Оси валы и маховики. Разница между валом и осью

Виды валов и осей машины

Виды валов

Оси - поддерживают вращающиеся части машин. Они могут быть вращающимися и неподвижными.

Валы - не только поддерживают, но и передают вращение.
Бывают: прямые, кривошипные и коленчатые.
Валы рассчитывают на одновременное действие крутящего и изгибающего моментов.
Оси рассчитывают только на изгиб.

  1. вал с прямой осью;
  2. коленчатый вал;
  3. гибкий вал;
  4. карданный вал.

Виды осей

  1. неподвижные;
  2. подвижные.

Оси и валы отличаются от прочих деталей машины тем, что на них насаживаются зубчатые колёса, шкивы и другие вращающиеся части. По условиям работы оси и валы отличаются друг от друга.

Осью называют деталь, которая лишь поддерживает насаженные на неё детали. Ось не испытывает кручения, поскольку нагрузку на неё идёт от расположенных на ней деталей. Она работает на изгиб и не передаёт вращающий момент.

Что же касается вала, то он не только поддерживает детали, но и передаёт момент вращения. Поэтому вал испытывает как изгиб, так и кручение, иногда также сжатие и растяжение. Среди валов выделяют торсионные валы (или просто торсионы), которые не поддерживают вращение деталей и работают исключительно на кручение. Примеры - это карданный вал автомобиля , соединительный валик прокатного стана и многое другое.

Участок в опоре вала или оси называется цапфой, если воспринимает радиальную нагрузку, или пятой, если на него осуществляется осевая нагрузка. Концевая цапфа, принимающая радиальную нагрузку, называется шипом, а цапфу, находящуюся на некотором расстоянии от конца вала, называют шейкой. Ну а та часть вала или оси, которая ограничивает осевое перемещение деталей, называется буртиком.

Посадочная поверхность оси или вала, на которую, собственно, и устанавливаются вращающиеся детали, часто делают цилиндрическими и реже - коническими, чтобы облегчить постановку и снятие тяжёлых деталей, когда требуется высокая точность центрирования. Поверхность, обеспечивающая плавный переход между ступенями, носит название галтели. Переход может выполняться с использованием канавки, которая делает возможным выход шлифовального круга. Концентрация напряжения может быть уменьшена за счёт уменьшения глубины канавок и увеличения закругления канавок и гантелей, насколько возможно.

Чтобы сделать установку вращающихся деталей на ось или вал проще, а также предотвратить травмы рук, торцы делают с фасками, то есть немного обтачивают на конус.
Виды осей и валов

Ось может быть вращающейся (например, ось вагона) или не вращающейся (например, ось блока машины для подъёма грузов).

Ну а вал может быть прямым, коленчатым или гибким. Прямые валы распространены шире всего. Коленчатые находят применение в кривошипно-шатунных передачах насосов и двигателей. Они преобразовывают возвратно-поступательные движения во вращательные, либо наоборот. Что касается гибких валов, то они являются, по сути, мног заходными пружинами кручения, витыми из проволок. Их используют, чтобы передавать момент между узлами машины, если они при работе меняют положение относительно друг друга. И коленчатые, и гибкие валы классифицируются как специальные детали и изучаются на специальных учебных курсах.

Чаще всего ось или вал имеют круглое сплошное сечение, но могут они иметь и кольцевое поперечное сечение, которое позволяет уменьшить общую массу конструкции. Сечение некоторых участков вала может иметь шпоночную канавку или шлицы, а может быть и профильным.

При профильном соединении детали между собой скрепляются с помощью контакта по круглой не плавной поверхности и могут, помимо крутящего момента, передавать и осевую нагрузку. Несмотря на надёжность профильного соединения, его нельзя назвать технологичным, так что применение у них ограничено. Шлицевое же соединение классифицируют по форме профиля зубьев - оно может быть прямобочным, эвольвентным или треугольным.


Вращающиеся детали машин устанавливают на валах или осях, обеспечивающих постоянное положение оси вращения этих деталей.

Валы - детали, предназначенные для передачи крутящего момента вдоль своей оси и для поддержания вращающихся деталей машин.

Валы по назначению можно разделить на валы передач , несущие детали передач – зубчатые колеса, шкивы, звездочки, муфты (рис. ,а и б), и на коренные валы машин и другие специальные валы, несущие кроме деталей передач рабочие органы машин двигателей или орудий – колеса или диски турбин, кривошипы, зажимные патроны и т. д. (рис. ,в и д )

По форме геометрической оси валы разделяют на прямые и коленчатые.

