует отметить, что величина теплопроводности угарного газа немногим меньше этой величины у .

Динамическая вязкость угарного газа при комнатной температуре равна 0,0246·10 -7 Па·с. При нагревании окиси углерода, ее вязкость увеличивается. Такой характер зависимости динамической вязкости от температуры наблюдается у . Необходимо отметить, что угарный газ более вязкий чем водяной пар и диоксид углерода CO 2 , однако имеет меньшую вязкость по сравнению с окисью азота NO и воздухом.

Признаки того, что угарный газ (оксид углерода(II), окись углерода, монооксид углерода) образовался в воздухе в опасной концентрации, определить сложно – невидимый, может не пахнуть, скапливается в помещении постепенно, незаметно. Для жизни человека чрезвычайно опасен: имеет высокую токсичность, излишнее содержание в легких приводит к тяжелым отравлениям и смертельным исходам. Ежегодно фиксируется высокий уровень смертности от отравления газом. Снизить угрозу отравления можно соблюдением простых правил и использованием специальных датчиков угарного вещества.

Что такое угарный газ

Природный газ образуется при горении любой биомассы, в промышленности является продуктом горения любых соединений на основе углерода. И в том, и в другом случае обязательным условием выделения газа является недостаток кислорода. Большие объемы его поступают в атмосферу в результате лесных пожаров, в виде выхлопных газов, образующихся при сгорании топлива в двигателях автомобилей. В промышленных целях используется при производстве органического спирта, сахара, обработке мяса животных и рыбы. Небольшое количество монооксида вырабатывают и клетки организма человека.

Свойства

С точки зрения химии monoxide – неорганическое соединение с единственным атомом кислорода в молекуле, химическая формула – СО. Это химическое вещество, которое не имеет характерного цвета, вкуса и запаха, оно легче воздуха, но тяжелее водорода, при комнатных температурах неактивно. Человек, ощущающий запах, чувствует лишь присутствие находящихся в воздухе органических примесей. Относится к разряду токсичных продуктов, смерть при концентрации в воздухе 0,1% наступает в течение одного часа. Характеристика предельно допустимой концентрации равна 20 мг/куб.м.

Действие угарного газа на организм человека

Для человека монооксид углерода представляет смертельную опасность. Его токсическое действие объясняется образованием в клетках крови карбоксигемоглобина – продукта присоединения оксида углерода(II) к гемоглобину крови. Высокий уровень содержания карбоксигемоглобина вызывает кислородное голодание, недостаточное поступление кислорода к головному мозгу и другим тканям организма. При слабой интоксикации содержание его в крови низкое, разрушение естественным путем возможно в течение 4-6 часов. При высоких концентрациях действуют только медицинские препараты.

Отравление угарным газом

Окись углерода – одно из самых опасных веществ. При отравлении происходит интоксикация организма, сопровождающаяся ухудшением общего состояния человека. Очень важно вовремя распознать признаки отравления угарным газом. Результат лечения зависит от уровня вещества в организме и от того, как скоро подоспела помощь. В этом деле счет идет на минуты – пострадавший может или вылечиться окончательно, или остаться больным навсегда (все зависит от скорости реагирования спасателей).

Симптомы

В зависимости от степени отравления могут наблюдаться головные боли, головокружения, шум в ушах, учащенное сердцебиение, тошнота, одышка, мерцание в глазах, общая слабость. Часто наблюдается сонливость, что особенно опасно, когда человек находится в загазованном помещении. При попадании в органы дыхания большого количества ядовитых веществ наблюдаются судороги, потеря сознания, в особо тяжелых случаях – кома.

Первая помощь при отравлении угарным газом

Пострадавшему на месте должна быть оказана доврачебная помощь при отравлении угарным газом. Надо незамедлительно переместить его на свежий воздух и вызвать врача. Следует помнить и о своей безопасности: заходить в помещение с источником этого вещества надо только глубоко вдохнув, внутри не дышать. Пока не приехал врач надо облегчить доступ кислорода к легким: расстегнуть пуговицы, снять или ослабить одежду. Если потерпевший потерял сознание и перестал дышать, необходима искусственная вентиляция легких.

