Что такое синус в треугольнике. Нахождение тангенса и котангенса через синус и косинус

Учителя считают, что каждый школьник должен уметь проводить расчёты, знать тригонометрические формулы, но далеко не каждый преподаватель объясняет, что такое синус и косинус. Каков их смысл, где они используются? Почему мы говорим про треугольники, а в учебнике нарисована окружность? Попробуем связать все факты воедино.

Школьный предмет

Изучение тригонометрии начинается обычно в 7-8 классе средней школы. В это время учащимся объясняют, что такое синус и косинус, предлагают решать геометрические задачи с применением этих функций. Позже появляются более сложные формулы и выражения, которые требуется алгебраическим способом преобразовывать (формулы двойного и половинного угла, степенные функции), проводится работа с тригонометрической окружностью.

Однако учителя далеко не всегда могут доходчиво объяснить смысл используемых понятий и применимость формул. Поэтому ученик зачастую не видит смысла в данном предмете, а заученная информация быстро забывается. Однако стоит один раз объяснить старшекласснику, например, связь между функцией и колебательным движением, и логическая связь запомнится на многие годы, а шутки на тему бесполезности предмета уйдут в прошлое.

Использование

Заглянем ради любопытства в различные разделы физики. Хотите определить дальность полёта снаряда? Или высчитываете силу трения между объектом и некой поверхностью? Раскачиваете маятник, следите за лучами, проходящими сквозь стекло, высчитываете индукцию? Практически в любой формуле фигурируют тригонометрические понятия. Так что такое синус и косинус?

Определения

Синус угла представляет собой отношение противолежащего катета к гипотенузе, косинус - прилежащего катета всё к той же гипотенузе. Здесь нет совершенно ничего сложного. Возможно, учеников обычно смущают значения, которые они видят в тригонометрической таблице, ведь там фигурируют квадратные корни. Да, получать из них десятичные дроби не очень удобно, но кто сказал, что все числа в математике должны быть ровными?

На самом деле в задачниках по тригонометрии можно найти забавную подсказку: большинство ответов здесь ровные и в худшем случае содержат корень из двух или из трёх. Вывод прост: если у вас в ответе получилась «многоэтажная» дробь, перепроверьте решение на предмет ошибок в расчётах или в рассуждениях. И вы их, скорее всего, найдете.

Что нужно запомнить

Как и в любой науке, в тригонометрии есть такие данные, которые необходимо выучить.

Во-первых, следует запомнить числовые значения для синусов, косинусов прямоугольного треугольника 0 и 90, а также 30, 45 и 60 градусов. Эти показатели встречаются в девяти из десяти школьных задач. Подглядывая эти значения в учебнике, вы потеряете много времени, а на контрольной или экзамене посмотреть и вовсе будет негде.

Нужно помнить, что значение обеих функций не может превышать единицу. Если где-либо в расчетах вы получите значение, выходящее за пределы диапазона 0-1, остановитесь и решите задачу заново.

Сумма квадратов синуса и косинуса равна единице. Если вы уже нашли одно из значений, воспользуйтесь этой формулой для нахождения оставшегося.

Теоремы

В базовой тригонометрии существует две основные теоремы: синусов и косинусов.

Первая гласит, что отношение каждой стороны треугольника к синусу противолежащего угла одинаково. Вторая - что квадрат любой стороны можно получить, если сложить квадраты двух оставшихся сторон и вычесть удвоенное их произведение, умноженное на косинус лежащего между ними угла.

Таким образом, если в теорему косинусов подставить значение угла в 90 градусов, мы получим… теорему Пифагора. Теперь, если требуется высчитать площадь фигуры, не являющейся прямоугольным треугольником, можно больше не переживать - две рассмотренные теоремы существенно упростят решение задачи.

Цели и задачи

Изучение тригонометрии значительно упростится, когда вы осознаете один простой факт: все выполняемые вами действия направлены на достижения всего одной цели. Любые параметры треугольника могут быть найдены, если вы знаете о нём самый минимум информации - это может быть величина одного угла и длины двух сторон или, например, три стороны.

Для определения синуса, косинуса, тангенса любого угла этих данных достаточно, с их же помощью можно легко высчитать площадь фигуры. Практически всегда в качестве ответа требуется привести одно из упомянутых значений, а найти их можно по одним и тем же формулам.

