Уравнение Шредингера. Физический смысл уравнения Шредингера. Уравнение Шрёдингера

  • В приближении идеального газа уравнение Клапейрона -Клаузиуса примет вид
  • Второе уравнение Максвелла является обобщением …: закона электромагнитной индукции
  • Где a - коэффициент трения. Это уравнение может быть переписано в виде
  • Гидростатика. Основные свойства гидростатического давления. Основное уравнение гидростатики.
  • Дифференциальное уравнение. Характеристический полином.
  • В развитие идеи де Бройля о волновых свойствах частиц Шредингер в 1926 г. получил уравнение

    104. (20)

    где m - масса частицы, - мнимая единица, U - потенциальная энергия частицы, D - оператор Лапласа [ см. (1.10)].

    Решение уравнения Шредингера позволяет найти волновую функцию Y(x, y, z, t) частицы, которая описывает микросостояние частицы и ее волновые свойства.

    Если поле внешних сил постоянно во времени (т.е. стационарно), то U не зависит явно от t. В этом случае решение уравнения (20) распадается на два множителя

    Y(x, y, z, t) =y(x, y, z) exp[-i(E/ )t] (21)

    В стационарном случае уравнение Шредингера имеет вид

    (22)

    где Е, U - полная и потенциальная энергия, m - масса частицы.

    Следует заметить, что исторически название "волновой функции" возникло в связи с тем, что уравнение (20) или (22), определяющее эту функцию, относится к виду волновых уравнений.


    104. Атом водорода и водородоподобные «атомы» (He + , Li 2+ и др.) как простейшие квантовомеханические системы: квантовые состояния, радиальная и угловая составляющие волновой функции, симметрия орбиталей.

    На основании своих исследований Резерфорд в 1911 г. предложил ядерную (планетарную) модель атома. Согласно этой модели вокруг положительного ядра по замкнутым орбитам движутся электроны, образуя электронную оболочку атома, в области с линейными размерами порядка 10 -10 м. Заряд ядра равен (Z. -- порядковый номер элемента в системе Менделеева, е - .элементарный заряд), размер 10 -15 – 10 -14 м, масса, практически равна массе атома. Так как атомы нейтральны, то заряд ядра равен суммарному заряду электронов, т. е. вокруг ядра должно вращаться Z электронов.

    Атом водорода и водородоподобные системы – это системы, состоящие из ядра с зарядом Ze и одного электрона (например, ионы He + , Li 2+).

    Решение задачи об энергетических уровнях электрона для атома водорода (а также водородоподобных систем: иона гелия Не + , двукратно ионизованного лития Li + + и др.) сводится к задаче о движении электрона в кулоновском поле ядра.

    Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом (для атома водорода Z =1),

    где r – расстояние между электроном и ядром. Графически функция U (r )изображена жирной кривой на рис. 6, неограниченно убывающей (возрастающей.по модулю) при уменьшении r , т. е. при приближении электрона к ядру.



    Состояние электрона в атоме водорода описывается волновой функцией Ψ, удовлетворяющей стационарному уравнению Шредингера, учитывающему значение (1):"

    , (2)

    где m – масса электрона, Е – полная энергия электрона в атоме.

    Это так называемое стационарное уравнение Шрёдингера для электрона водородоподобного атома ВДПА.

    1. Энергия. В теории дифференциальных уравнений доказывается, что уравнения типа (2) имеют решения, удовлетворяющие требованиям однозначности, конечности и непрерывности волновой функции Ψ, только при собственных значениях энергии

    (n = 1, 2, 3,…), (3)

    т. е. для дискретною набора отрицательных значений энергии.