Антидот при отравлении

Специальное противоядие (антидот) при отравлении окисью углерода – это медикаментозный препарат, который активно препятствует образованию карбоксигемоглобина. Действие антидота приводит к снижению потребности организма в кислороде, поддержке органов, чувствительных к недостатку кислорода: головного мозга, печени и др. Вводится внутримышечно дозировкой 1 мл сразу после извлечения больного из зоны с высокой концентрацией ядовитых веществ. Повторно можно вводить антидот не ранее чем через час после первого введения. Допускается его использование для профилактики.

Лечение

В случае легкого воздействия окисью углерода лечение проводится амбулаторно, в тяжелых случаях больной госпитализируется. Уже в карете скорой помощи ему дается кислородная подушка или маска. В тяжелых случаях, чтобы дать организму большую дозу кислорода, пациента помещают в барокамеру. Внутримышечно вводится антидот. Уровень газа в крови постоянно контролируется. Дальнейшая реабилитация медикаментозная, действия врачей направлены на восстановление работы головного мозга, сердечно-сосудистой системы, легких.

Последствия

Воздействие угарным углеродом на организм может стать причиной серьезных заболеваний: изменяются работоспособность мозга, поведение, сознание человека, появляются необъяснимые головные боли. Особенно влиянию вредных веществ подвержена память – та часть головного мозга, которая отвечает за переход кратковременной памяти в долговременную. Последствия отравления угарным газом больной может почувствовать только спустя несколько недель. Большинство пострадавших полностью восстанавливаются после периода реабилитации, но некоторые ощущают последствия всю жизнь.

Как определить угарный газ в помещении

Отравиться окисью углерода легко в домашних условиях, и это случается не только во время пожара. Концентрация угарного углерода образуется при неаккуратном обращении с заслонкой печи, при эксплуатации неисправной газовой колонки или вентиляции. Источником угарного вещества может быть газовая плита. Если в помещении стоит дым – это уже повод бить тревогу. Для постоянного контроля за уровнем газа существуют специальные датчики. Они контролируют уровень концентрации газа и сообщают о превышении нормы. Наличие такого прибора снижает риск отравления.

Видео

Все, что нас окружает, состоит из соединений различных химических элементов. Мы дышим не просто воздухом, а сложным органическим соединением, имеющим в своем составе кислород, азот, водород, двуокись углерода и другие необходимые составляющие. Влияние множества этих элементов на организм человека в частности и на жизнь на Земле в целом еще не изучено до конца. Для того чтобы понимать процессы взаимодействия элементов, газов, солей и других образований друг с другом, в школьный курс и был введен предмет «Химия». 8 класс - это старт уроков химии по утвержденной общеобразовательной программе.

Одним из самых распространенных соединений, содержащихся как в земной коре, так и в атмосфере, является оксид. Оксидом называется соединение любого химического элемента с атомом кислорода. Даже источник всего живого на Земле - вода, является оксидом водорода. Но в данной статье речь пойдет не об оксидах в общем, а об одном из самых часто встречаемых соединений - оксиде углерода. Данные соединения получаются путем слияния атомов кислорода и углерода. Эти соединения могут иметь в своем составе различные количества атомов углерода и кислорода, однако следует выделить два основных соединения углерода с кислородом: угарный газ и углекислый газ.

Химическая формула и способ получения угарного газа

Какова же его формула? Оксид углерода довольно легко запомнить - CO. Молекула угарного газа образуется тройной связью, в связи с чем обладает довольно высокой прочностью соединения и имеет очень небольшое межъядерное расстояние (0,1128 нм). Энергия разрыва данного химического соединения составляет 1076 кДж/Моль. Тройная связь возникает вследствие того, что элемент углерод имеет в своей структуре атома p-орбиталь, не занятую электронами. Это обстоятельство создает для атома углерода возможность стать акцептором электронной пары. А атом кислорода, наоборот, имеет на одной из p-орбиталей неразделенную пару электронов, а значит имеет электронно-донорные возможности. При соединении этих двух атомов кроме двух ковалентных связей появляется еще и третья - донорно-акцепторная ковалентная связь.