Нестыковки при изучении тригонометрии

Одним из непонятных вопросов, которых школьники предпочитают избегать, является обнаружение связи между различными понятиями в тригонометрии. Казалось бы, для изучения синусов и косинусов углов используются треугольники, но обозначения почему-то часто встречаются на рисунке с окружностью. Кроме того, существует и вовсе непонятный волнообразный график под названием синусоида, не имеющий никакого внешнего сходства ни с окружностью, ни с треугольниками.

Более того, углы измеряются то в градусах, то в радианах, а число Пи, записывающееся просто как 3,14 (без единиц измерения), почему-то фигурирует в формулах, соответствуя 180 градусам. Как всё это связано между собой?

Единицы измерения

Почему число Пи равняется именно 3,14? Помните ли вы, что это за значение? Это количество радиусов, умещающихся в дуге на половине окружности. Если диаметр круга - 2 сантиметра, длина окружности составит 3,14*2, или 6,28.

Второй момент: возможно, вы замечали сходство слов «радиан» и «радиус». Дело в том, что один радиан численно равен величине угла, отложенного из центра окружности на дугу длиной в один радиус.

Теперь совместим полученные знания и поймем, почему сверху на оси координат в тригонометрии пишется «Пи пополам», а слева - «Пи». Это угловая величина, измеренная в радианах, ведь полукруг - это 180 градусов, или 3,14 радиана. А там, где есть градусы, есть синусы и косинусы. Треугольник же легко провести от нужной точки, отложив отрезки к центру и на ось координат.

Заглянем в будущее

Тригонометрия, изучаемая в школе, имеет дело с прямолинейной системой координат, где, как бы это странно ни звучало, прямая - это прямая.

Но есть и более сложные способы работы с пространством: сумма углов треугольника здесь будет больше 180 градусов, а прямая в нашем представлении будет выглядеть как самая настоящая дуга.

Перейдем от слов к делу! Возьмите яблоко. Сделайте ножом три надреза, чтобы при взгляде сверху получался треугольник. Выньте получившийся кусок яблока и посмотрите на «рёбра», где заканчивается кожура. Они вовсе не прямые. Фрукт в ваших руках условно можно назвать круглым, а теперь представьте, какими сложными должны быть формулы, с помощью которых можно найти площадь вырезанного куска. А ведь некоторые специалисты решают такие задачи ежедневно.

Тригонометрические функции в жизни

Обращали ли вы внимание, что самый короткий маршрут самолёта из точки А в точку Б на поверхности нашей планеты имеет ярко выраженную форму дуги? Причина проста: Земля имеет форму шара, а значит, с помощью треугольников многого не вычислишь - здесь приходится использовать более сложные формулы.

Не обойтись без синуса/косинуса острого угла в любых вопросах, связанных с космосом. Интересно, что здесь сходится целое множество факторов: тригонометрические функции требуются при расчётах движения планет по окружностям, эллипсам и различным траекториям более сложных форм; процесса запуска ракет, спутников, шаттлов, отстыковки исследовательских аппаратов; наблюдении за далёкими звёздами и изучении галактик, до которых человек в обозримом будущем добраться не сможет.

В целом поле для деятельности человека, владеющего тригонометрией, очень широко и, по-видимому, со временем будет только расширяться.

Заключение

Сегодня мы узнали или, во всяком случае, повторили, что такое синус и косинус. Это понятия, которых не нужно бояться - стоит захотеть, и вы поймете их смысл. Помните, что тригонометрия - это не цель, а лишь инструмент, который можно использовать для удовлетворения реальных человеческих потребностей: строить дома, обеспечивать безопасность движения, даже осваивать просторы вселенной.

Действительно, сама по себе наука может казаться скучной, но как только вы найдете в ней способ достижения собственных целей, самореализации, процесс обучения станет интересным, а ваша личная мотивация возрастёт.

В качестве домашнего задания попробуйте найти способы применить тригонометрические функции в той сфере деятельности, которая интересна лично вам. Пофантазируйте, включите воображение, и тогда наверняка окажется, что новые знания пригодятся вам в будущем. Да и кроме того, математика полезна для общего развития мышления.

