Найти угол зная его тангенс. Синус, косинус, тангенс: что такое? Как найти синус, косинус и тангенс

Тригонометрия – тема, которую многие обходят стороной. Несмотря на это, если найти к ней правильный подход она станет очень интересной для вас. Тригонометрические формулы, в том числе и формулы для нахождения тангенса, используются во многих сферах реальной жизни. Данная статья расскажет о способах нахождения тангенса угла и приведет примеры применения данной величины в жизни. Это даст вам мотивацию на пути изучения данной темы.

Несмотря на мнение, которые бытует среди большинства школьников, тригонометрия достаточно часто применяется в жизни. Наглядный пример практического применения даст вам стимул не лениться. Вот несколько сфер деятельности где используются тригонометрические вычисления, в том числе и нахождение тангенса угла:

  • Экономика.
  • Астрономия.
  • Авиация.
  • Инженерия.

Итак, ниже будут приведены способы нахождения tg.

Как найти tg угла

Нахождение тангенса угла достаточно просто. Вы можете изучить данную тему и просто вызубрить правила, но все это может вылететь из головы на экзамене. Поэтому стоит подходить к данному вопросу осмысленно. Основные формулы для запоминания:

  • tg0° = 0
  • tg30° = 1/√3
  • tg45° = 1
  • tg60° = √3
  • tg90° = ∞ (бесконечность/неопределенно)

Обратите внимание, что величины идут по возрастанию: чем больше угол – тем больше значение тангенса. Соответственно, при градусном значении угла в 0° мы получим 0. При значении в тридцать градусов – единица поделенная на корень из трех и т.д., пока мы не достигнем отметки в 90°. При нем величина тангенса равна бесконечности или неопределенности (исходя из конкретной ситуации).

Данные выражения вытекают из правила нахождения тангенса через прямоугольный треугольник. Так, тангенс угла A (tgA) равен соотношению противолежащего катета к прилежащему. Представьте, что дан прямоугольный треугольник, в котором известны все стороны, но не известны углу. По решению задачи требуется найти тангенс угла A. Величина стороны, которая лежит напротив угла – 1, а прилежащего катета – √3. Их соотношение дает 1/√3. Мы уже знаем, что величина угла при данном показателе равна 30 градусам. Соответственно, угол A = 30°.

В прямоугольном треугольнике у прямоугольного угла оба тангенса – прилежащие. Противолежащая сторона данного угла – гипотенуза. Именно потому, что мы не можем разделить два катета друг на друга (нарушится условие нахождения), тангенс 90° в данном случае не существует.

Помимо всего этого, часто приходится находить тангенс тупого угла. Обычно в задачах встречаются тупые углы с величиной в 120 или 150 градусов. Формула нахождения тангенса тупого угла выглядит следующим образом: tg(180-a) = tga.
К примеры, нам необходимо найти тангенс 120°. Необходимо задать себе следующий вопрос: сколько нужно отнять от 180, чтобы получить 120? Однозначно, 60°. Отсюда следует, что тангенс 120° и тангенс 60° равны друг другу и tg120° = √3. По такой же логике можно найти тангенс в 150 и 180 градусов. Их значения будут соответственно равны 1/√3 и 0. Величины тангенсов других углов приведены в тригонометрической таблицы, но используются они крайне редко.

Как найти tg угла онлайн

Существует много онлайн ресурсов для нахождения тангенса угла. Одним из таких является сайт FXYZ . Перейдите по ссылке. Перед вами выйдет страница, где будут приведены основные формулы, связанные с тангенсом, а также калькулятор. Пользоваться калькулятором достаточно просто. Необходимо ввести соответствующие и калькулятор вычислит ответ. Этот несложный алгоритм поможет вам в случае, если вы что-то забыли. На данном сайте есть два калькулятора. Один – для нахождения величины тангенса исходя из длин катетов треугольника, а второй исходя из величины угла. Используйте тот вычислитель, который требует задача.


Как вы могли заметить, нахождения тангенса и других тригонометрических показателей очень часто применяется в реальной жизни, а находить эти значения совсем несложно. Если вы поймете суть нахождения, то что-либо зазубривать вам не придется – вы сами сможете дойти до правильного ответа. Если все-таки что-то не получается, воспользуйтесь калькулятором, но не злоупотребляйте. На экзамене, зачете или школьной контрольной работе такой возможности вам никто не предоставит. Более того, если вы поступите на факультет, где изучается тригонометрия высшей математики, без базовых знаний вам придется серьезно попотеть чтобы не срезаться.