Существуют различные способы получения CO. Одним из самых простейших является пропускание углекислого газа над раскаленным углем. В лабораторных условиях угарный газ получают при помощи следующей реакции: муравьиную кислоту нагревают с серной кислотой, которая разделяет муравьиную кислоту на воду и угарный газ.

Также CO выделяется при нагревании щавелевой и серной кислоты.

Физические свойства CO

Оксид углерода (2) обладает следующими физическими свойствами - это бесцветный газ, не имеющий ярко выраженного запаха. Все посторонние запахи, появляющиеся при утечке угарного газа, являются продуктами распада органических примесей. Он намного легче воздуха, чрезвычайно токсичен, очень плохо растворяется в воде и отличается высокой степенью горючести.

Самое главное свойство CO - его отрицательное воздействие на организм человека. Отравление угарным газом может привести к летальному исходу. Более подробно о воздействии оксида углерода на организм человека будет рассказано ниже.

Химические свойства CO

Основные химические реакции, в которых могут применяться оксиды углерода (2) - это окислительно-восстановительная реакция, а также реакция присоединения. Окислительно-восстановительная реакция выражается в способности CO восстанавливать металл из оксидов при помощи их смешивания с дальнейшим нагреванием.

При взаимодействии с кислородом происходит образование углекислого газа с выделением значительного количества теплоты. Угарный газ горит синеватым пламенем. Очень важная функция оксида углерода - его взаимодействие с металлами. В результате подобных реакций образуются карбонилы металлов, подавляющее большинство которых являются кристаллическими веществами. Они применяются для изготовления сверхчистых металлов, а также для нанесения металлического покрытия. Кстати, карбонилы неплохо себя зарекомендовали в качестве катализаторов химических реакций.

Химическая формула и способ получения углекислого газа

Углекислый газ, или двуокись углерода, имеет химическую формулу CO 2 . Структура молекулы несколько отличается от структуры CO. В данном образовании углерод имеет степень окисления, равную +4. Структура молекулы линейная, а значит, неполярная. Молекула CO 2 не обладает такой сильной прочностью, как CO. В земной атмосфере содержится около 0,03% углекислоты по общему объему. Увеличение этого показателя разрушает озоновый слой Земли. В науке это явление называется парниковым эффектом.

Получить углекислый газ можно различными путями. В промышленности он образуется в результате горения дымовых газов. Может быть побочным продуктом в процессе изготовления алкоголя. Его можно получить в процессе разложения воздуха на основные составляющие, такие как азот, кислород, аргон и другие. В лабораторных условиях оксид углерода (4) можно получить в процессе обжига известняка, а в домашних условиях добыть углекислый газ можно при помощи реакции лимонной кислоты и пищевой соды. Кстати, именно таким образом изготавливались газированные напитки в самом начале их производства.

Физические свойства CO 2

Углекислый газ представляет собой бесцветное газообразное вещество без характерного резкого запаха. Из-за высокого числа окисления данный газ обладает слегка кисловатым привкусом. Данный продукт не поддерживает процесс горения, так как сам является результатом горения. При повышенной концентрации углекислого газа человек утрачивает способность дышать, что приводит к летальному исходу. Более подробно о воздействии углекислого газа на организм человека будет рассказано далее. CO 2 намного тяжелее воздуха и прекрасно растворяется в воде даже при комнатной температуре.

Одним из самых интересных свойств углекислого газа является то, что у него нет жидкого агрегатного состояния при нормальном атмосферном давлении. Однако если воздействовать на структуру углекислого газа воздействие температурой в -56,6 °С и давлением около 519 кПа, то он трансформируется в бесцветную жидкость.

При существенном понижении температуры газ находится в состоянии так называемого «сухого льда» и испаряется при температуре выше чем -78 о С.

Химические свойства CO 2

По своим химическим свойствам оксид углерода (4), формула которого CO 2 , является типичным кислотным оксидом и обладает всеми его свойствами.

1. При взаимодействии с водой образуется угольная кислота, обладающая слабой кислотностью и малой устойчивостью в растворах.