Оси – детали, предназначенные для поддержания вращающихся деталей и не передающие полезного крутящего момента.

Рис. 12.1 Основные типы валов и осей:

а – гладкий трансмиссионный вал; б – ступенчатый вал;

в – шпиндель станка; г - вал паровой турбины; д – коленчатый вал;

е – ось вращающегося вагонная; ж – ось невращающаяся вагонетки.

Опорные части валов и осей называют цапфами . Промежуточные цапфы называют шейками , концевые – шипами .

Прямые валы по форме разделяют на валы постоянного диаметра (валы трансмиссионные и судовые многопролетные, рис. ,а, а также валы, передающие только крутящий момент); валы ступенчатые (большинство валов, рис. б-г ); валы с фланцами для соединения по длине, а также валы с нарезанными шестернями или червяками. По форме сечения валы разделяются на гладкие, шлицевые, имеющие на некоторой длине профиль зубчатого (шлицевого) соединения, и профильные.

Форма вала по длине определяется распределением нагрузок по длине.

Эпюры моментов по длине валов, как правило, существенно неравномерны. Крутящий момент обычно передается не на всей длине вала. Эпюры изгибающих моментов обычно сходят к нулю к концевым опорам или к концам валов. Поэтому по условию прочности допустимо и целесообразно конструировать валы переменного сечения приближающимися к телам равного сопротивления. Практически валы выполняю ступенчатыми. Эта форма удобна в изготовлении и сборке; уступы валов могут воспринимать большие осевые силы.

Перепад диаметров ступеней определяется: стандартными диаметрами посадочных поверхностей под ступицы и подшипники, достаточной опорной поверхностью для восприятия осевых сил при заданных радиусах закругления кромок и размерах фасок и, наконец, условиями сборок.

Цапфы (шейки) валов, работающие в подшипниках скольжения, выполняют: а) цилиндрическими; б) коническими; в) сферическими (рис.). Основное применение имеют цилиндрические цапфы. Концевые цапфы для облегчения сборки и фиксации вала в осевом направлении обычно делают несколько меньшего диаметра, чем соседний участок вала (рис.).

Цапфы валов для подшипников качения (рис.) характеризуются меньшей длиной, чем цапфы для подшипников скольжения.

Цапфы для подшипников качения нередко выполняют с резьбой или другими средствами для закрепления колец.

Посадочные поверхности под ступицы деталей, насаживаемых на вал, выполняют цилиндрическими или коническими. Основное применение имеют цилиндрические поверхности как более простые в изготовлении.

Рис. 12.4 Конструктивные средства повышения выносливости

валов в местах посадок: а – утолщение подступичной чвсти вала;

б – закругление кромок ступицы; в – утонение ступицы; г – разгрузочные

канавки; д – втулки или заливки в ступице из материала с низким модулем

упругости.

Выносливость валов определяется относительно малыми объемами металла в зонах значительной концентрации напряжений. Поэтому особо эффективны специальные конструкторские и технологические мероприятия по повышению выносливости валов.

Конструктивные средства повышения выносливости валов в местах посадок путем уменьшения кромочных давлений показаны на рис. .

Упрочнением подступичных частей поверхностным наклепом (обкаткой роликами или шариками) можно повысить предел выносливости валов на 80 – 100%, причем этот эффект распростра- няется на валы диаметром до 500 – 600 мм.

Прочность валов в местах шпоночных, зубчатых (шлицевых) и других разъемных соединений со ступицей может быть повышена: применением эвольвентных шлицевых соединений; шлицевых соединений с внутренним диаметром, равным диаметру вала на соседних участках, или с плавным выходом шлицев на поверхность, обеспечивающим минимум концентрации напряжений; шпоночных канавок, изготовляемых дисковой фрезой и имеющих плавный выход на поверхность; бесшпоночных соединений.

Осевые нагрузки и на валы от насаженных на них деталей передаются следующими способами. (рис.)

1) тяжелые нагрузки – упором деталей в уступы на валу, посадкой деталей или установочных колец с натягом (рис. ,а и б)

2) средние нагрузки – гайками, штифтами непосредственно или через установочные кольца, клеммовыми соединениями (рис. ,в – д);

3) легкие нагрузки и предохранение от перемещений случайными силами – стопорными винтами непосредственно или через установочные кольца, клеммовыми соединениями, пружинными кольцами (рис. ,д – ж).

