Делится ли число без остатка. Старт в науке

m и n имеется такое целое число k и nk = m , то число m делится на n

Применение навыков делимости упрощает вычисления, и соразмерно повышает скорость их исполнения. Разберем детально основные характерные особенности делимости .

Наиболее незамысловатый признак делимости для единицы : на единицу делится все числа . Так же элементарно и с признаками делимости на два , пять , десять . На два можно поделить четные число либо то у которого итоговая цифра 0, на пять - число у которого конечная цифры 5 или 0. На десять поделятся только те числа, у которых заключительная цифра 0, на 100 — только те числа, у которых две заключительных цифры нули, на 1000 — только те, у которых три заключительных нуля.

Например:

Цифру 79516 можно разделить на 2, так как она заканчивается на 6— четное число ; 9651 не поделится на 2, так как 1 - цифра нечетная; 1790 поделится на 2, так как конечная цифра нуль. 3470 поделится на 5 (заключительная цифра 0); 1054 не поделится на 5 (конечная цифра 4). 7800 поделится на 10 и на 100; 542000 поделится на 10, 100, 1000.

Менее широко известны, но весьма удобны в использовании характерные особенности делимости на 3 и 9 , 4 , 6 и 8, 25 . Имеются так же характерные особенности делимости на 7, 11, 13, 17, 19 и так далее, но ими пользуются на практике значительно реже.

Характерная особенность деления на 3 и на 9 .

На три и/или на девять без остатка разделятся те числа, у которых результат сложения цифр кратен трем и/или девяти.

Например :

Число 156321, результат сложения 1 + 5 + 6 + 3 + 2 + 1 = 18 поделится на 3 и поделится на 9, соответственно и само число можно поделить на 3 и 9. Число 79123 не поделится ни на 3, ни на 9, так как сумма его цифр (22) не поделится на эти числа.

Характерная особенность деления на 4, 8, 16 и так далее .

Цифру можно без остатка разделить на четыре , если у нее две последние цифры нули или являются числом , которое можно поделить на 4. Во всех остальных вариантах деление без остатка не возможно.

Например :

Число 75300 поделится на 4, так как последние две цифры нули; 48834 не делится на 4, так как последние две цифры дают число 34, не делящееся на 4; 35908 делится на 4, так как две последние цифры 08 дают число 8, делящееся на 4.

Схожий принцип пригоден и для признака делимости на восемь . Число делится на восемь, если три последние его цифры нули или образуют число, делящееся на 8. В прочих случаях частное, полученное от деления, не будет целым числом.

Такие же свойства для деления на 16, 32, 64 и т. д., но в повседневных вычислениях они не используются.

Характерная особенность делимости на 6.

Число делится на шесть , если оно делится и на два и на три, при всех прочих вариантах, деление без остатка невозможно.

Например:

126 поделится на 6, так как оно делится и на 2 (заключительное четное число 6), и на 3 (сумма цифр 1 + 2 + 6 = 9 делится на три)

Характерная особенность делимости на 7.

Число делится на семь если разность его удвоенного последнего числа и "числа, оставшегося без последней цифры"делится на семь, то и само число делится на семь.

Например :

Число 296492. Возьмем последнюю цифру "2", удваиваем, выходит 4. Вычитаем 29649 - 4 = 29645. Проблематично выяснить делится ли оно на 7, следовательно анализируемом снова. Далее удваиваем последнюю цифру "5", выходит 10. Вычитаем 2964 - 10 = 2954. Результат тот же, нет ясности, делится ли оно на 7, следовательно продолжаем разбор. Анализируем с последней цифрой "4", удваиваем, выходит 8. Вычитаем 295 - 8 = 287. Сверяем двести восемьдесят семь - не делится на 7, в связи с этим продолжаем поиск. По аналогии последнюю цифру "7", удваиваем, выходит 14. Вычитаем 28 - 14 = 14. Число 14 делится на 7, итак исходное число делится на 7.

Характерная особенность делимости на 11 .

На одиннадцать делятся только те числа, у которых результат сложения цифр, размещающихся на нечетных местах, либо равен сумме цифр, размещающихся на четных местах, либо отличен на число, делящееся на одиннадцать.

