Соотношение осей и расстояний эллипса. Линии второго порядка. Эллипс и его каноническое уравнение. Окружность

Эллипс - одно из конических сечений. Его также можно определить как фигуру, состоящую из всех тех точек плоскости, сумма расстояний от которых до двух заданных точек и (называемых фокусами эллипса) является постоянной величиной, обычно обозначаемой через (рис. 1).

Из этого определения нетрудно установить, что прямая, проходящая через фокусы эллипса, есть его ось симметрии, как и прямая, являющаяся серединным перпендикуляром отрезка . Точка пересечения этих прямых служит центром симметрии эллипса, его называют просто центром эллипса. Если взять указанные прямые в качестве осей координат, то уравнение эллипса запишется в виде .

Из уравнения эллипса следует, что ось абсцисс эллипс пересекает в точках и , а ось ординат - в точках и . Эти четыре точки называются вершинами эллипса. Отрезок между вершинами на оси абсцисс называется большой осью, а на оси ординат - малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Зная определение эллипса, можно сделать простейший прибор, вычерчивающий эллипс. Для этого надо связать две булавки ниткой и воткнуть их в чертежную доску (рис. 2), взять карандаш и двигать его по бумаге так, чтобы грифель карандаша все время натягивал нитку. Тогда кончик грифеля будет рисовать на бумаге эллипс.

А как получить эллипс с данными полуосями и ? Оказывается, не случайно сумма расстояний от фокусов до точки на эллипсе обозначена через . Эта сумма равна длине большой оси. Укрепленные на доске булавки задали расстояние между фокусами, его обычно обозначают через , таким образом, - расстояние от центра эллипса до его фокуса. Если рассмотреть теперь прямоугольный треугольник на рис. 1, то из него видно, что . Таким образом, если известны величины полуосей эллипса, то расстояние от его центра до каждого из фокусов будет катетом прямоугольного треугольника с гипотенузой, равной большой полуоси, и вторым катетом, равным малой полуоси. Итак, все нужные величины имеются, и можно построить искомый эллипс. Этот способ часто используют садовники при разбивке клумб.

Второй способ построения эллипса основан на том факте, что при сжатии окружности к ее диаметру получается эллипс. Способ построения точек эллипса с полуосями и ясен из рис. 3, где внешняя и внутренняя окружности имеют радиусы соответственно и .

Отношение характеризует «сплюснутость» эллипса. Чем меньше это отношение, тем сильнее вытянут эллипс вдоль большой оси. Однако степень вытянутости эллипса принято выражать через другой параметр, общий для всех конических сечений, - эксцентриситет , который в данном случае лучше определить как отношение расстояния от центра до фокуса к длине большой полуоси . Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы. У планет, которые, как известно, движутся по эллипсам, самый маленький эксцентриситет имеет орбита Венеры (0,0068), следующий по величине эксцентриситет у Нептуна (0,0086), затем у Земли (0,0167). Самый большой эксцентриситет у Плутона (0,253), однако он не идет ни в какое сравнение с эксцентриситетами комет. Так, комета Галлея имеет эксцентриситет 0,967.

Тот факт, что эллипс является результатом сжатия окружности, объясняет, почему круглые предметы: колеса машин, иллюминаторы кораблей, циферблаты часов и т.д. - мы видим как эллипсы, если смотрим на них под углом.

Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с фокусами, пересекают касательную к эллипсу в этой точке под разными углами. А это значит, что луч, пущенный из одного фокуса, после отражения попадет в другой (рис. 1). Это свойство лежит в основе интересного акустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико (рис. 4).

Рассмотрим поверхность, полученную в результате вращения эллипса вокруг одной из его осей. Такая поверхность называется эллипсоидом вращения. Если вращать эллипс вокруг большой оси, то получится яйцеобразная фигура (рис. 5,а). Если вращать его вокруг малой оси, то полученная поверхность - сплюснутая сфера (рис. 5,б). Заметим, что Земля имеет такую форму, поскольку расстояние между ее полюсами (12 714 км) меньше, чем расстояние между диаметрально противоположными точками экватора (12 756 км).

Если эллипсоид вращения сжать к одной из плоскостей, проходящих через его ось, то получим поверхность, которая называется трехосным эллипсоидом или просто эллипсоидом (рис. 5,в). Уравнение эллипсоида имеет вид

.

Если какие-нибудь два из чисел , и равны, то соответствующее уравнение описывает эллипсоид вращения, а если равны все три числа - то сферу.

Любое сечение эллипсоида плоскостью является эллипсом.

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

где A, B, C, D, E, F - числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

где a и b (a > b ) - длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a , О ) и (- a , О ), а ось ординат - в точках (b , О ) и (- b , О ). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат - малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность - частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a /b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия - эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось - это a = 5 , меньшая полуось - это b = 4 . Получаем каноническое уравнение эллипса:

Точки и , обозначенные зелёным на большей оси, где

называются фокусами .

называется эксцентриситетом эллипса.

Отношение b /a характеризует "сплюснутость" эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

Если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

Если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат - каноническое уравнение эллипса:

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c , нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c , определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если - произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и - расстояния до этой точки от фокусов , то формулы для расстояний - следующие:

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a .