ПРИКЛАДНАЯ МЕХАНИКА И

ОСНОВЫ КОНСТРУИРОВАНИЯ

Лекция 8

ВАЛЫ И ОСИ

А.М. СИНОТИН

Кафедра технологии и автоматизации производства

Валы и оси Общие сведения

Зубчатые колеса, шкивы, звездочки и другие вращающиеся детали машин устанавливают на валах или осях.

Вал предназначен для поддержания сидящих на нем деталей и для передачи крутящего момента. При работе вал испытывает изгиб и кручение, а в отдельных случаях дополнительно растяжение и сжатие.

Ось – деталь, предназначенная только для поддержания сидящих на ней деталей. В отличие от вала, ось не передает вращающего момента и, следовательно, не испытывает кручения. Оси могут быть неподвижными или вращаться вместе с насаженными на них деталями.

Разновидность валов и осей

По геометрической форме валы делятся на прямые (рисунок 1), коленчатые и гибкие.

1 – шип; 2 – шейка; 3 – подшипник

Рисунок 1 – Прямой ступенчатый вал

Коленчатые и гибкие валы относятся к специальным деталям и в настоящем курсе не рассматриваются. Оси, как правило, изготавливают прямыми. По конструкции прямые валы и оси мало отличаются друг от друга.

По длине прямые валы и оси могут быть гладкими или ступенчатыми. Образование ступеней связано с различной напряженностью отдельных сечений, а также условиями изготовления и удобства сборки.

По типу сечения валы и оси бывают сплошные и полые. Полое сечение применяется для уменьшения массы или для размещения внутри другой детали.

Элементы конструкции валов и осей

1 Цапфы. Участки вала или оси, лежащие в опорах, называются цапфами. Они подразделяются на шипы, шейки и пяты.

Шипом называется цапфа, расположенная на конце вала или оси и передающая преимущественно радиальную нагрузку (рис. 1).

Рисунок 2 – Пяты

Шейкой называется цапфа, расположенная в средней части вала или оси. Опорами для шеек служат подшипники.

Шипы и шейки по форме могут быть цилиндрическими, коническими и сферическими. В большинстве случаев применяются цилиндрические цапфы (рис. 1).

Пятой называется цапфа, передающая осевую нагрузку (рисунок 2). Опорами для пят служат подпятники. Пяты по форме могут быть сплошными (рисунок 2, а), кольцевыми (рисунок 2, б) и гребенчатыми (рисунок 2, в). Гребенчатые пяты применяют редко.

2 Посадочные поверхности. Посадочные поверхности валов и осей под ступицы насаживаемых деталей выполняют цилиндрическими (рисунок 1) и реже коническими. При прессовых посадках диаметр этих поверхностей принимают примерно на 5% больше диаметра соседних участков для удобства напрессовки (рисунок 1). Диаметры посадочных поверхностей выбирают по ГОСТ 6336-69, а диаметры под подшипники качения – в соответствии с ГОСТами на подшипники.

3 Переходные участки. Переходные участки между двумя ступенями валов или осей выполняют:

С канавкой со скруглением для выхода шлифовального круга по ГОСТ 8820-69 (рисунок 3, а). Эти канавки повышают концентрацию напряжений, поэтому рекомендуются на концевых участках, где изгибающие моменты небольшие;

Рисунок 3 – Переходные участки вала

    с галтелью * постоянного радиуса по ГОСТ 10948-64 (рисунок 3, б);

С галтелью переменного радиуса (рисунок 3, в), которая способствует снижению концентрации напряжений, а потому применяется на сильно нагруженных участках валов и осей.

Эффективными средствами для снижения концентрации напряжений в переходных участках является протачивание разгрузочных канавок (рисунок 4, а), увеличение радиусов галтелей, высверливание в ступенях большого диаметра (рисунок 4, б).

Рисунок 4 – Способы повышения усталостной прочности валов

Валы предназначены для закрепления на них деталей (зубчатых колес, червяков, звездочек, шкивов, полумуфт и т.д.) и передачи вращающих моментов. Оси служат только для поддержания вращающихся деталей механизмов и в отличие от валов не передают вращающих моментов. Оси могут быть вращающиеся и неподвижные.