Например:

Число 103 785 делится на 11, так как сумма цифр, размещающихся на нечетных местах, 1 + 3 + 8 = 12 равна сумме цифр, размещающихся на четных местах 0 + 7 + 5 = 12. Число 9 163 627 делится на 11, так как сумма цифр, размещающихся на нечетных местах, есть 9 + 6 + 6 + 7 = 28, а сумма цифр, размещающихся на четных местах, есть 1 + 3 + 2 = 6; разность между числами 28 и 6 есть 22, а это число делится на 11. Число 461 025 не делится на 11, так как числа 4 + 1 + 2 = 7 и 6 + 0 + 5 = 11 не равны друг другу, а их разность 11 - 7 = 4 не делится на 11.

Характерная особенность делимости на 25 .

На двадцать пять поделятся числа , две заключительные цифры которых нули или составляют число, которое можно разделить на двадцать пять (т. е. числа, оканчивающиеся на 00, 25, 50 или 75). При прочих вариантах - число невозможно поделить целиком на 25.

Например:

9450 поделится на 25 (оканчивается на 50); 5085 не делится на 25.

Математика - самая древняя наука, она была и остаётся необходимой людям. Слово математика греческого происхождения. Оно означает «наука», «размышление».

В древности полученные знания, открытия часто старались сохранить в тайне. Например, в школе Пифагора было запрещено делиться своими знаниями с непифагорейцами.

За нарушение этого правила один из учеников, требовавший свободного обмена знаниями, - Гиппас был изгнан из школы. Сторонников Гиппаса стали называть математиками, то есть приверженцами науки. Основы математики все без исключения начинают изучать с первых классов школы и с каждым годом знания расширяются. Математика прошла во все отрасли знаний – физику, химию, науки о языке, медицину, астрономию и т. д. Математики учат вычислительные машины сочинять стихи и музыку, измерять размеры атомов и проектировать плотины, электростанции и т. д. Много интересного можно узнать из математики. Мне нравится тема «Признаки делимости», которую мы изучали в 6 классе и я решил узнать об этой теме побольше.

Цель данной работы осветить признаки делимости на 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 25, 125.

Зная из 6 класса признаки делимости на 2, 3, 5, 9, 10 легко вывести признаки делимости на 4, 6, 8, 12, 15, 25, 125.

Эти признаки я объединил в таблицу.

на 2 На 2 делятся те, и только те натуральные числа, запись которых оканчивается на четные цифры (0,2,4, 6,8)

на 3 На 3 делятся те, и только те натуральные числа, сумма цифр которых делится на 3

На 4 делятся те, и только те натуральные числа, в записи которых последние две цифры образуют число, делящееся на 4

на 5 На 5 делятся те, и только те натуральные числа, запись которых оканчивается на 0 или на 5.

на 6 На 6 делятся те, и только те натуральные числа, которые оканчиваются чётной цифрой, и сумма цифр делится на 3

на 8 На 8 делятся те, и только те натуральные числа, в записи которых три последние цифры образуют число, делящееся на 8

на 9 На 9 делятся те, и только те натуральные числа, сумма цифр которых делится на 9

на 10 На10 делятся те, и только те натуральные числа, запись которых оканчивается на 0

на 12 На 12 делятся те, и только те натуральные числа, в записи которых две последние цифры образуют число, делящееся на 4 и сумма цифр числа делится на 3

на 15 На 15 делятся те, и только те натуральные числа, запись которых оканчивается на 0 или на 5 и сумма цифр делится на 3

на 25. Для того чтобы натуральное число содержащее не менее трёх цифр, делилось на 25 необходимо и достаточно, чтобы делилось на 25 число, образованное двумя последними на 125 Для того чтобы натуральное число содержащее не менее четырёх цифр делилось на 125 необходимо и достаточно чтобы делилось на 125 число образованное тремя последними цифрами.

Признаки делимости

Изучая разную литературу, я нашёл признак делимости на 11.

Число делится на 11, если разность между суммой его цифр, стоящих на нечётных местах и суммой цифр, стоящих на чётных местах делится на 11. (нумерация цифр ведётся слева направо или справа налево). Например число 120340568.

Найдём сумму его цифр стоящих на нечётных местах 1+0+4+5+8=18 и на чётных местах 2+3+0+6=11.

Разность между найденными суммами 18-11=7.