Одним из разделов математики, с которыми школьники справляются с наибольшими трудностями, является тригонометрия. Неудивительно: для того чтобы свободно овладеть этой областью знаний, требуется наличие пространственного мышления, умение находить синусы, косинусы, тангенсы, котангенсы по формулам, упрощать выражения, уметь применять в вычислениях число пи. Помимо этого, нужно уметь применять тригонометрию при доказательстве теорем, а это требует либо развитой математической памяти, либо умения выводить непростые логические цепочки.

Истоки тригонометрии

Знакомство с данной наукой следует начать с определения синуса, косинуса и тангенса угла, однако прежде необходимо разобраться, чем вообще занимается тригонометрия.

Исторически главным объектом исследования данного раздела математической науки были прямоугольные треугольники. Наличие угла в 90 градусов дает возможность осуществлять различные операции, позволяющие по двум сторонам и одному углу либо по двум углам и одной стороне определять значения всех параметров рассматриваемой фигуры. В прошлом люди заметили эту закономерность и стали активно ею пользоваться при строительстве зданий, навигации, в астрономии и даже в искусстве.

Начальный этап

Первоначально люди рассуждали о взаимоотношении углов и сторон исключительно на примере прямоугольных треугольников. Затем были открыты особые формулы, позволившие расширить границы употребления в повседневной жизни данного раздела математики.

Изучение тригонометрии в школе сегодня начинается с прямоугольных треугольников, после чего полученные знания используются учениками в физике и решении абстрактных тригонометрических уравнений, работа с которыми начинается в старших классах.

Сферическая тригонометрия

Позже, когда наука вышла на следующий уровень развития, формулы с синусом, косинусом, тангенсом, котангенсом стали использоваться в сферической геометрии, где действуют иные правила, а сумма углов в треугольнике всегда больше 180 градусов. Данный раздел не изучается в школе, однако знать о его существовании необходимо как минимум потому, что земная поверхность, да и поверхность любой другой планеты, является выпуклой, а значит, любая разметка поверхности будет в трёхмерном пространстве «дугообразной».

Возьмите глобус и нитку. Приложите нитку к двум любым точкам на глобусе, чтобы она оказалась натянутой. Обратите внимание - она обрела форму дуги. С такими формами и имеет дело сферическая геометрия, применяющаяся в геодезии, астрономии и других теоретических и прикладных областях.

Прямоугольный треугольник

Немного узнав про способы применения тригонометрии, вернемся к базовой тригонометрии, чтобы в дальнейшем разобраться, что такое синус, косинус, тангенс, какие расчёты можно с их помощью выполнять и какие формулы при этом использовать.

Первым делом необходимо уяснить понятия, относящиеся к прямоугольному треугольнику. Во-первых, гипотенуза - это сторона, лежащая напротив угла в 90 градусов. Она является самой длинной. Мы помним, что по теореме Пифагора её численное значение равно корню из суммы квадратов двух других сторон.

Например, если две стороны равны 3 и 4 сантиметрам соответственно, длина гипотенузы составит 5 сантиметров. Кстати, об этом знали ещё древние египтяне около четырех с половиной тысяч лет назад.

Две оставшиеся стороны, которые образуют прямой угол, носят название катетов. Кроме того, надо помнить, что сумма углов в треугольнике в прямоугольной системе координат равняется 180 градусам.

Определение

Наконец, твердо понимая геометрическую базу, можно обратиться к определению синуса, косинуса и тангенса угла.

Синусом угла называется отношение противолежащего катета (т. е. стороны, располагающейся напротив нужного угла) к гипотенузе. Косинусом угла называется отношение прилежащего катета к гипотенузе.

Запомните, что ни синус, ни косинус не может быть больше единицы! Почему? Потому что гипотенуза - это по умолчанию самая длинная Каким бы длинным ни был катет, он будет короче гипотенузы, а значит, их отношение всегда будет меньше единицы. Таким образом, если у вас в ответе к задаче получился синус или косинус со значением, большим, чем 1, ищите ошибку в расчётах или рассуждениях. Этот ответ однозначно неверен.

Наконец, тангенсом угла называется отношение противолежащей стороны к прилежащей. Тот же самый результат даст деление синуса на косинус. Посмотрите: в соответствии с формулой мы делим длину стороны на гипотенузу, после чего делим на длину второй стороны и умножаем на гипотенузу. Таким образом, мы получаем то же самое соотношение, что и в определении тангенса.

Котангенс, соответственно, представляет собой отношение прилежащей к углу стороны к противолежащей. Тот же результат мы получим, разделив единицу на тангенс.