Прямые, определяемые уравнениями

называются директрисами эллипса (на чертеже - красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и - расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Эллипсом называется геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух заданных точек F_1 , и F_2 есть величина постоянная (2a) , бо́льшая расстояния (2c) между этими заданными точками (рис.3.36,а). Это геометрическое определение выражает фокальное свойство эллипса .

Фокальное свойство эллипса

Точки F_1 , и F_2 называются фокусами эллипса, расстояние между ними 2c=F_1F_2 - фокусным расстоянием, середина O отрезка F_1F_2 - центром эллипса, число 2a - длиной большой оси эллипса (соответственно, число a - большой полуосью эллипса). Отрезки F_1M и F_2M , соединяющие произвольную точку M эллипса с его фокусами, называются фокальными радиусами точки M . Отрезок, соединяющий две точки эллипса, называется хордой эллипса.

Отношение e=\frac{c}{a} называется эксцентриситетом эллипса. Из определения (2a>2c) следует, что 0\leqslant e<1 . При e=0 , т.е. при c=0 , фокусы F_1 и F_2 , а также центр O совпадают, и эллипс является окружностью радиуса a (рис.3.36,6).

Геометрическое определение эллипса , выражающее его фокальное свойство, эквивалентно его аналитическому определению - линии, задаваемой каноническим уравнением эллипса:

Действительно, введем прямоугольную систему координат (рис.3.36,в). Центр O эллипса примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось или первую ось эллипса), примем за ось абсцисс (положительное направление на ней от точки F_1 к точке F_2 ); прямую, перпендикулярную фокальной оси и проходящую через центр эллипса (вторую ось эллипса), примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Составим уравнение эллипса, пользуясь его геометрическим определением, выражающим фокальное свойство. В выбранной системе координат определяем координаты фокусов F_1(-c,0),~F_2(c,0) . Для произвольной точки M(x,y) , принадлежащей эллипсу, имеем:

\vline\,\overrightarrow{F_1M}\,\vline\,+\vline\,\overrightarrow{F_2M}\,\vline\,=2a.

Записывая это равенство в координатной форме, получаем:

\sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a.

Переносим второй радикал в правую часть, возводим обе части уравнения в квадрат и приводим подобные члены:

(x+c)^2+y^2=4a^2-4a\sqrt{(x-c)^2+y^2}+(x-c)^2+y^2~\Leftrightarrow ~4a\sqrt{(x-c)^2+y^2}=4a^2-4cx.

Разделив на 4, возводим обе части уравнения в квадрат:

A^2(x-c)^2+a^2y^2=a^4-2a^2cx+c^2x^2~\Leftrightarrow~ (a^2-c^2)^2x^2+a^2y^2=a^2(a^2-c^2).

Обозначив b=\sqrt{a^2-c^2}>0 , получаем b^2x^2+a^2y^2=a^2b^2 . Разделив обе части на a^2b^2\ne0 , приходим к каноническому уравнению эллипса:

\frac{x^2}{a^2}+\frac{y^2}{b^2}=1.

Следовательно, выбранная система координат является канонической.

Если фокусы эллипса совпадают, то эллипс представляет собой окружность (рис.3.36,6), поскольку a=b . В этом случае канонической будет любая прямоугольная система координат с началом в точке O\equiv F_1\equiv F_2 , a уравнение x^2+y^2=a^2 является уравнением окружности с центром в точке O и радиусом, равным a .

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.49), и только они, принадлежат геометрическому месту точек, называемому эллипсом. Другими словами, аналитическое определение эллипса эквивалентно его геометрическому определению, выражающему фокальное свойство эллипса.

Директориальное свойство эллипса

Директрисами эллипса называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии \frac{a^2}{c} от нее. При c=0 , когда эллипс является окружностью, директрис нет (можно считать, что директрисы бесконечно удалены).

Эллипс с эксцентриситетом 0геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e (директориальное свойство эллипса ). Здесь F и d - один из фокусов эллипса и одна из его директрис, расположенные по одну сторону от оси ординат канонической системы координат, т.е. F_1,d_1 или F_2,d_2 .

В самом деле, например, для фокуса F_2 и директрисы d_2 (рис.3.37,6) условие \frac{r_2}{\rho_2}=e можно записать в координатной форме:

\sqrt{(x-c)^2+y^2}=e\cdot\!\left(\frac{a^2}{c}-x\right)

Избавляясь от иррациональности и заменяя e=\frac{c}{a},~a^2-c^2=b^2 , приходим к каноническому уравнению эллипса (3.49). Аналогичные рассуждения можно провести для фокуса F_1 и директрисы d_1\colon\frac{r_1}{\rho_1}=e .

Уравнение эллипса в полярной системе координат

Уравнение эллипса в полярной системе координат F_1r\varphi (рис.3.37,в и 3.37(2)) имеет вид

R=\frac{p}{1-e\cdot\cos\varphi}

где p=\frac{b^2}{a} фокальный параметр эллипса.