7 не делится на 11, значит и данное число не делится на 11.

Признак делимости на 11 можно сформулировать и по-другому.

Если алгебраическая сумма цифр числа с чередующимися знаками делится на 11, то и само число делится на 11.

Например: не выполняя деления, доказать, что число 86849796 делится на 11.

Решение: Составим алгебраическую сумму цифр данного числа, начиная с цифры единиц и чередующимися знаками «+» и «-».

6 – 9 + 7-9 + 4 – 8 + 6 – 8 = -11

11 делится на 11, значит, число 86849796 делится на 11.

И вот ещё один признак делимости на 11.

Чтобы узнать делится ли число на 11 - надо от числа десятков отнять число единиц и посмотреть, делится ли эта разность на 11.

Возьмем, например число 583, и применим этот признак:

58-3=55; 55 делится на 11, значит, и 583 делится на 11.

Проверим теперь на четырёхзначном числе.

Например: 3597

359-7=352 не понятно делится или нет.

35-2=33; 33 делится на 11, значит, число 3597 делится на 11.

Интересны признаки делимости на 7 и 13.

Для того чтобы натуральное число делилось на 7 или 13 необходимо и достаточно, чтобы алгебраическая сумма чисел, образующих грани по 3 цифры (начиная с цифры единиц), взятых со знаком «+» для нечётных граней и со знаком «-» для чётных граней, делилась на 7.

Не выполняя деление доказать, что число 254390815 делится на 7.

Разобьём число на грани 254,390,815. Составим алгебраическую сумму граней, начиная с последней грани и чередуя знаки «+» и «-».

Число 679 делится на 7, то и число 254390815 делится на 7.

Не выполняя деление доказать, что число 304954 делится на 13.

Разобьём на грани 304 и 954 составим алгебраическую сумму граней 954-304=650.

Число 650 делится на 13, значит, 304954 делится на 13.

И существует ещё один признак делимости, объединяющий числа 7, 11, 13.

Числа 7, 11, 13 связаны между собой загадочным числом 7 *11*13=1001

1001 - это 77 чертовых дюжен;

1001 - это 143 семерки;

1001 - это 91 раз по 11.

А еще число1001 – это число Шехерезады.

Вникнув в запись 7*11*13=1001, можно добавить следующее: возьмем некоторое число 235 и умножим его на 1001, получим 235235.

Так как 1001 делится на 7, 11, 13 то и число 235235 делится на 7, 11, 13. Отсюда следует вывод: числа вида abcabc делятся на 7, 11, 13. Есть, конечно, и другие признаки делимости, которые я ещё не знаю. И что можно с помощью вычислительной техники узнать делится ли число на другое число, но уже то, что существуют такие признаки делимости и чтобы познакомиться с ними, надо изучить дополнительную литературу, и расширив свои знания, получить при этом большое удовольствие.


Серию статей о признаках делимости продолжает признак делимости на 3 . В этой статье сначала дана формулировка признака делимости на 3 , и приведены примеры применения этого признака при выяснении, какие из данных целых чисел делятся на 3 , а какие – нет. Дальше дано доказательство признака делимости на 3 . Также рассмотрены подходы к установлению делимости на 3 чисел, заданных как значение некоторого выражения.

Навигация по странице.

Признак делимости на 3, примеры

Начнем с формулировки признака делимости на 3 : целое число делится на 3 , если сумма его цифр делится на 3 , если же сумма цифр данного числа не делится на 3 , то и само число не делится на 3 .

Из приведенной формулировки понятно, что признаком делимости на 3 не удастся воспользоваться без умения выполнять . Также для успешного применения признака делимости на 3 нужно знать, что из всех на 3 делятся числа 3 , 6 и 9 , а числа 1 , 2 , 4 , 5 , 7 и 8 – не делятся на 3 .

Теперь можно рассмотреть простейшие примеры применения признака делимости на 3 . Выясним, делится ли на 3 число −42 . Для этого вычисляем сумму цифр числа −42 , она равна 4+2=6 . Так как 6 делится на 3 , то в силу признака делимости на 3 можно утверждать, что и число −42 делится на 3 . А вот целое положительное число 71 на 3 не делится, так как сумма его цифр равна 7+1=8 , а 8 не делится на 3 .