    Таким образом, как и в случае «потенциальной ямы» с бесконечно высокими «стенками» , решение уравнения Шредингера для атома водорода приводит к появлению дискретных энергетических уровней. Возможные значения Е 1 , Е 2 , Е 3 , ... показаны па рис. 6 в виде горизонтальных прямых. Самый нижний уровень Е 1 , отвечающий минимальной возможной энергии, – основной, все остальные (Е n >E 1 , n = 2, 3,…) – возбужденные . При Е < 0 движение электрона является связанным он находится внутри гиперболической «потенциальной ямы». Из рисунка следует, что по мере роста главного квантового числа п энергетические уровни располагаются теснее и при п=∞ Е ∞ = 0. При Е > 0 движение электрона является свободным; область непрерывного спектра Е >0 (заштрихована на рис. 6) соответствует ионизованному атому. Энергия ионизации атома водорода равна



    E i = - E 1 = me 4 / (8h 2 ε 0 2) = 13,55 эВ.

    2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредингера (2) удовлетворяют собственные функции , определяемые тремя квантовыми числами: главным п, орбитальным l и магнитным m l .

    Главное квантовое число n,согласно (3), определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения, начиная с единицы:

    Уравнение Шрёдингера - уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.

    В квантовой физике вводится комплекснозначная функция , описывающая чистое состояние объекта, которая называется волновой функцией. Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции. Пусть волновая функция задана в N-мерном пространстве, тогда в каждой точке с координатами , в определенный момент времени t она будет иметь вид . В таком случае уравнение Шрёдингера запишется в виде: , где - внешняя по отношению к частице потенциальная энергия в точке .

    Конец работы -

    Эта тема принадлежит разделу:

    Основы атомной, квантовой и ядерной физики

    Гипотеза де бройля и ее связь с постулатами бора уравнение шредингера физический смысл.. термоядерные реакции.. термоядерные реакции ядерные реакции между л гкими атомными ядрами протекающие при очень высоких температурах..

    Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

    Что будем делать с полученным материалом:

    Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

    Все темы данного раздела:

    Закономерности в атомных спектрах. Постоянная Ридберга
    Атомные спектры, спектры оптические, получающиеся при испускании или поглощении света (электромагнитных волн) свободными или слабо связанными атомами; такими спектрами обладают, в частности, одноат

    Модели строения атома. Модель Резерфорда
    Атом - наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положи

    Постулаты Бора. Элементарная теория строения атома водорода и водородоподобных ионов (по Бору)
    Постулаты Бора - основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов и квантового характера испу

    Соотношение неопределенностей Гейзенберга. Описание движения в квантовой механике
    Принцип неопределённости Гейзенберга - фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему

    Свойства волновой функции. Квантование
    Волновая функция (функция состояния, пси-функция) - комплекснозначная функция, используемая в квантовой механике для описания чистого состояния квантовомеханической системы. Является коэффициентом

    Квантовые числа. Спин
    Квантовое число - численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицы, ядра, атома и т. д.), характеризующее состояние частицы. Задание квантовых ч

    Характеристики атомного ядра
    Атомное ядро - центральная часть атома, в которой сосредоточена основная его масса, и структура которого определяет химический элемент, к которому относится атом. Ядерно-физические характе

    Радиоактивность
    Радиоактивность - свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав (заряд Z, массовое число A) путём испускания элементарных частиц или ядерных фрагментов. Соответствующее явл

    Цепные ядерные реакции
    Цепная ядерная реакция - последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной

    Элементарные частицы и их свойства. Систематика элементарных частиц
    Элементарная частица - собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части. Свойства: 1.Все Э. ч--объекты иск

    Фундаментальные взаимодействия и их характеристики
    Фундаментальные взаимодействия - качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел. На сегодня достоверно известно существование четырех фундамент

    Сделаем рисунок

    В нашей задаче функция U(x) имеет особый, разрывный вид: она равна нулю между стенками, а на краях ямы (на стенках) обращается в бесконечность:

    Запишем уравнение Шредингера для стационарных состояний частиц в точках расположенных между стенками:

    или, если учесть формулу (1.1)

    К уравнению (1.3) необходимо добавить граничные условия на стенках ямы. Примем во внимание, что волновая функция связана с вероятностью нахождения частиц. Кроме того, по условиям задачи за пределами стенок частица не может быть обнаружена. Тогда волновая функция на стенках и за их пределами должна обращаться в нуль, и граничные условия задачи принимают простой вид:

    Теперь приступим к решению уравнения (1.3) . В частности, можно учесть, что его решением являются волны де-Бройля. Но одна волна де-Бройля как решение, к нашей задаче явно не относится, так как она заведомо описывает свободную частицу, «бегущую» в одном направлении. У нас же частица бегает «туда-сюда» между стенками. В таком случае на основании принципа суперпозиции искомое решение можно попытаться представить в виде двух волн де-Бройля, бегущих друг другу навстречу с импульсами p и -p, то есть в виде:

    Постоянные и можно найти из одного из граничных условий и условия нормировки. Последнее говорит о том, что если сложить все вероятности, то есть найти вероятность обнаружения электрона между стенками вообще в (любом месте), то получится единица (вероятность достоверного события равна 1), т.е.:

    Согласно первому граничному условию имеем:

    Таким образом, получим решение нашей задачи:

    Как известно, . Поэтому найденное решение можно переписать в виде:

    Постоянная А определяется из условия нормировки. Но здесь не она представляет особый интерес. Осталось неиспользованным второе граничное условие. Какой результат оно позволяет получить? Применительно к найденному решению (1.5) оно приводит к уравнению:

    Из него видим, что в нашей задаче импульс p может принимать не любые значения, а только значения

    Кстати, n не может равняться нулю, так как волновая функция тогда бы всюду на промежутке (0…l) равнялась нулю! Это означает, что частица между стенками не может находиться в покое! Она обязательно должна двигаться. В аналогичных условиях находятся электроны проводимости в металле. Полученный вывод распространяется и на них: электроны в металле не могут быть неподвижными.

    Наименьший возможный импульс движущегося электрона равен

    Мы указали, что импульс электрона при отражении от стенок меняет знак. Поэтому на вопрос, каков импульс у электрона, когда он заперт между стенками, определённо ответить нельзя: то ли +p, то ли -p. Импульс неопределённый. Его степень неопределённости, очевидно, определяется так: =p-(-p)=2p. Неопределённость же координаты равна l; если попытаться «поймать» электрон, то он будет обнаружен в пределах между стенками, но где точно - неизвестно. Поскольку наименьшее значение p равно , то получаем:

    Мы подтвердили соотношение Гейзенберга в условиях нашей задачи, то есть при условии существования наименьшего значения p. Если же иметь в виду произвольно-возможное значение импульса, то соотношение неопределённости получает следующий вид:

    Это означает, что исходный постулат Гейзенберга-Боpа о неопределённости и устанавливает лишь нижнюю границу неопределенностей, возможную при измерениях. Если в начале движения система была наделена минимальными неопределённостями, то с течением времени они могут расти.

    Однако формула (1.6) указывает и на другой чрезвычайно интересный вывод: оказывается, импульс системы в квантовой механике не всегда в состоянии изменяться непрерывно (как это всегда имеет место в классической механике). Спектр импульса частицы в нашем примере дискретный, импульс частицы между стенками может изменяться только скачками (квантами). Величина скачка в рассмотренной задаче постоянна и равна .

    На рис. 2. наглядно изображён спектр возможных значений импульса частицы. Таким образом, дискретность изменения механических величин, совершенно чуждая классической механике, в квантовой механике вытекает из ее математического аппарата. На вопрос, почему импульс изменяется скачками, наглядного найти нельзя. Таковы законы квантовой механики; наш вывод вытекает из них логически - в этом все объяснение.

    Обратимся теперь к энергии частицы. Энергия связана с импульсом формулой (1). Если спектр импульса дискретный, то автоматически получается, что и спектр значений энергии частицы между стенками дискретный. И он находится элементарно. Если возможные значения согласно формуле (1.6) подставить в формулу (1.1), получим:

    где n = 1, 2,…, и называется квантовым числом.

    Таким образом, мы получили энергетические уровни.

    рис. 3.

    Рис. 3 изображает расположение энергетических уровней, соответствующее условиям нашей задачи. Ясно, что для другой задачи расположение энергетических уровней будет иным. Если частица является заряженной (например, это электрон), то, находясь не на низшем энергетическом уровне, она будет в состоянии спонтанно излучать свет (в виде фотона). При этом она перейдёт на более низкий энергетический уровень в соответствии с условием:

    Волновые функции для каждого стационарного состояния в нашей задаче представляют собой синусоиды, нулевые значения которых обязательно попадают на стенки. Две такие волновые функции для n = 1,2 изображены на рис. 1.