По виду геометрической оси валы делятся на прямые, коленчатые и гибкие. Наибольшее применение имеют прямые валы (рис. 4.68, а в). Коленчатые валы (рис. 4.68, г) применяют только в поршневых машинах для преобразования вращательного движения в поступательное и наоборот (двигатели внутреннего сгорания, насосы, компрессоры). Гибкие валы с произвольной формой геометрической оси применяют для передачи вращения в механизмах, узлы которых меняют свое положение в процессе работы, например приборы дистанционного управления, зубоврачебные бормашины и др. Коленчатые и гибкие валы относятся к деталям специального назначения и в курсе "Детали машин" не рассматриваются.

Прямые валы по форме внешней поверхности делятся на гладкие (см. рис. 4.68, а) и ступенчатые или фасонные (см. рис. 4.68, б, о). Гладкие валы по всей длине имеют один поминальный размер, а соответствующие посадки различных деталей обеспечиваются предельными отклонениями. В силовых механизмах гладкие валы имеют ограниченное применение. В основном они используются в трансмиссиях для передачи только вращающего момента. Большее примене-

Рис. 4.68

мне оми получили в ненагруженных малоразмерных кинематических механизмах.

Ступенчатые валы менее технологичны в изготовлении, но более удобны при сборке, особенно сложных многоступенчатых механизмов. Каждая деталь свободно проходит на свое место, и с одной стороны обеспечивается ее осевая фиксация. Кроме того, ступенчатый вал имеет меньшую массу, так как по форме приближается к балке равного сопротивления изгибу. Полые валы (см. рис. 4.68, в) дороже в изготовлении, чем сплошные, и их применяют при жестких требованиях к массе конструкции (например, механизмы авиационной и космической техники). При отношении внутреннего диаметра вала к наружному d/D = 0,6÷0,7 масса его снижается на 40–50%, а момент сопротивления сечения изгибу W – всего на 15–25%, что не вызывает резкого снижения прочности. Обычно принимают d/D < 0,75, что связано с необходимостью выполнения шпоночных пазов, шлицев, резьбы. Применяют полые валы также тогда, когда через вал пропускают другую деталь, подводят смазочный материал и пр.

Конструкция ступенчатого вала определяется количеством и конструкцией деталей, которые на нем размещаются, расположением опор, условиями сборки. На валу можно выделить отдельные элементы: концевые участки; переходные участки между соседними ступенями разных диаметров; места посадки подшипников, уплотнений и деталей, передающих вращающий момент.

Входной и выходной валы передаточных механизмов должны иметь консольные участки для установки шкивов, звездочек, зубчатых колес, полумуфт. Концевые участки выполняют цилиндрическими, реже коническими, форма и размеры которых определяются стандартами. Цилиндрические проще в изготовлении, а конические (с конусностью 1:10) обеспечивают высокую точность базирования и центрирования сопряженных деталей, легкость сборки и разборки.

В местах изменения диаметра вала выполняют плавный переход – галтель постоянного радиуса (рис. 4.69, а). Для уменьшения концентрации напряжений разность между диаметрами ступеней вала должна быть минимальной, а радиус галтели – максимальным. Отношение r/d принимают не менее 0,1. Для того чтобы обеспечить упор сопряженной с валом детали по плоскости заплечика, радиус галтели должен быть меньше катета фаски детали /, а высота заплечика t > 2/. При передаче больших осевых усилий высота уступа выбирается из условия прочности торцевой поверхности на смятие, а толщина буртика – из условия обеспечения прочности на срез. Высота буртика (или уступа) для упора внутреннего кольца подшипника должна позволять съем подшипника при демонтаже. Если на концевом участке вала шпонка имеет с валом плотное соединение, высота заплечика t должна быть больше выступающей из вала высоты шпонки, чтобы подшипник можно было установить на свое место без съема шпонки. Допуски на биение упорных буртиков валов назначаются в пределах 0,01–0,06 мм.

Один из способов повышения усталостной прочности вала – перекрытие галтели (рис. 4.69, б), которое применяют при установке деталей, имеющих небольшой радиус закругления или фаску на входе. Осевая фиксация детали осуществляется с помощью промежуточного кольца 1, что позволяет увеличить радиус галтели r. Иногда для увеличения радиуса применяют галтель с поднутрением (рис. 4.69, в), при этом уменьшается длина цилиндрической части вала.