А делится ли на 3 число 0 ? Чтобы ответить на этот вопрос, признак делимости на 3 не понадобится, здесь нужно вспомнить соответствующее свойство делимости , которое утверждает, что нуль делится на любое целое число. Таким образом, 0 делится на 3 .

В некоторых случаях чтобы показать, что данное число обладает или не обладает способностью делиться на 3 , к признаку делимости на 3 приходится обращаться несколько раз подряд. Приведем пример.

Пример.

Покажите, что число 907 444 812 делится на 3 .

Решение.

Сумма цифр числа 907 444 812 равна 9+0+7+4+4+4+8+1+2=39 . Чтобы выяснить, делится ли 39 на 3 , вычислим его сумму цифр: 3+9=12 . А чтобы узнать, делится ли 12 на 3 , находим сумму цифр числа 12 , имеем 1+2=3 . Так как мы получили число 3 , которое делится на 3 , то в силу признака делимости на 3 число 12 делится на 3 . Следовательно, 39 делится на 3 , так как сумма его цифр равна 12 , а 12 делится на 3 . Наконец, 907 333 812 делится на 3 , так как сумма его цифр равна 39 , а 39 делится на 3 .

Для закрепления материала разберем решение еще одного примера.

Пример.

Делится ли на 3 число −543 205 ?

Решение.

Вычислим сумму цифр данного числа: 5+4+3+2+0+5=19 . В свою очередь сумма цифр числа 19 равна 1+9=10 , а сумма цифр числа 10 равна 1+0=1 . Так как мы получили число 1 , которое не делится на 3 , из признака делимости на 3 следует, что 10 не делится на 3 . Поэтому 19 не делится на 3 , так как сумма его цифр равна 10 , а 10 не делится на 3 . Следовательно, исходное число −543 205 не делится на 3 , так как сумма его цифр, равная 19 , не делится на 3 .

Ответ:

Нет.

Стоит заметить, что непосредственное деление данного числа на 3 также позволяет сделать вывод о том, делится ли данное число на 3 нацело, или нет. Этим мы хотим сказать, что не нужно пренебрегать делением в пользу признака делимости на 3 . В последнем примере, 543 205 на 3 , мы бы убедились, что 543 205 не делится нацело на 3 , откуда можно было бы сказать, что и −543 205 не делится на 3 .

Доказательство признака делимости на 3

Доказать признак делимости на 3 нам поможет следующее представление числа a . Любое натуральное число a мы можем , после чего позволяет получить представление вида , где a n , a n−1 , …, a 0 – цифры, стоящие слева направо в записи числа a . Для наглядности приведем пример такого представления: 528=500+20+8=5·100+2·10+8 .

Теперь запишем ряд достаточно очевидных равенств: 10=9+1=3·3+1 , 100=99+1=33·3+1 , 1 000=999+1=333·3+1 и так далее.

Подставив в равенство a=a n ·10 n +a n−1 ·10 n−1 +…+a 2 ·10 2 +a 1 ·10+a 0 вместо 10 , 100 , 1 000 и так далее выражения 3·3+1 , 33·3+1 , 999+1=333·3+1 и так далее, получим
.

И позволяют полученное равенство переписать так:

Выражение есть сумма цифр числа a . Обозначим ее для краткости и удобства буквой А , то есть, примем . Тогда получим представление числа a вида , которым и воспользуемся при доказательстве признака делимости на 3 .

Также для доказательства признака делимости на 3 нам потребуются следующие свойства делимости:

  • чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы a делился на модуль числа b ;
  • если в равенстве a=s+t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Теперь мы полностью подготовлены и можем провести доказательство признака делимости на 3 , для удобства этот признак сформулируем в виде необходимого и достаточного условия делимости на 3 .

Теорема.

Для делимости целого числа a на 3 необходимо и достаточно, чтобы сумма его цифр делилась на 3 .

Доказательство.

Для a=0 теорема очевидна.

Если a отлично от нуля, то модуль числа a является натуральным числом, тогда возможно представление , где - сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то - целое число, тогда по определению делимости произведение делится на 3 при любых a 0 , a 1 , …, a n .