2. При взаимодействии с щелочами углекислый газ образует соответствующую соль и воду.

3. Во время взаимодействия с оксидами активного металла способствует образованию солей.

4. Не поддерживает процесс горения. Активировать данный процесс могут только некоторые активные металлы, такие как литий, калий, натрий.

Влияние угарного газа на организм человека

Вернемся к основной проблеме всех газов - влиянию на организм человека. Угарный газ относится к группе крайне опасных для жизни газов. Для человека и животного он является чрезвычайно сильным ядовитым веществом, которое при попадании в организм серьезно поражает кровь, нервную систему организма и мышцы (в том числе и сердце).

Оксид углерода в воздухе невозможно распознать, так как этот газ не имеет никакого ярко выраженного запаха. Именно этим он и опасен. Попадая через легкие в организм человека, угарный газ активизирует свою разрушительную деятельность в крови и в сотни раз быстрее кислорода начинает взаимодействовать с гемоглобином. В результате этого появляется очень стойкое соединение под названием карбоксигемоглобин. Оно препятствует доставке кислорода из легких к мышцам, что приводит к мышечному голоданию тканей. Особенно серьезно страдает от этого головной мозг.

Из-за отсутствия возможности распознать отравление угарным газом через обоняние, следует знать некоторые основные признаки, которые проявляются на ранних этапах:

  • головокружение, сопровождающееся головной болью;
  • шум в ушах и мерцание перед глазами;
  • сильное сердцебиение и одышка;
  • покраснение лица.

В дальнейшем у жертвы отравления появляется сильная слабость, иногда рвота. В тяжелых случаях отравления возможны непроизвольные судороги, сопровождающиеся дальнейшей потерей сознания и комой. Если же пациенту своевременно не будет оказана соответствующая медицинская помощь, то возможен летальный исход.

Влияние углекислого газа на организм человека

Оксиды углерода с кислотностью +4 относятся к разделу удушающих газов. Иными словами, углекислый газ не является токсичным веществом, однако может существенно влиять на приток кислорода к организму. При повышении уровня углекислого газа до 3-4% у человека возникает серьезная слабость, его начинает клонить в сон. При повышении уровня до 10% начинают развиваться сильнейшие головные боли, головокружение, ухудшение слуха, иногда наблюдается потеря сознания. Если концентрация углекислого газа поднимается до уровня 20%, то наступает смерть от кислородного голодания.

Лечение отравления углекислым газом очень простое - дать жертве доступ к чистому воздуху, при необходимости сделать искусственное дыхание. В крайнем случае нужно подключить пострадавшего к аппарату искусственной вентиляции легких.

Из описаний влияния двух данных оксидов углерода на организм мы можем сделать вывод, что большую опасность для человека все же представляет угарный газ с его высокой токсичностью и направленным воздействием на организм изнутри.

Углекислый газ не отличается таким коварством и менее вреден для человека, поэтому именно это вещество человек активно применяет даже в пищевой промышленности.

Применение оксидов углерода в промышленности и их влияние на различные аспекты жизни

Оксиды углерода имеют очень широкое применение в разных сферах деятельности человека, причем спектр их чрезвычайно богат. Так, окись углерода вовсю применяется в металлургии в процессе выплавки чугуна. Широкую популярность CO получил в качестве материала для хранения продуктов питания в охлажденном виде. Данный оксид применяют для обработки мяса и рыбы, чтобы придать им свежий вид и не изменить вкус. Важно не забывать про токсичность данного газа и помнить, что допустимая доза не должна превышать 200 мг на 1 кг продукта. CO в последнее время все чаще применяют в автомобильной промышленности в качестве топлива для автомобилей на газу.

Диоксид углерода нетоксичен, поэтому сфера его применения широко внедрена в пищевую промышленность, где его применяют в качестве консерванта или разрыхлителя. Также CO 2 применяется при изготовлении минеральных и газированных вод. В твердом состоянии («сухой лед») он часто используется в морозильных установках для поддержания стабильно низкой температуры в помещении или приборе.