    Дуальная корпускулярно-волновая природа квантовых частиц описывается дифференциальным уравнением.

    Согласно фольклору, столь распространенному среди физиков, случилось это так: в 1926 году физик-теоретик по имени Эрвин Шрёдингер выступал на научном семинаре в Цюрихском университете. Он рассказывал о странных новых идеях, витающих в воздухе, о том, что объекты микромира часто ведут себя скорее как волны, нежели как частицы. Тут слова попросил пожилой преподаватель и сказал: «Шрёдингер, вы что, не видите, что всё это чушь? Или мы тут все не знаем, что волны — они на то и волны, чтобы описываться волновыми уравнениями?» Шрёдингер воспринял это как личную обиду и задался целью разработать волновое уравнение для описания частиц в рамках квантовой механики — и с блеском справился с этой задачей.

    Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) — в такой передаче энергии участвуют частицы — или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живём мы с вами, все носители энергии строго подразделяются на два типа — корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений — волновыми уравнениями . Все без исключения волны — волны океана, сейсмические волны горных пород, радиоволны из далеких галактик — описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что если мы хотим представить явления субатомного мира в терминах волн распределения вероятности (см. Квантовая механика), эти волны также должны описываться соответствующим волновым уравнением.

    Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Хотя уравнение Шрёдингера относится к области высшей математики, оно настолько важно для понимания современной физики, что я его все-таки здесь приведу — в самой простой форме (так называемое «одномерное стационарное уравнение Шрёдингера»). Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой ψ («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное — примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):

    где x — расстояние, h — постоянная Планка , а m, E и U — соответственно масса, полная энергия и потенциальная энергия частицы.

    Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

    Когда Шрёдингер впервые опубликовал свои результаты, в мире теоретической физики разразилась буря в стакане воды. Дело в том, что практически в то же время появилась работа современника Шрёдингера — Вернера Гейзенберга (см. Принцип неопределенности Гейзенберга), в которой автор выдвинул концепцию «матричной механики», где те же задачи квантовой механики решались в другой, более сложной с математической точки зрения матричной форме. Переполох был вызван тем, что ученые попросту испугались, не противоречат ли друг другу два в равной мере убедительных подхода к описанию микромира. Волнения были напрасны. Сам Шрёдингер в том же году доказал полную эквивалентность двух теорий — то есть из волнового уравнения следует матричное, и наоборот; результаты же получаются идентичными. Сегодня используется в основном версия Шрёдингера (иногда его теорию называют «волновой механикой»), так как его уравнение менее громоздкое и его легче преподавать.

    Однако представить себе и принять, что нечто вроде электрона ведёт себя как волна, не так-то просто. В повседневной жизни мы сталкиваемся либо с частицей, либо с волной. Мяч — это частица, звук — это волна, и всё тут. В мире квантовой механики всё не так однозначно. На самом деле — и эксперименты это вскоре показали — в квантовом мире сущности отличаются от привычных нам объектов и обладают другими свойствами. Свет, который мы привыкли считать волной, иногда ведёт себя как частица (которая называется фотон ), а частицы вроде электрона и протона могут вести себя как волны (см. Принцип дополнительности).

    Эту проблему обычно называют двойственной или дуальной корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. Теорема Белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприменимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, — яркое тому доказательство. Как уже отмечалось во Введении , в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.

    См. также:

    Эрвин ШРЁДИНГЕР
    Erwin Schroedinger, 1887-1961

    Австрийский физик-теоретик. Родился в Вене, в семье богатого промышленника, питавшего интерес к наукам; получил хорошее домашнее образование. Учась в Венском университете, Шрёдингер до второго курса не посещал лекций по теоретической физике, однако докторскую диссертацию защитил именно по этой специальности. В годы первой мировой войны служил офицером в артиллерийских войсках, но и тогда находил время для изучения новых статей Альберта Эйнштейна.