Если сумма цифр числа a делится на 3 , то есть, А делится на 3 , то в силу свойства делимости, указанного перед теоремой, делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и делится на 3 , тогда в силу того же свойства делимости число А делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Иногда целые числа задаются не в явном виде, а как значение некоторого при данном значении переменной. Например, значение выражения при некотором натуральном n является натуральным числом. Понятно, что при таком задании чисел для установления их делимости на 3 не поможет непосредственное деление на 3 , да и признак делимости на 3 удастся применить далеко не всегда. Сейчас мы рассмотрим несколько подходов к решению подобных задач.

Суть этих подходов заключается в представлении исходного выражения в виде произведения нескольких множителей, и если хотя бы один из множителей будет делиться на 3 , то в силу соответствующего свойства делимости можно будет сделать вывод о делимости на 3 всего произведения.

Иногда реализовать такой подход позволяет . Рассмотрим решение примера.

Пример.

Делится ли значение выражения на 3 при любом натуральном n ?

Решение.

Очевидно равенство . Воспользуемся формулой бинома Ньютона:

В последнем выражении мы можем вынести 3 за скобки, при этом получим . Полученное произведение делится на 3 , так как содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Следовательно, делится на 3 при любом натуральном n .

Ответ:

Да.

Во многих случаях доказать делимость на 3 позволяет . Разберем его применение при решении примера.

Пример.

Докажите, что при любом натуральном n значение выражения делится на 3 .

Решение.

Для доказательства применим метод математической индукции.

При n=1 значение выражения равно , а 6 делится на 3 .

Предположим, что значение выражения делится на 3 при n=k , то есть, делится на 3 .

Учитывая, что делится на 3 , покажем, что значение выражения при n=k+1 делится на 3 , то есть, покажем, что делится на 3 .

Из школьной программы многие помнят, что существуют признаки делимости. Под данным словосочетанием понимают правила, которые позволяют достаточно быстро определить, является ли число кратным заданному, не совершая при этом непосредственную арифметическую операцию. Данный способ основан на действиях, совершаемых с частью цифр из записи в позиционной

Самые простые признаки делимости многие помнят из школьной программы. Например, то, что на 2 делятся все числа, последняя цифра в записи которых четная. Данный признак наиболее легко запомнить и применять на практике. Если говорить о способе деления на 3, то для многозначных чисел применяется следующее правило, которое можно показать на таком примере. Необходимо узнать, будет ли 273 кратно трем. Для этого выполняем следующую операцию: 2+7+3=12. Полученная сумма делится на 3, следовательно, и 273 будет делиться на 3 таким образом, что в результате получится целое число.

Признаки делимости на 5 и 10 будут следующие. В первом случае запись будет оканчиваться на цифры 5 или 0, во втором случае только на 0. Для того чтобы узнать, кратно ли делимое четырем, следует поступить следующим образом. Необходимо вычленить две последние цифры. Если это два нуля или число, которое делится на 4 без остатка, то и все делимое будет кратно делителю. Нужно отметить, что перечисленные признаки используются только в десятичной системе. Они не применяются в других способах счисления. В таких случаях выводятся свои правила, которые зависят от основания системы.

Признаки деления на 6 следующие. 6 в том случае, если оно кратно и 2, и 3. Для того чтобы определить, делится ли число на 7, нужно удвоить последнюю цифру в его записи. Полученный результат вычитается из первоначального числа, в котором не учитывается последняя цифра. Данное правило можно рассмотреть на следующем примере. Необходимо узнать, кратно ли 364. Для этого 4 умножается на 2, получается 8. Далее выполняется следующее действие: 36-8=28. Полученный результат кратен 7, а, следовательно, и первоначальное число 364 можно разделить на 7.

Признаки делимости на 8 звучат следующим образом. Если три последних цифры в записи числа образуют число, которое кратно восьми, то и само число будет делиться на заданный делитель.

Узнать, делится ли многозначное число на 12, можно следующим образом. По перечисленным выше признакам делимости необходимо узнать, кратно ли число 3 и 4. Если они могут выступать одновременно делителями для числа, то с заданным делимым можно проводить и операцию деления на 12. Подобное правило применяется и для других сложных чисел, например, пятнадцати. При этом делителями должны выступать 5 и 3. Чтобы узнать, делится ли число на 14, следует посмотреть, кратно ли оно 7 и 2. Так, можно рассмотреть это на следующем примере. Необходимо определить, можно ли 658 разделить на 14. Последняя цифра в записи четная, следовательно, число кратно двум. Далее мы 8 умножаем на 2, получаем 16. Из 65 нужно вычесть 16. Результат 49 делится на 7, как и все число. Следовательно, 658 можно разделить и на 14.