Инструкция

Используйте функцию арксинус для вычисления величины угла в градусах, если известно значение этого угла. Если угол обозначить буквой α, в общем виде решение можно записать так: α = arcsin(sin(α)).

Если у вас есть возможность пользоваться компьютером, для практических расчетов проще всего использовать встроенный операционной системы. В последних двух версиях ОС Windows его можно запустить так: нажмите клавишу Win, наберите «ка» и надавите Enter. В более ранних выпусках этой ОС ссылку «Калькулятор» ищите в подразделе «Стандартные» раздела «Все программы» главного меню системы.

После запуска приложения переключите его в режим, позволяющий работать с тригонометрическими функциями. Сделать это можно выбором строки «Инженерный» в разделе «Вид» меню калькулятора или нажатием клавиш Alt + 2.

Введите значение синуса. По умолчанию в интерфейсе калькулятора нет кнопки для вычисления арксинуса. Чтобы возможность использовать эту функцию, вам нужно инвертировать значения кнопок по умолчанию - кликните по клавише Inv в окне программы. В более ранних версиях эту кнопку заменяет чекбокс с таким же обозначением - поставьте в нем отметку.

Можно использовать в расчетах и различные -сервисы, которых более чем достаточно в интернете. Например, перейдите на страницу http://planetcalc.com/326/, прокрутите ее немного вниз и в поле Input введите значение синуса. Для запуска процедуры вычисления здесь предназначена кнопка с надписью Calculate - кликните по ней. Результат вычислений вы найдете в первой строке таблицы под этой кнопкой. Кроме арксинуса в ней отображаются и величины , и арккотангенса введенного значения.

Обратная синусу тригонометрическая функция называется арксинусом . Она может принимать значения, лежащие в пределах половины числа Пи как в положительную, так и в отрицательную стороны при измерении в радианах. При измерении в градусах эти значения будут находиться, соответственно, в диапазоне от -90° до +90°.

Инструкция

Некоторые «круглые» значения не обязательно вычислять, проще их запомнить. Например:- если аргумент функции равен нулю, то значение арксинуса от него тоже равно нулю;- от 1/2 равен 30° или 1/6 Пи, если измерять ;- арксинус от -1/2 равен -30° или -1/6 от числа Пи в ;- арксинус от 1 равен 90° или 1/2 от числа Пи в радианах;- арксинус от -1 равен -90° или -1/2 от числа Пи в радианах;

Для измерения значений этой функции от других аргументов проще всего воспользоваться стандартным калькулятором Windows, если под рукой есть . Чтобы запустить раскройте главное меню на кнопке «Пуск» ( или нажатием клавиши WIN), перейдите в раздел «Все программы», а затем в подраздел «Стандартные» и щелкните пункт «Калькулятор».

Переключите интерфейс калькулятора в тот режим работы, который позволяет вычислять тригонометрические функции. Для этого откройте в его меню раздел «Вид» и выберите пункт «Инженерный» или «Научный» (в зависимости от используемой операционной системы).

Введите значение аргумента, от которого надо вычислить арктангенс. Это можно делать, щелкая кнопки интерфейса калькулятора мышкой, или нажимая клавиши на , или скопировав значение (CTRL + C) и затем вставив его (CTRL + V) в поле ввода калькулятора.

Выберите единицы измерения, в которых вам нужно получить результат вычисления функции. Ниже поля ввода помещены три варианта, из которых вам нужно выбрать (щелкнув его мышкой) одни - , радианы или рады.

Поставьте отметку в чекбоксе, который инвертирует функции, указанные на кнопках интерфейса калькулятора. Рядом с ним стоит короткая надпись Inv.

Щелкните кнопку sin. Калькулятор инвертирует привязанную к ней функцию, произведет вычисление и представит вам результат в заданных единицах измерения.

Видео по теме

На прямоугольном треугольнике, как наипростейшем из многоугольников, разные ученые мужи оттачивали свои знания в области тригонометрии еще в те времена, когда эту область математики никто даже не называл таким словом. Поэтому указать автора, выявившего закономерности в соотношениях длин сторон и величин углов в этой плоской геометрической фигуре, сегодня не представляется возможным. Такие соотношения названы тригонометрическими функциями и поделены на несколько групп, основной из которых условно считаются «прямые» функции. К этой группе отнесены всего две функции и одна из них - синус.