Итак, мы рассмотрели определения, что такое синус, косинус, тангенс и котангенс, и можем заняться формулами.

Простейшие формулы

В тригонометрии не обойтись без формул - как найти синус, косинус, тангенс, котангенс без них? А ведь именно это требуется при решении задач.

Первая формула, которую необходимо знать, начиная изучать тригонометрию, говорит о том, что сумма квадратов синуса и косинуса угла равна единице. Данная формула является прямым следствием теоремы Пифагора, однако позволяет сэкономить время, если требуется узнать величину угла, а не стороны.

Многие учащиеся не могут запомнить вторую формулу, также очень популярную при решении школьных задач: сумма единицы и квадрата тангенса угла равна единице, деленной на квадрат косинуса угла. Присмотритесь: ведь это то же самое утверждение, что и в первой формуле, только обе стороны тождества были поделены на квадрат косинуса. Выходит, простая математическая операция делает тригонометрическую формулу совершенно неузнаваемой. Помните: зная, что такое синус, косинус, тангенс и котангенс, правила преобразования и несколько базовых формул вы в любой момент сможете сами вывести требуемые более сложные формулы на листе бумаги.

Формулы двойного угла и сложения аргументов

Ещё две формулы, которые требуется выучить, связаны со значениями синуса и косинуса при сумме и разности углов. Они представлены на рисунке ниже. Обратите внимание, что в первом случае оба раза перемножается синус и косинус, а во втором складывается попарное произведение синуса и косинуса.

Также существуют формулы, связанные с аргументами в виде двойного угла. Они полностью выводятся из предыдущих - в качестве тренировки попробуйте получить их самостоятельно, приняв угол альфа равным углу бета.

Наконец, обратите внимание, что формулы двойного угла можно преобразовать так, чтобы понизить степень синуса, косинуса, тангенса альфа.

Теоремы

Двумя основными теоремами в базовой тригонометрии являются теорема синусов и теорема косинусов. С помощью этих теорем вы легко сможете понять, как найти синус, косинус и тангенс, а значит, и площадь фигуры, и величину каждой стороны и т. д.

Теорема синусов утверждает, что в результате деления длины каждой из сторон треугольника на величину противолежащего угла мы получим одинаковое число. Более того, это число будет равно двум радиусам описанной окружности, т. е. окружности, содержащей все точки данного треугольника.

Теорема косинусов обобщает теорему Пифагора, проецируя её на любые треугольники. Оказывается, из суммы квадратов двух сторон вычесть их произведение, умноженное на двойной косинус смежного им угла - полученное значение окажется равно квадрату третьей стороны. Таким образом, теорема Пифагора оказывается частным случаем теоремы косинусов.

Ошибки по невнимательности

Даже зная, что такое синус, косинус и тангенс, легко совершить ошибку из-за рассеянности внимания или ошибки в простейших расчётах. Чтобы избежать таких ошибок, ознакомимся с наиболее популярными из них.

Во-первых, не следует преобразовывать обыкновенные дроби в десятичные до получения окончательного результата - можно и ответ оставить в виде обыкновенной дроби, если в условии не оговорено обратное. Такое преобразование нельзя назвать ошибкой, однако следует помнить, что на каждом этапе задачи могут появиться новые корни, которые по задумке автора должны сократиться. В этом случае вы напрасно потратите время на излишние математические операции. Особенно это актуально для таких значений, как корень из трёх или из двух, ведь они встречаются в задачах на каждом шагу. То же касается округлений «некрасивых» чисел.

Далее, обратите внимание, что к любому треугольнику применима теорема косинусов, но не теорема Пифагора! Если вы по ошибке забудете вычесть удвоенное произведение сторон, умноженное на косинус угла между ними, вы не только получите совершенно неверный результат, но и продемонстрируете полное непонимание предмета. Это хуже, чем ошибка по невнимательности.

В-третьих, не путайте значения для углов в 30 и 60 градусов для синусов, косинусов, тангенсов, котангенсов. Запомните эти значения, ведь синус 30 градусов равен косинусу 60, и наоборот. Их легко перепутать, вследствие чего вы неизбежно получите ошибочный результат.

Применение

Многие ученики не спешат приступать к изучению тригонометрии, поскольку не понимают её прикладного смысла. Что такое синус, косинус, тангенс для инженера или астронома? Это понятия, благодаря которым можно вычислить расстояние до далёких звёзд, предсказать падение метеорита, отправить исследовательский зонд на другую планету. Без них нельзя построить здание, спроектировать автомобиль, рассчитать нагрузку на поверхность или траекторию движения предмета. И это только самые очевидные примеры! Ведь тригонометрия в том или ином виде используется повсюду, начиная от музыки и заканчивая медициной.