Если две последние цифры в заданном числе делятся на 25, то и все оно будет кратно этому делителю. Для многозначных чисел признак делимости на 11 будет звучать следующим образом. Необходимо узнать, кратна ли заданному делителю разность сумм цифр, которые стоят на нечетных и четных местах в его записи.

Нужно отметить, что признаки делимости чисел и их знание очень часто значительно упрощает многие задачи, которые встречаются не только в математике, но и в повседневной жизни. Благодаря умению определить, кратно ли число другому, можно быстро выполнять различные задания. Помимо этого, применение данных способов на занятиях математики поможет развивать у студентов или школьников, будет способствовать развитию определенных способностей.

В этой статье мы рассмотрим признаки делимости чисел и как использовать признаки делимости при решении задач.

Признаки делимости чисел.

1. Признак делимости на 2 . Число делится на 2, если его запись оканчивается цифрой 0, 2, 4, 6, 8. Числа, которые делятся на 2 называются четными, соответственно, числа, которые на 2 не делятся, называются нечетными.

2. Признак делимости на 5 . Число делится на 5, если его запись оканчивается цифрой 0 или 5.

3. Признак делимости на 10 . Число делится на 10, если его запись оканчивается цифрой 0.

Вообще, если двумя последними цифрами записи числа являются нули, то число делится на 100, если три последние цифры записи числа нули, то на 1000 и т.д.

4. Признак делимости на 4 . Если две последние цифры записи числа образуют число, которое делится на 4, то исходное число делится на 4.

Например, две последние цифры числа 2116 образуют число 16, которое делится на 4, следовательно, 2116 делится на 4.

5. Признак делимости на 3 и на 9 . Если сумма цифр числа делится на 3 (соответственно на 9), то число делится на 3 (соответственно на 9).

Например, число 312 делится на 2 (последняя цифра 2) и на 3 (сумма цифр делится на 3), и, следовательно, на 6.

Вообще, если числа - взаимно простые (то есть не имеют общих делителей) и данное число делится на каждое из этих чисел, то оно делится на произведение этих чисел

6. Признак делимости на 7 . Число делится на 7, когда утроенное число десятков, сложенное с числом единиц делится на 7.

Например, число 427 делится на 7, т.к. число десятков в этом числе 42, 42х3+7=126+7=133; 133 делится на 7, т.к. число десятков в этом числе 13, 13х3+3==39+3=42.

7. Признак делимости на 11 . Число делится на 11, если модуль разности между суммой цифр, стоящих на нечетных местах и, и суммой цифр, занимающих чётные места делится на 11, или если модуль разности равен нулю.

Например, число 12397 делится на 11, т.к. |(1+3+7)-(2+9)|=0

Чтобы установить делимость чисел, пользуются следующими признаками делимости суммы и произведения :

1. Сумма чисел делится на данное число, если каждое слагаемое суммы делится на это число.

2. Произведение чисел делится на данное число, если хотя бы один из множителей делится на это число.

Пример 1. Доказать, что число кратно 5.

Решение. Число кратно 5, если последняя цифра в записи числа равна 0 или 5.

Если число оканчивается цифрой 1, то любая степень этого числа оканчивается цифрой 1, следовательно, число оканчивается цифрой 1.

Если число оканчивается цифрой 6, то любая степень этого числа оканчивается цифрой 6, значит, число оканчивается цифрой 6.

Таким образом, разность оканчивается цифрой 5, и, следовательно, делится на 5.

Пример 2. Найдите наибольшее четырехзначное число, все цифры которого различны и которое делится на 2, 5, 9 и 11.

а) 1. Число делится на 2 и 5, следовательно, последняя цифра - 0

2. Числа 2, 5, 9 и 11 не имеют общих делителей, следовательно искомое число должно делиться на произведение этих чисел, то есть на 990.

Наибольшее четырехзначное число, которое делится на 990 и оканчивается на 0 - это 9900.