Инструкция

По определению в прямоугольном треугольнике один из углов равен 90°, а в силу того, что сумма его углов в евклидовой геометрии обязана быть равной 180°, два других угла являются (т.е. 90°). Закономерности соотношений именно этих углов и длин сторон и описывают тригонометрические функции.

Функция, называемая синусом острого угла, определяет соотношение между длиной двух сторон прямоугольного треугольника, одна из которых лежит напротив этого острого угла, а другая примыкает к нему и лежит напротив прямого угла. Так как сторона, лежащая напротив прямого угла в таком треугольнике, называется гипотенузой, а две другие - катетами, то функции синус можно сформулировать как соотношение между длинами катета и гипотенузы.

Кроме такого простейшего определения этой тригонометрической функции и более сложные: через окружность в декартовых координатах, через ряды, через дифференциальных и функциональных уравнений. Эта функция непрерывна, то есть ее аргументами («областью определений») может быть любое число - от бесконечно отрицательного до бесконечно положительного. А максимум значений этой функции ограничены диапазоном от -1 до +1 - это «область ее значений». Минимальное значение синус принимает при угле в 270°, что соответствует 3/ Пи, а максимальное получается при 90° (½ от Пи). Нулевыми значения функции становятся при 0°, 180°, 360° и т.д. Из всего этого вытекает, что синус является функцией периодической и период ее равен 360° или удвоенному числу Пи.

Для практических расчетов значений этой функции от заданного аргумента можно использовать - абсолютное большинство из них (включая программный калькулятор, встроенный в операционную систему вашего компьютера) имеет соответствующую опцию.

Видео по теме

Синус и косинус - это прямые тригонометрические функции, для которых существует несколько определений - через окружность в декартовой системе координат, через решения дифференциального уравнения, через острые углы в прямоугольном треугольнике. Каждое из таких определений позволяет вывести зависимость между этими двумя функциями. Ниже приведен самый, пожалуй, простой способ выразить косинус через синус - через их определения для острых углов прямоугольного треугольника.

Инструкция

Выразите синус острого угла прямоугольного треугольника через длины сторон этой фигуры. Согласно определению, синус угла (α) должен быть отношению длины стороны (a), лежащей напротив него - катета - к длине стороны (c), противолежащей прямому углу - гипотенузы: sin(α) = a/c.

Найдите аналогичную формулу для косинус а того же угла. По определению эта величина должна выражаться отношением длины стороны (b), примыкающей к этому углу (второго катета), к длине стороны (c), лежащей напротив прямого угла: cos(а) = a/c.

Перепишите равенство, вытекающее из теоремы Пифагора, таким образом, чтобы в нем были задействованы соотношения между катетами и гипотенузой, выведенные на двух предыдущих шагах. Для этого сначала разделите обе исходного этой теоремы (a² + b² = c²) на квадрат гипотенузы (a²/c² + b²/c² = 1), а затем полученное равенство перепишите в таком виде: (a/c)² + (b/c)² = 1.

Замените в полученном выражении соотношения длин катетов и гипотенузы тригонометрическими функциями, исходя из формул первого и второго шага: sin²(а) + cos²(а) = 1. Выразите косинус из полученного равенства: cos(a) = √(1 - sin²(а)). На этом задачу можно решенной в общем виде.

Если кроме общего нужно получить численный результат, воспользуйтесь, например, калькулятором, встроенным в операционную систему Windows. Ссылку на его запуск в подразделе «Стандартные» раздела «Все программы» меню ОС. Эта ссылка сформулирована лаконично - «Калькулятор». Чтобы иметь возможность вычислять с этой программы тригонометрические функции включите ее «инженерный» интерфейс - нажмите комбинацию клавиш Alt + 2.

Введите в условиях значение синуса угла и кликните по кнопке интерфейса с обозначением x² - так вы возведете исходное значение в квадрат. Затем наберите на клавиатуре *-1, нажмите Enter, введите +1 и нажмите Enter еще раз - таким способом вы вычтите из единицы квадрат синуса. Щелкните по клавише со значком радикала, чтобы извлечь квадратный и получить окончательный результат.