В заключение

Итак, вы синус, косинус, тангенс. Вы можете использовать их в расчётах и успешно решать школьные задачи.

Вся суть тригонометрии сводится к тому, что по известным параметрам треугольника нужно вычислить неизвестные. Всего этих параметров шесть: длины трёх сторон и величины трёх углов. Всё различие в задачах заключается в том, что даются неодинаковые входные данные.

Как найти синус, косинус, тангенс исходя из известных длин катетов или гипотенузы, вы теперь знаете. Поскольку эти термины обозначают не что иное, как отношение, а отношение - это дробь, главной целью тригонометрической задачи становится нахождение корней обычного уравнения либо же системы уравнений. И здесь вам поможет обычная школьная математика.

Отношение противолежащего катета к гипотенузе называют синусом острого угла прямоугольного треугольника.

\sin \alpha = \frac{a}{c}

Косинус острого угла прямоугольного треугольника

Отношение близлежащего катета к гипотенузе называют косинусом острого угла прямоугольного треугольника.

\cos \alpha = \frac{b}{c}

Тангенс острого угла прямоугольного треугольника

Отношение противолежащего катета к близлежащему катету называют тангенсом острого угла прямоугольного треугольника.

tg \alpha = \frac{a}{b}

Котангенс острого угла прямоугольного треугольника

Отношение близлежащего катета к противолежащему катету называют котангенсом острого угла прямоугольного треугольника.

ctg \alpha = \frac{b}{a}

Синус произвольного угла

Ордината точки на единичной окружности , которой соответствует угол \alpha называют синусом произвольного угла поворота \alpha .

\sin \alpha=y

Косинус произвольного угла

Абсцисса точки на единичной окружности, которой соответствует угол \alpha называют косинусом произвольного угла поворота \alpha .

\cos \alpha=x

Тангенс произвольного угла

Отношение синуса произвольного угла поворота \alpha к его косинусу называют тангенсом произвольного угла поворота \alpha .

tg \alpha = y_{A}

tg \alpha = \frac{\sin \alpha}{\cos \alpha}

Котангенс произвольного угла

Отношение косинуса произвольного угла поворота \alpha к его синусу называют котангенсом произвольного угла поворота \alpha .

ctg \alpha =x_{A}

ctg \alpha = \frac{\cos \alpha}{\sin \alpha}

Пример нахождения произвольного угла

Если \alpha — некоторый угол AOM , где M — точка единичной окружности, то

\sin \alpha=y_{M} , \cos \alpha=x_{M} , tg \alpha=\frac{y_{M}}{x_{M}} , ctg \alpha=\frac{x_{M}}{y_{M}} .

Например, если \angle AOM = -\frac{\pi}{4} , то: ордината точки M равна -\frac{\sqrt{2}}{2} , абсцисса равна \frac{\sqrt{2}}{2} и потому

\sin \left (-\frac{\pi}{4} \right)=-\frac{\sqrt{2}}{2} ;

\cos \left (\frac{\pi}{4} \right)=\frac{\sqrt{2}}{2} ;

tg ;

ctg \left (-\frac{\pi}{4} \right)=-1 .

Таблица значений синусов косинусов тангенсов котангенсов

Значения основных часто встречающихся углов приведены в таблице:

0^{\circ} (0) 30^{\circ}\left(\frac{\pi}{6}\right) 45^{\circ}\left(\frac{\pi}{4}\right) 60^{\circ}\left(\frac{\pi}{3}\right) 90^{\circ}\left(\frac{\pi}{2}\right) 180^{\circ}\left(\pi\right) 270^{\circ}\left(\frac{3\pi}{2}\right) 360^{\circ}\left(2\pi\right)
\sin\alpha 0 \frac12 \frac{\sqrt 2}{2} \frac{\sqrt 3}{2} 1 0 −1 0
\cos\alpha 1 \frac{\sqrt 3}{2} \frac{\sqrt 2}{2} \frac12 0 −1 0 1
tg \alpha 0 \frac{\sqrt 3}{3} 1 \sqrt3 0 0
ctg \alpha \sqrt3 1 \frac{\sqrt 3}{3} 0 0

Тангенс — это одна из тригонометрических функций . Изначально тригонометрические функции выражают зависимости элементов прямоугольных треугольников — сторон и углов. В прямоугольном треугольнике катеты — это стороны, образующие прямой угол, гипотенуза — третья сторона. Тогда тангенс угла — это отношение противолежащего катета к прилежащему. Таким образом, это безразмерная величина, т.е. она не измеряется в градусах или метрах, это просто число. Обозначается как tg . Для решения многих геометрических и математически задач требуется вычислить тангенс угла. Найти его можно разными способами.