По условию нам надо найти число, все цифры которого различны. Предыдущее число, которое делится на 2, 5, 9 и 11 равно 9900-990=8910. Это число удовлетворяет всем условиям задачи.

Ответ: 8910

Пример 3. Использовав все цифры от 1 до 9 по одному разу, составьте наибольшее девятизначное число, делящееся на 11.

Решение. В нашем числе модуль разности между суммой цифр, стоящих на нечетных местах и, и суммой цифр, занимающих чётные места должен делиться на 11.

Число должно быть наибольшим, поэтом цифры, стоящие на первых местах должны быть наибольшими. Пусть число имеет вид Чтобы число делилось на 11, нужно, чтобы значение выражения было кратно 11 или равно нулю.

Упростим выражение, получим:

Поскольку - это цифры, и самые большие уже задействованы, скомбинируем цифры 1, 2, 3, 4, 5 так, чтобы При этом числа в каждой группе: и должны быть расположены в порядке убывания. Подходит такая комбинация:

Ответ: 987652413

Признаками делимости пользуются при разложении числа на простые множители.

Натуральное число называется простым, если оно имеет только 2 различных делителя: единицу и само число .

Например, простыми числами являются числа 2, 3, 5, 7, 11, 13, 17 и т.д.

Внимание! Число 1 не является простым и не является составным.

Чтобы найти последовательность простых чисел, пользуются алгоритмом, который называется решето Эратосфена :

1. Выписываем ряд натуральных чисел:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, ...

2.Зачеркиваем числа, кратные числу 2 - каждое второе число после 2:

2, 3, 4 , 5, 6 , 7, 8 , 9, 10 , 11, 12 , 13, 14 , 15, 16 , 17, 18 , 19, 20 , 21, 22 , 23, 24 , 25,...

3. Зачеркиваем числа, кратные числу 3 - каждое третье число после 3:

2, 3, 4 , 5, 6 , 7, 8 , 9 , 10 , 11, 12 , 13, 14 , 15 , 16 , 17, 18 , 19, 20 , 21 , 22 , 23, 24 , 25,...

4. Зачеркиваем числа, кратные числу 5 - каждое пятое число после 5:

2, 3, 4 , 5, 6 , 7, 8 , 9, 10 , 11, 12 , 13, 14 , 15 , 16 , 17, 18 , 19, 20 , 21 , 22 , 23, 24 , 25 ,...

2 , 3 , 4 , 5 , 6 , 7 , 8 , 9, 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17, 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ,...

Основная теорема арифметики:

Любое натуральное число, большее единицы, можно представить в виде произведения простых сомножителей, причем единственным способом.

Пример 4. Разложить число 4356 на простые множители.

Решение: Применим признаки делимости. Последняя цифра записи числа - четная, разделим число на 2. Будем делить на 2, пока возможно делить нацело.

Число 1089 на 2 уже не делится, но делится на 3 (сумма цифр числа равна 18). Будем делить на 3, пока это возможно.

121 делится на 11.

Итак,

Это равенство называется разложением числа 4356 на простые множители.

Разложение на простые множители широко применяется при решении самых разных задач.

Пример 5. Сократить дробь

Разложим числитель и знаменатель на простые множители:

Пример 6. Извлечь квадратный корень:

Воспользуемся разложением числа 4356 на простые множители:

Пример 7. Найдите наименьшее натуральное число, половина которого - квадрат, треть - куб, а пятая часть - пятая степень.

Наименьшее число, удовлетворяющее этим условиям представляет из себя произведение степеней чисел 2, 3, 5.

Пусть это число имеет вид:

а) Половина числа - квадрат, следовательно, n-1, m и k - четные числа.

б) Треть числа - куб, следовательно, n, m-1 и k делятся на 3.

в) Пятая часть числа - пятая степень, следовательно, n, m и k-1 - кратны 5.

k кратно 2 и 3, следовательно k может быть равно 6 (удовлетворяет а) и б) ), 6-1 делится на 5 (удовлетворяет в) ).

n кратно 3 и 5, следовательно, n может быть равно 15 (удовлетворяет в) и б) ), 15-1 делится на 2 (удовлетворяет а) ).

m - кратно 5 и 2, следовательно, m может быть равно 10 (удовлетворяет в) и а) ), 10-1 делится на 3 (удовлетворяет б) ).