Большую популярность приобрели углекислотные огнетушители, пена из которых полностью изолирует огонь от кислорода и не дает пожару разгореться. Соответственно, еще одна сфера применения - пожарная безопасность. Баллоны в пневматических пистолетах также заряжены углекислотой. И конечно же, практически каждый из нас читал, из чего состоит освежитель воздуха для помещений. Да, одной из составляющих является углекислый газ.

Как видим, из-за своей минимальной токсичности углекислый газ больше и чаще встречается в повседневной жизни человека, тогда как угарный газ нашел применение в тяжелой промышленности.

Существуют и другие углеродные соединения с кислородом, благо формула углерода и кислорода позволяет применять различные варианты соединений с разным количеством атомов углерода и кислорода. Ряд оксидов может разниться от C 2 O 2 до C 32 O 8 . И чтобы описать каждый из них, потребуется не одна страница.

Оксиды углерода в природе

Оба вида рассматриваемых здесь оксидов углерода так или иначе присутствуют в природном мире. Так, угарный газ может быть продуктом сгорания лесов или результатом жизнедеятельности человека (выхлопные газы и вредные отходы промышленных предприятий).

Уже известный нам диоксид углерода также является частью сложного состава воздуха. Его содержание в нем составляет около 0,03 % от всего объема. При увеличении этого показателя возникает так называемый «парниковый эффект», которого так опасаются современные ученые.

Углекислый газ выделяют животные и человек путем выдыхания. Он является основным источником такого полезного для растений элемента, как углерод, поэтому многие ученые и бьют на сполох, указывая на недопустимость масштабных вырубок леса. Если растения перестанут поглощать углекислый газ, то процент его содержания в воздухе может повыситься до критических для человеческой жизнедеятельности показателей.

Видимо, многие власть держащие забыли пройденный в детстве материал учебника «Общая химия. 8 класс», иначе вопросу вырубки лесов во многих частях света уделялось бы более серьезное внимание. Это, кстати, касается и проблемы наличия угарного газа в окружающей среде. Количество отходов человеческой жизнедеятельности и процент выбросов этого необычайно токсичного материала в окружающую среду растет изо дня в день. И не факт, что не повторится судьба мира, описанная в прекрасном мультфильме «Волли», когда человечеству пришлось покинуть загаженную до основания Землю и отправиться в другие миры на поиски лучшей жизни.

Физические свойства.

Монооксид углерода представляет собой бесцветный и не имеющий запаха газ, малорастворимый в воде.

t пл. 205 °С,

t кип. 191 °С

критическая температура =140°С

критическое давление = 35 атм.

растворимость СО в воде около 1:40 по объёму.

Химические свойства.

При обычных условиях CO инертен; при нагревании - восстановитель; несолеобразующий оксид.

1) с кислородом

2C +2 O + O 2 = 2C +4 O 2

2) с оксидами металлов

C +2 O + CuO = Сu + C +4 O 2

3) с хлором (на свету)

CO + Cl 2 --hn-> COCl 2 (фосген)

4) реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (муравьинокислый натрий (формиат натрия))

5) с переходными металлами образует карбонилы

Ni + 4CO =t°= Ni(CO) 4

Fe + 5CO =t°= Fe(CO) 5

Монооксид углерода химически не взаимодействует с водой. Не реагирует СО также со щелочами и кислотами. Он чрезвычайно ядовит.

С химической стороны монооксид углерода характеризуется главным образом склонностью к реакциям присоединения и своими восстановительными свойствами. Однако обе эти тенденции обычно проявляются лишь при повышенных температурах. В этих условиях СО соединяется с кислородом, хлором, серой, некоторыми металлами и т. д. Вместе с тем оксид углерода при нагревании восстанавливает до металлов многие оксиды, что весьма важно для металлургии. Наряду с нагреванием повышение химической активности СО часто вызывается его растворением. Так, в растворе он способен восстанавливать соли Au, Pt и некоторых других элементов до свободных металлов уже при обычных температурах.

При повышенных температурах и высоких давлениях имеет место взаимодействие СО с водой и едкими щелочами: в первом случае образуется НСООН, а во втором - муравьинокислый натрий. Последняя реакция протекает при 120 °С, давлении 5 атм и находит техническое использование.