Необходимо:

— калькулятор;
— MS Excel;
— базовые знания в области математики, геометрии и тригонометрии.

Инструкция:

  • Данную величину можно определить как отношения синуса угла к косинусу этого же угла. Если они известны, то нужную характеристику можно вычислить по формуле tg(a)=sin(a)/cos(a) .
  • Значение можно вычислить с помощью инженерного калькулятора. Для этого наберите число и нажмите клавишу tg . Значение тангенса может быть сколь угодно большим или малым, но для значений углов, кратных 90 градусам, эта характеристика не существует.
  • Значение tg можно определить по графику функции Y=tg(x) . Для этого надо на оси X найти значение угла, для которого ищется данная характеристика, провести из этой точки перпендикуляр к оси абсцисс (ось ОX ) до пересечения с графиком, затем из точки пересечения провести перпендикуляр к оси ординат (ось OY ). Значение Y в этой точке и будет искомым значением тангенса.
  • Как найти тангенс угла, если под рукой нет калькулятора? Можно посчитать его в программе Excel . Введите в любой ячейке =tan(радианы(а)) , где а — число, от которого ищется значение характеристики, нажмите Enter . В ячейке появится значение данной величины.
  • Также тригонометрические функции иногда определяют через ряды . Это позволяет вычислить их значение с любой точностью. Например, если разложить тангенс в ряд Тейлора , то первые члены этого ряда будут x+1/3*x^2+2/15*x^5+… Сумму этого бесконечно ряда можно посчитать, пользуясь свойствами пределов .

Вспомним школьный курс математики и поговорим о том, что такое тангенс и как найти тангенс угла. Сначала определим, что называется тангенсом. В прямоугольном треугольнике тангенсом острого угла является отношение противолежащего катета к прилежащему. Прилежащим катетом является тот, который участвует в образовании угла, противолежащим — тот, который расположен напротив угла.

Также тангенсом острого угла является отношение синуса этого угла к его косинусу. Для понимания напомним, что является синусом и косинусом угла. Синусом острого угла в прямоугольном треугольнике является отношение противолежащего катета к гипотенузе, косинус — это отношение прилежащего катета к гипотенузе.

Есть еще котангенс, он противоположен тангенсу. Котангенсом является отношение прилежащего катета к противолежащему и соответственно отношение косинуса угла к его синусу.

Синус, косинус, тангенс и котангенс являются тригонометрическими функциями угла, они показывают соотношения между углами и сторонами треугольника, помогают вычислять стороны треугольника.

Вычисляем тангенс острого угла

Как найти тангенс в треугольнике? Чтобы не тратить время на поиски тангенса, можно найти специальные таблицы, где указаны тригонометрические функции многих углов. В школьных задачках по геометрии очень распространены определенные углы, и значения их синусов, косинусов, тангенсов и котангенсов учителя просят запомнить. Мы предлагаем вам небольшую табличку с нужными значениями эти углов.

Если же угол, тангенс которого нужно найти, не представлен в этой таблице, то можно воспользоваться двумя формулами, которые мы и представили выше в словесной форме.

Первый способ вычислить тангенс угла — это поделить длину противолежащего катета на длину прилежащего. Допустим, противолежащий катет равен 4, а прилежащий 8. Чтобы найти тангенс, надо 4:8. Тангенс угла будет равен ½ или 0,5.

Второй способ вычисления тангенса — это поделить значение синуса данного угла на значение его косинуса. Например, нам дан угол в 45 градусов. Его sin = корень из двух, поделенный на два; его cos равен тому же числу. Теперь делим синус на косинус и получаем тангенс, равный единице.

Бывает, что нужно воспользоваться именно этой формулой, но известен только один элемент — или синус, или косинус. В таком случае будет полезно вспомнить формулу

sin2 α + cos2 α = 1. Это основное тригонометрическое тождество. Выражая неизвестный элемент через известный, можно выяснить его значение. А зная синус и косинус, найти тангенс уже нетрудно.

А если геометрия — это явно не ваше призвание, но сделать домашнее задание все же нужно, то можно воспользоваться онлайн-калькулятором расчета тангенса угла .

Мы рассказали вам на простых примерах, как находить тангенс. Однако условия задач бывают труднее и не всегда можно быстро выяснить все необходимые данные. В этом случае вам поможет теорема Пифагора и различные тригонометрические функции.