При необходимости шлифования посадочных мест на валу, примыкающих к уступу, предусматривают канавки для выхода шлифовального круга (рис. 4.69, г). Для валов малого диаметра такие канавки снижают сопротивление изгибу и кручению, поэтому шлифование посадочных поверхностей таких валов возможно только при высоких значениях запасов прочности п > 2,0÷2,5.

Рис. 4.69

Посадочные поверхности осей и валов выполняют в основном цилиндрическими. Конструкция этих участков палов зависит от вида насаживаемой детали и способа передачи вращающего момента. Длину участковпринимают на мм меньше, чем длину ступицы, для обеспечения осевой фиксации детали. Шероховатость поверхностей () назначается в зависимости от характера сопряжения, квалитета, типа насаживаемой детали и др.

На концах валов или промежуточных участков выполняются заходные фаски для облегчения сборки, предотвращения скола кромок и пореза рук сборщика. Размеры фаски с назначают в зависимости от диаметра вала мм при мм; мм при мм и мм при мм.

Опорные поверхности вала под подшипники при восприятии радиальной нагрузки называются цапфами или шейками для промежуточных опор. Эти участки имеют цилиндрическую форму для подшипников качения, но могут быть конические или сферические цапфы для подшипников скольжения. Посадочные диаметры под подшипники качения выбирают из стандартного ряда диаметров отверстий подшипников качения. При восприятии осевых нагрузок эти участки валов называются пятами . Шероховатость опорных поверхностей под подшипники назначают в зависимости от характера сопряжения подшипника с валом, диаметра цапфы и класса точности подшипника. Для подшипников нулевого класса точности шероховатость посадочных мест мкм, торцов заплечиковмкм; для подшипников повышенных классов точности Ra равно 0,63 и 1,25 мкм соответственно. Отклонения от круглости и цилиндричности мест посадки не должны превышать 0,5 допуска на диаметр, а для подшипников классов точности 5,4 и 2 – не более 0,003–0,018 мм.

Материалом валов и осей являются углеродистые и легированные стали, обладающие высокой прочностью, способностью к поверхностному и объемному упрочнению (для повышения усталостной прочности и износостойкости) и хорошей обрабатываемостью. Материал валов выбирают с учетом условий работы механизма. В малонагруженных механизмах валы, не подвергающиеся термообработке, изготавливают из углеродистых сталей 20, 45А, 50 и др. Для средне- и тяжелонагруженных валов применяют легированные стали 40Х, 40X11,40X112MА, 30ХГСА и др. Валы из легированных сталей подвергаются улучшению, закалке с высоким отпуском; для повышения износостойкости отдельные участки валов подвергаются поверхностной закалке ТВЧ. Цапфы налов и осей под подшипники скольжения механизмов с большим ресурсом для повышения износостойкости цементируют. Выбор вида термообработки осуществляется в соответствии с маркой стали (цементируемой или позволяющей азотирование). Для повышения износостойкости применяют хромоникелевые стали или хромируют шейки валов, при этом ресурс увеличивается в 3–5 раз.

Посадочные места высоконагруженных валов и осей после токарной обработки шлифуют. При знакопеременном нагружении неровности поверхности являются микроконцентраторами напряжений. Шлифование и полирование снижают величину неровностей и увеличивают долговечность вала. Высоконапряженные валы шлифуют по всей поверхности.

Расчет валов проводится в три этапа.

При отсутствии данных о линейных размерах вала и соответственно об изгибающих моментах на первом этапе определяют приближенное значение диаметра вала в наиболее нагруженном сечении. Из условия прочности вала на кручение имеем

где Т – вращающий момент, передаваемый валом, Н мм; [τ] – допускаемое напряжение на кручение, МПа (для стальных валов принимают [τ] = 12÷20 МПа).

На втором этапе в соответствии с полученным диаметром валу придается конструктивная форма, отвечающая кинематической схеме и отражающая требования технологичности и сборки. В результате устанавливаются все размеры вала.

На третьем этапе выполняется проверочный расчет вала. Основным критерием вращающихся валов и осей является циклическая прочность, так как постоянные по значению и направлению силы вызывают в них переменные напряжения. На статическую прочность рассчитывают неподвижные оси и некоторые валы при действии больших пусковых моментов. Недостаточная жесткость валов отрицательно влияет на работу связанных с ним соединений, подшипников, зубчатых колес и других деталей; увеличивает износ; снижает сопротивление усталости деталей и соединений; уменьшает точность механизмов и т.п. Расчет вала на жесткость выполняется в тех случаях, когда эти влияния оказываются существенными и требуют обязательного учета.