Изучение треугольников ведется математиками на протяжении нескольких тысячелетий. Наука о треугольниках - тригонометрия - использует специальные величины: синус и косинус.

Прямоугольный треугольник

Изначально синус и косинус возникли из-за необходимости рассчитывать величины в прямоугольных треугольниках. Было замечено, что если значение градусной меры углов в прямоугольном треугольнике не менять, то соотношение сторон, насколько бы эти стороны ни изменялись в длине, остается всегда одинаковым.

Именно так и были введены понятия синуса и косинуса. Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе, а косинус – прилежащего к гипотенузе.

Теоремы косинусов и синусов

Но косинусы и синусы могут применяться не только в прямоугольных треугольниках. Чтобы найти значение тупого или острого угла, стороны любого треугольника, достаточно применить теорему косинусов и синусов.

Теорема косинусов довольно проста: «Квадрат стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними».

Существует две трактовки теоремы синусов: малая и расширенная. Согласно малой: «В треугольнике углы пропорциональны противолежащим сторонам». Данную теорему часто расширяют за счет свойства описанной около треугольника окружности: «В треугольнике углы пропорциональны противолежащим сторонам, а их отношение равно диаметру описанной окружности».

Производные

Производная - математический инструмент, показывающий, как быстро меняется функция относительно изменения ее аргумента. Производные используются , геометрии, и , ряде технических дисциплин.

При решении задач требуется знать табличные значения производных тригонометрических функций: синуса и косинуса. Производной синуса является косинус, а косинуса - синус, но со знаком «минус».

Применение в математике

Особенно часто синусы и косинусы используются при решении прямоугольных треугольников и задач, связанных с ними.

Удобство синусов и косинусов нашло свое отражение и в технике. Углы и стороны было просто оценивать по теоремам косинусов и синусов, разбивая сложные фигуры и объекты на «простые» треугольники. Инженеры и , часто имеющие дело с расчетами соотношения сторон и градусных мер, тратили немало времени и усилий для вычисления косинусов и синусов не табличных углов.

Тогда «на подмогу» пришли таблицы Брадиса, содержащие тысячи значений синусов, косинусов, тангенсов и котангенсов разных углов. В советское время некоторые преподаватели заставляли своих подопечных страницы таблиц Брадиса наизусть.

Радиан - угловая величина дуги, по длине равной радиусу или 57,295779513° градусов.

Градус (в геометрии) - 1/360-я часть окружности или 1/90-я часть прямого угла.

π = 3.141592653589793238462… (приблизительное значение числа Пи).

Таблица косинусов для углов: 0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360°.

Угол х (в градусах) 30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°
Угол х (в радианах) 0 π/6 π/4 π/3 π/2 2 x π/3 3 x π/4 5 x π/6 π 7 x π/6 5 x π/4 4 x π/3 3 x π/2 5 x π/3 7 x π/4 11 x π/6 2 x π
cos x 1 √3/2 (0,8660) √2/2 (0,7071) 1/2 (0,5) 0 -1/2 (-0,5) -√2/2 (-0,7071) -√3/2 (-0,8660) -1 -√3/2 (-0,8660) -√2/2 (-0,7071) -1/2 (-0,5) 0 1/2 (0,5) √2/2 (0,7071) √3/2 (0,8660) 1

В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов . Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

Навигация по странице.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2

Тригонометрия - раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Yandex.RTB R-A-339285-1

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) - отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cos α) - отношение прилежащего катета к гипотенузе.

Тангенс угла (t g α) - отношение противолежащего катета к прилежащему.

Котангенс угла (c t g α) - отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию.

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса - вся числовая прямая, то есть эти функции могут принимать любые значения.

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от - ∞ до + ∞ .

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами (1 , 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 (x , y).

Синус (sin) угла поворота

Синус угла поворота α - это ордината точки A 1 (x , y). sin α = y

Косинус (cos) угла поворота

Косинус угла поворота α - это абсцисса точки A 1 (x , y). cos α = х

Тангенс (tg) угла поворота

Тангенс угла поворота α - это отношение ординаты точки A 1 (x , y) к ее абсциссе. t g α = y x

Котангенс (ctg) угла поворота

Котангенс угла поворота α - это отношение абсциссы точки A 1 (x , y) к ее ординате. c t g α = x y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0 , 1) и (0 , - 1). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов α .

Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z)

Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z)

При решении практических примеров не говорят "синус угла поворота α ". Слова "угол поворота" просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности - точка A c координатами (1 , 0).

Положительному числу t

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t - ордината точки единичной окружности, соответствующей числу t. sin t = y

Косинус (cos) числа t

Косинус числа t - абсцисса точки единичной окружности, соответствующей числу t. cos t = x

Тангенс (tg) числа t

Тангенс числа t - отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t , совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z).

Можно сказать, что sin α , cos α , t g α , c t g α - это функции угла альфа, или функции углового аргумента.

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t . Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс - основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A (1 , 0) на угол величиной до 90 градусов и проведем из полученной точки A 1 (x , y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 (x , y) . Длина катета, противолежащего углу, равна ординате точки A 1 (x , y) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Инструкция

Первый вариант - классический, с использованием бумаги, транспортира и карандаша (или ручки).По определению синус угла равен противолежащего катета к гипотенузе прямоугольного треугольника. То есть, чтобы вычислить значение, вам надо при помощи транспортира построить прямоугольный треугольник, один из углов которого равен тому, синус которого вас интересует. Затем измерить длину гипотенузы и противолежащего катета и разделить второе на первое с нужной точности.

Второй вариант - школьный. Со школы все помнят «таблицы Брадиса», содержащие тысячи значений тригонометрических от разных углов. Можно поискать как бумажное издание, так и его электронный аналог в формате pdf - они есть в сети. Найдя таблицы, найти значение синуса нужного угла не составит труда.

Третий вариант - оптимальный. Если есть доступ к , то можно воспользоваться стандартным калькулятором ОС Windows. Его следует переключить в расширенный режим. Для этого в разделе «Вид» меню выберите пункт «Инженерный». Вид калькулятора изменится - в нем появятся, в частности, кнопки для вычисления тригонометрических функций.Теперь введите значение угла , синус которого вам требуется вычислить. Можно сделать это как с клавиатуры, так и щелкая курсором мыши нужные клавиши калькулятора. А можно просто и вставить нужное вам значение (CTRL + C и CTRL + V). После этого выберите единицы измерения, в которых должен быть рассчитан - для тригонометрических функций это могут быть радианы, градусы или рады. Делается это выбором одного из трех значений переключателя, расположенного ниже поля ввода вычисляемого значения. Теперь, нажав кнопку с надписью "sin", получите ответ на свой вопрос.

Четвертый вариант - самый современный. В эру интернета в сети существуют , предлагающие чуть ли не каждую возникающую проблему. Он-лайн калькуляторы тригонометрических функций с удобным интерфейсом, более продвинутыми функциональными возможностями найти совсем не . Лучшие из них предлагают вычислить не только значения отдельной функции, но и достаточно сложных выражений из нескольких функций.

Функции синус и косинус относятся к области математики, которую называют тригонометрией, поэтому и сами функции называют тригонометрическими. Согласно самому старому из определений они выражают величину острого угла в прямоугольном треугольнике через отношения длин его сторон. Вычисление значений синус а при современном уровне развития электронной техники - довольно простая задача.

Вам понадобится

  • Калькулятор Windows.

Инструкция

Используйте для вычисления синус а угла - вычисление тригонометрических функций предусмотрено в большинстве из них. Учитывая наличие калькулятора во многих мобильных телефонах, некоторых наручных и других мобильных гаджетах, не говоря уже о компьютерах, это, пожалуй, доступный способ вычисления синус а. Если вы решите воспользоваться программным калькулятором компьютера, то ссылку на его запуск ищите в главном меню ОС. Если это Windows, нажмите кнопку Win, выберите в меню пункт «Все программы», перейдите в подраздел «Стандартные» и кликните по строчке «Калькулятор». Чтобы открыть в запустившемся приложении доступ к командам вычисления тригонометрических функций нажмите сочетание клавиш Alt + 2.

Если в исходных величина угла, синус которого требуется вычислить, дана в , убедитесь, что рядом с надписью « » в интерфейсе калькулятора