    После войны, сменив должности в нескольких университетах, Шрёдингер обосновался в Цюрихе. Там он и разработал свою теорию волновой механики, которая и поныне является фундаментальной основой всей современной квантовой механики. В 1927 году занял должность завкафедрой теоретической физики Берлинского университета, сменив на этом посту Макса Планка. Будучи последовательным антифашистом, Шрёдингер в 1933 году эмигрировал в Великобританию, стал профессором Оксфордского университета и в том же году получил Нобелевскую премию по физике.

    Тоска по родине, однако, заставила Шрёдингера в 1936 году вернуться в Австрию, в город Грац, где он приступил к работе в местном университете. После аншлюса Австрии в марте 1938 года Шрёдингер был уволен без предупреждения и поспешно вернулся в Оксфорд, успев взять с собой лишь минимум личных вещей. За этим последовала цепочка буквально детективных событий. Эймон де Валера (Eamon de Valera), премьер-министр Ирландии, в своё время был профессором математики в Оксфорде. Желая заполучить великого ученого к себе на родину, де Валера распорядился о строительстве специально под него Института фундаментальных исследований в Дублине. Пока институт строился, Шрёдингер принял приглашение прочитать курс лекций в Генте (Бельгия). Когда в 1939 году разразилась вторая мировая война и Бельгия была молниеносно оккупирована фашистскими войсками, Шрёдингер неожиданно для себя оказался застигнутым врасплох в стане врага. Тут-то ему на выручку и пришёл де Валера, снабдив учёного письмом о благонадежности, по которому Шрёдингеру удалось выехать в Ирландию. В Дублине австриец оставался до 1956 года, после чего вернулся на родину, в Вену, чтобы возглавить специально созданную для него кафедру.

    В 1944 году Шрёдингер опубликовал книгу «Что такое жизнь?» , которая сформировала мировоззрение целого поколения ученых, вдохновив их видением физики будущего как науки, незапятнанной военным применением её достижений. В этой же книге учёный предсказал существование генетического кода, скрытого в молекулах жизни.

    Статистическое толкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Y (х , у, z , t ), так как именно она, или, точнее, величина |Y | 2 , определяет вероятность пребывания частицы в момент времени t в объеме dV , т. е. в области с координатами х и x +dx , у и y +dy , z и z +dz . Ta к как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением , подобно уравнению, описывающему электромагнитные волны.

    Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

    где ћ =h /(2p ), т- масса частицы, D -оператор Лапласа i - мнимая единица, U (х, у, z , t ) - потенциальная функция частицы в силовом поле, в котором она движется, Y (х, у, z , t ) - искомая волновая функция частицы.

    Уравнение (217.1) справедливо для любой частицы (со спином, равным 0), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v <<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной производные должны быть непрерывны; 3) функция |Y | 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

    Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, кото­рой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномер­ный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид , или в комплексной записи . Следовательно, плоская волна де Бройля имеет вид

    (217.2)

    (учтено, что w = E /ћ, k =p /ћ ). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только |Y | 2 , то это (см. (217.2)) несущественно. Тогда

    Используя взаимосвязь между энергией Е и импульсом р (E =p 2 /(2m )) и подставляя выражения (217.3), получим дифференциальное уравнение

    которое совпадает с уравнением (217.1) для случая U = 0 (мы рассматривали свободную частицу). Если частица движется в силовом поле, характеризуемом потенциальной энергией U , то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения и используя взаимосвязь между Е и р (для данного случая p 2 /(2m )=E –U ), прядем к дифференциальному уравнению, совпадающему с (217.1).

    Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к кото­рым оно приводит.

    Уравнение (217.1) является общим уравнением Шредингера . Его также называют уравнением Шредингера, зависящим от времени . Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость Y от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U =U (x , у, z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем , так что

    где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

    откуда после деления на общий множитель и соответствующих преобразований придем к уравнению, определяющему функцию y :

    (217.5)

    Уравнение (217.5) называется уравнением Шредингера для стационарных состояний . В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями y . Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном , или сплошном , спектре , во втором - о дискретном спектре .