Расчет на сопротивление усталости. В расчете вала можно выделить следующие этапы: составление расчетной схемы; определение расчетных нагрузок и построение эпюр нормальных сил, изгибающих и крутящих моментов; расчет напряжений и запасов прочности в опасных сечениях вала.

Для расчета вращающиеся валы и оси представляют в виде балки на шарнирных опорах. Место расположения опор зависит от вида подшипника. При установке вала в радиальных шариковых или роликовых подшипниках качения точками опор считают середину ширины каждого подшипника (рис. 4.70, а, б). При установке вала в радиально-упорных подшипниках опоры располагаются со смещением от торца на величину а в зависимости от угла контакта. Для шариковых подшипников (рис. 4.70, в), а для конических роликовых (рис. 4.70, г), где– коэффициент осевого нагружения, зависящий от угла контакта (табл. 4.16). При установке в опоре двух подшипников условную опору располагают на расстоянии одной трети от середины внутреннего подшипника (рис. 4.70, ∂). У валов, вращающихся в подшипниках скольжения, условную

Рис. 4.70

шарнирную опору располагают на расстоянии (0,254-0,3)/ от торца подшипника (рис. 4.70, е).

Нагрузки, действующие на вал, передаются от сопряженных с ним деталей, таких, как зубчатые и червячные колеса,

Таблица 4.16

подшипника

контакта, α°

Однорядные

подшипники

Двухрядные

подшипники

Шариковые радиальные

Шариковые радиально-упорные

Роликовые

конические

шкивы, звездочки и др. Они определяются по соответствующим зависимостям расчета передач или экспериментально. В расчетах валов эти нагрузки, распределенные по поверхности контакта, заменяются сосредоточенными эквивалентными силами и прикладываются в середине ступицы детали. Найденные нагрузки переносятся на ось вала, строятся соответствующие эпюры.

При расчете на усталость расчетными являются сечения с концентраторами напряжений: галтельные переходы, шлицы, шпоночные канавки, поперечные отверстия, резьба, в которых действуют высокие изгибающий и крутящий моменты. В сложных по конструкции валах иногда трудно выделить одно опасное сечение и тогда расчет ведется для нескольких сечений. Для каждого из расчетных сечений определяют коэффициенты запасов прочности и сравнивают их с допускаемым значением. Для обеспечения надежной работы должно быть. Прочность оценивают по формуле

гдеи– запасы прочности по нормальным и касательным напряжениям:

гдеи– пределы выносливости стандартного образца при симметричном цикле изменений напряжений;и амплитудные напряжения циклов нормальных и касательных напряжений;и– средние напряжения циклов; коэффициенты снижения пределов выносливости детали; и– коэффициенты чувствительности материала к асимметрии цикла напряжений.

Для углеродистых статейдля легированных сталей. Коэффициент снижения предела выносливости детали:

При расчете на изгиб

При расчете на кручение

где и – эффективные коэффициенты концентрации напряжений (зависят от вида концентратора напряжений); и – коэффициенты влияния размеров детали; – коэффициент, учитывающий повышение предела выносливости при поверхностном упрочнении; и – коэффициенты влияния шероховатости.

Эффективные коэффициенты и концентрации напряжений для стали при изгибе и кручении валов в месте кольцевой канавки находят по табл. 4.17; в ступенчатом переходе с галтелью – по табл. 4.18; при изгибе и кручении валов со шлицами, шпоночной канавкой, с резьбой и поперечным отверстием – но табл. 4.19.

Коэффициенты – и приведены в табл. 4.20; коэффициент –в табл. 4.21.

Значения в зависимости от параметров шероховатости Ra и Rz приведены на рис.4.71. Величина определяется из соотношения

Таблица 4.17

Эффск- тивные коффи- циенты концентрации

Рис. 4.71

Таблица 4.18

Эффек- тивные коффи – циенты концентрации

Зубчатые колеса, шкивы, звездочки и другие вращающиеся детали машин устанавливают на валах или осях.

Вал предназначен для передачи вращающего момента вдоль своей оси, для поддержания расположенных на нем деталей и восприятия действующих на них сил. При работе вал испытывает изгиб и кручение, а в некоторых случаях - дополнительно растяжение или сжатие.