Легко идущее в растворе восстановление хлористого палладия по суммарной схеме:

PdCl 2 + H 2 O + CO = CO 2 + 2 HCl + Pd

служит наиболее часто применяемой реакцией открытия монооксида углерода в смеси газов. Уже очень небольшие количества СО легко обнаруживаются по лёгкому окрашиванию раствора вследствие выделения мелко раздробленного металлического палладия. Количественное определение СО основывается на реакции:

5 СО + I 2 O 5 = 5 CO 2 + I 2 .

Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO 4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра, K 2 Cr 2 O 7 - в присутствии солей ртути, КСlO 3 - в присутствии OsO 4 . В общем, по своим восстановительным свойствам СО похож на молекулярный водород, причём активность его при обычных условиях выше, чем у последнего. Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.

Сравнительную активность СО и Н 2 как восстановителей можно оценить путём изучения обратимой реакции:

Н 2 О + СО = СО 2 + Н 2 + 42 кДж,

равновесное состояние которой при высоких температурах устанавливается довольно быстро (особенно в присутствии Fe 2 O 3). При 830 °С в равновесной смеси находятся равные количества СО и Н 2 , т. е. сродство обоих газов к кислороду одинаково. Ниже 830 °С более сильным восстановителем является СО, выше - Н 2 .

Связывание одного из продуктов рассмотренной выше реакции в соответствии с законом действия масс смещает её равновесие. Поэтому, пропуская смесь монооксида углерода и водяного пара над оксидом кальция, можно получить водород по схеме:

Н 2 О + СО + СаО = СаСО 3 + Н 2 + 217 кДж.

Реакция эта идёт уже при 500 °С.

На воздухе СО загорается около 700 °С и сгорает синим пламенем до СО 2:

2 СО + О 2 = 2 СО 2 + 564 кДж.

Сопровождающее эту реакцию значительное выделение тепла делает монооксид углерода ценным газообразным топливом. Однако наиболее широкое применение он находит как исходный продукт для синтеза различных органических веществ.

Сгорание толстых слоёв угля в печах идёт в три стадии:

1) С + О 2 = СО 2 ; 2) СО 2 + С = 2 СО; 3) 2 СО + О 2 = 2 СО 2 .

При преждевременном закрытии трубы в печи создаётся недостаток кислорода, что может вызвать распространение СО по отапливаемому помещению и привести к отравлениям (угар). Следует отметить, что запах "угарного газа" обусловлен не СО, а примесями некоторых органических веществ.

Пламя СО может иметь температуру до 2100 °С. Реакция горения СО интересна тем, что при нагревании до 700-1000 °С она идёт с заметной скоростью только в присутствии следов водяного пара или других содержащих водород газов (NH 3 , H 2 S и т. п.). Обусловлено это цепным характером рассматриваемой реакции, протекающей при посредстве промежуточного образования радикалов ОН по схемам:

Н + О 2 = НО + О, затем О + СО = СО 2 , НО + СО = СО 2 + Н и т. д.

При очень высоких температурах реакция горения СО становится заметно обратимой. Содержание СО 2 в равновесной смеси (под давлением 1 атм) выше 4000 °С может быть лишь ничтожно малым. Сама молекула СО настолько термически устойчива, что не разлагается даже при 6000 °С. Молекулы СО были обнаружены в межзвёздной среде. При действии СО на металлический К при 80 °С образуется бесцветное кристаллическое очень взрывчатое соединение состава К 6 С 6 О 6 . Вещество это с отщеплением калия легко переходит в оксид углерода С 6 О 6 ("трихинон"), который можно рассматривать как продукт полимеризации СО. Строение его отвечает шестичленному циклу, образованному атомами углерода, каждый из которых соединён двойной связью с атомами кислорода.

Взаимодействие СО с серой по реакции:

СО + S = COS + 29 кДж

быстро идёт лишь при высоких температурах. Образующийся тиооксид углерода (О=С=S) представляет собой бесцветный и не имеющий запаха газ (т. пл. -139, т. кип. -50 °С). Монооксид углерода (II) способен непосредственно соединяться с некоторыми металлами. В результате образуются карбонилы металлов , которые следует рассматривать как комплексные соединения.