Ось только поддерживает установленные на ней детали и воспринимает действующие на них силы. В отличие от вала ось не передает вращающего момента и, следователь­но, не испытывает кручения. Оси могут быть неподвижны­ ми или могут вращаться вместе с насаженными на них дета­лями.

По форме геометрической оси валы делят на прямые (рис.2) и непрямые - коленчатые и эксцентриковые. Непрямые валы относят к специальным деталям.

Оси, как правило, изго­ товляют прямыми (см. рис. 1). По конструк­ции прямые валы и оси мало отличаются друг от друга.

Рис. 1. Ось тележки

Прямые валы и оси мо­гут быть гладкими или сту­ пенчатыми (см. рис. 2).

Рис. 2. Прямой ступенчатый вал:

1 - шип; 2 - шейка; 3 - подшипник; 4 - кольцо с поперечным пазом для размещения тяг съемника подшипника

Ступенчатая форма способствует равной напряженности от­дельных участков, упрощает изготовление и установку деталей на валу.

По форме поперечного сечения валы и оси бывают сплошные и полые (с осевым отверстием). Полые валы при­меняют для уменьшения массы или для размещения внутри другой детали.

По внешнему очертанию поперечного сечения валы раз­деляют на шлицевые и шпоночные, имеющие на некоторой длине шлицевой профиль или профиль со шпоночным пазом.

2. Конструктивные элементы. Материалы валов и осей

Цапфы - опорные участки вала или оси. Их подразделяют на шипы, шейки и пяты.

Шипом называют цапфу, расположенную на конце вала или оси и передающую преимущественно радиальную силу (см. рис. 2). Шейкой называют цапфу в средней части вала или оси. Опорами для шипов и шеек валов служат под­ шипники. Шипы и шейки по форме могут быть цилиндри­ ческими, коническими или сферическими. В большинстве слу­чаев применяют цилиндрические цапфы.

Рис.3. Пяты

Пятой называют цапфу, передающую осевую силу (рис. 3). Опорами для пят служат подпятники. Пяты по форме бывают сплошны­ ми (рис. 3, а), кольце­ выми (рис. 3, б) и гре­ бенчатыми (рис. 3, в). Гребенчатые пяты в на­стоящее время применяют редко.

Посадочные поверхности валов и осей под ступицы наса­живаемых деталей выполняют цилиндрическими и коничес­ кими (см. рис. 2). При посадках с натягом диаметр этих поверхностей принимают больше диаметра соседних участ­ков для удобства напрессовки и снижения концентрации напряжений (см. рис. 2). Диаметры посадочных поверхно­стей и диаметры под подшипники скольжения выбирают из ряда нормальных линейных размеров, диаметры под под­шипники качения - по стандартам на подшипники.

Конические концы валов (см. рис. 2) изготовляют с конусностью 1:10. Их применяют для облегчения монтажа устанавливаемых на вал деталей.

Переходные участки валов и осей между двумя ступеня­ми разных диаметров выполняют:

а) с канавкой со скруглением для выхода шлифовального круга (рис. 4, а);

б) с галтелью постоянного радиуса, рис. 4, б (гал­тель - поверхность плавного перехода от участка меньше­го сечения к большему);

в) с галтелью переменного радиуса (рис.4, в).

Рис. 4. Переходные участки вала

Переходные участки являются концентраторами напря­ жений. Эффективным средством для снижения концентра­ции напряжений в переходных участках является повышение

податливости путем выполнения раз­грузочных канавок (рис.5, а), увеличе­ния радиусов галтелей, выполнения отвер­стий в ступенях большего диаметра (рис.5, б). Деформационное упрочнение (на­ клеп) галтелей повышает несущую спо­ собность валов и осей.

Рис. 5.Способы повышения уставной прочности валов

Материалы валов и осей должны хоро­ шо обрабатываться, быть прочными и иметь высокий модуль упругости. Этим требованиям наиболее полно удовлетво­ряют углеродистые и легированные ста­ли, из которых преимущественно изготав­ливают валы и оси. Для валов и осей без упрочняющей термообработки применяют стали Ст5, Ст6; для валов с термообработкой - стали 45, 40Х. Быстроходные валы, работающие в подшипниках скольжения, изготовляют из сталей 20, 20Х, 12ХНЗА. Цапфы этих валов цементуют для повышения износостойкости.

Валы и оси обрабатывают на токарных станках с после­дующим шлифованием цапф и посадочных поверхностей.