Оксид углерода(II) образует комплексные соединения также с некоторыми солями. Одни из них (OsCl 2 ·3CO, PtCl 2 ·CO и т. д.) устойчивы только в растворе. С образованием последнего вещества связано поглощение оксида углерода(II) раствором СuСl в крепкой НСl. Подобные же соединения образуются, по-видимому, и в аммиачном растворе CuCl, часто применяемом для поглощения СО при анализе газов.

Получение.

Монооксид углерода образуется при сгорании углерода в недостатке кислорода. Чаще всего он получается в результате взаимодействия углекислого газа с раскалённым углём:

СО 2 + С + 171 кДж = 2 СО.

Реакция эта обратима, причём равновесие её ниже 400 °С практически нацело смещено влево, а выше 1000 °С - вправо (рис. 7). Однако с заметной скоростью оно устанавливается лишь при высоких температурах. Поэтому в обычных условиях СО вполне устойчив.

Рис. 7. Равновесие СО 2 + С = 2 СО.

Образование СО из элементов идёт по уравнению:

2 С + О 2 = 2 СО + 222 кДж.

Небольшие количества СО удобно получать разложением муравьиной кислоты:НСООН = Н 2 О + СО

Реакция эта легко протекает при взаимодействии НСООН с горячей крепкой серной кислотой. Практически это получение осуществляют либо действием конц. серной кислоты на жидкую НСООН (при нагревании), либо пропусканием паров последней над гемипентаоксидом фосфора. Взаимодействие НСООН с хлорсульфоновой кислотой по схеме:

НСООН + СISO 3 H = H 2 SO 4 + HCI + CO

идёт уже при обычных температурах.

Удобным методом лабораторного получения СО могут служить нагревание с конц. серной кислотой щавелевой кислоты или железосинеродистого калия. В первом случае реакция протекает по схеме:Н 2 С 2 О 4 = СО + СО 2 + Н 2 О.

Наряду с СО выделяется и углекислый газ, который может быть задержан пропусканием газовой смеси сквозь раствор гидроксида бария. Во втором случае единственным газообразным продуктом является оксид углерода:

К 4 + 6 H 2 SO 4 + 6 H 2 O = 2 K 2 SO 4 + FeSO 4 + 3 (NH 4) 2 SO 4 + 6 CO.

Большие количества СО могут быть получены путём неполного сжигания каменного угля в специальных печах - газогенераторах. Обычный ("воздушный") генераторный газ содержит в среднем (объёмн. %): СО-25, N2-70, СО 2 -4 и небольшие примеси других газов. При сжигании он даёт 3300-4200 кДж на м 3 . Замена обычного воздуха на кислород ведёт к значительному повышению содержания СО (и увеличению теплотворной способности газа).

Ещё больше СО содержит водяной газ, состоящий (в идеальной случае) из смеси равных объёмов СО и Н 2 и дающий при сгорании 11700 кДж/м 3 . Газ этот получают продувкой водяного пара сквозь слой раскалённого угля, причём около 1000 °С имеет место взаимодействие по уравнению:

Н 2 О + С + 130 кДж = СО + Н 2 .

Реакция образования водяного газа идёт с поглощением тепла, уголь постепенно охлаждается и для поддержания его в раскалённом состоянии приходится пропускание водяного пара чередовать с пропусканием в газогенератор воздуха (или кислорода). В связи с этим водяной газ содержит приблизительно СО-44, Н 2 -45, СО 2 -5 и N 2 -6%. Он широко используется для синтезов различных органических соединений.

Часто получают смешанный газ. Процесс его получения сводится к одновременному продуванию сквозь слой раскалённого угля воздуха и паров воды, т.е. комбинированию обоих описанных выше методов- Поэтому состав смешанного газа является промежуточным между генераторным и водяным. В среднем он содержит: СО-30, Н 2 -15, СО 2 -5 и N 2 -50%. Кубический метр его даёт при сжигании около 5400 кДж.