В самом деле, выберем в качестве полюса полярной системы координат левый фокус F_1 эллипса, а в качестве полярной оси - луч F_1F_2 (рис.3.37,в). Тогда для произвольной точки M(r,\varphi) , согласно геометрическому определению (фокальному свойству) эллипса, имеем r+MF_2=2a . Выражаем расстояние между точками M(r,\varphi) и F_2(2c,0) (см. пункт 2 замечаний 2.8):

\begin{aligned}F_2M&=\sqrt{(2c)^2+r^2-2\cdot(2c)\cdot r\cos(\varphi-0)}=\\ &=\sqrt{r^2-4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}.\end{aligned}

Следовательно, в координатной форме уравнение эллипса F_1M+F_2M=2a имеет вид

R+\sqrt{r^2-4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}=2\cdot a.

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

R^2-4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2~\Leftrightarrow~a\cdot\!\left(1-\frac{c}{a}\cdot\cos\varphi\right)\!\cdot r=a^2-c^2.

Выражаем полярный радиус r и делаем замену e=\frac{c}{a},~b^2=a^2-c^2,~p=\frac{b^2}{a} :

R=\frac{a^2-c^2}{a\cdot(1-e\cdot\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{b^2}{a\cdot(1-e\cdot\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{p}{1-e\cdot\cos\varphi},

что и требовалось доказать.

Геометрический смысл коэффициентов в уравнении эллипса

Найдем точки пересечения эллипса (см. рис.3.37,а) с координатными осями (вершины зллипса). Подставляя в уравнение y=0 , находим точки пересечения эллипса с осью абсцисс (с фокальной осью): x=\pm a . Следовательно, длина отрезка фокальной оси, заключенного внутри эллипса, равна 2a . Этот отрезок, как отмечено выше, называется большой осью эллипса, а число a - большой полуосью эллипса. Подставляя x=0 , получаем y=\pm b . Следовательно, длина отрезка второй оси эллипса, заключенного внутри эллипса, равна 2b . Этот отрезок называется малой осью эллипса, а число b - малой полуосью эллипса.

Действительно, b=\sqrt{a^2-c^2}\leqslant\sqrt{a^2}=a , причем равенство b=a получается только в случае c=0 , когда эллипс является окружностью. Отношение k=\frac{b}{a}\leqslant1 называется коэффициентом сжатия эллипса.

Замечания 3.9

1. Прямые x=\pm a,~y=\pm b ограничивают на координатной плоскости основной прямоугольник, внутри которого находится эллипс (см. рис.3.37,а).

2. Эллипс можно определить, как геометрическое место точек, получаемое в результате сжатия окружности к ее диаметру.

Действительно, пусть в прямоугольной системе координат Oxy уравнение окружности имеет вид x^2+y^2=a^2 . При сжатии к оси абсцисс с коэффициентом 0

\begin{cases}x"=x,\\y"=k\cdot y.\end{cases}

Подставляя в уравнение окружности x=x" и y=\frac{1}{k}y" , получаем уравнение для координат образа M"(x",y") точки M(x,y) :

(x")^2+{\left(\frac{1}{k}\cdot y"\right)\!}^2=a^2 \quad \Leftrightarrow \quad \frac{(x")^2}{a^2}+\frac{(y")^2}{k^2\cdot a^2}=1 \quad \Leftrightarrow \quad \frac{(x")^2}{a^2}+\frac{(y")^2}{b^2}=1,

поскольку b=k\cdot a . Это каноническое уравнение эллипса.

3. Координатные оси (канонической системы координат) являются осями симметрии эллипса (называются главными осями эллипса), а его центр - центром симметрии.

Действительно, если точка M(x,y) принадлежит эллипсу . то и точки M"(x,-y) и M""(-x,y) , симметричные точке M относительно координатных осей, также принадлежат тому же эллипсу.

4. Из уравнения эллипса в полярной системе координат r=\frac{p}{1-e\cos\varphi} (см. рис.3.37,в), выясняется геометрический смысл фокального параметра - это половина длины хорды эллипса, проходящей через его фокус перпендикулярно фокальной оси ( r=p при \varphi=\frac{\pi}{2} ).

5. Эксцентриситет e характеризует форму эллипса, а именно отличие эллипса от окружности. Чем больше e , тем эллипс более вытянут, а чем ближе e к нулю, тем ближе эллипс к окружности (рис.3.38,а). Действительно, учитывая, что e=\frac{c}{a} и c^2=a^2-b^2 , получаем

E^2=\frac{c^2}{a^2}=\frac{a^2-b^2}{a^2}=1-{\left(\frac{a}{b}\right)\!}^2=1-k^2,

где k - коэффициент сжатия эллипса, 0

6. Уравнение \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 при a

7. Уравнение \frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}=1,~a\geqslant b определяет эллипс с центром в точке O"(x_0,y_0) , оси которого параллельны координатным осям (рис.3.38,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36).

При a=b=R уравнение (x-x_0)^2+(y-y_0)^2=R^2 описывает окружность радиуса R с центром в точке O"(x_0,y_0) .

Параметрическое уравнение эллипса

Параметрическое уравнение эллипса в канонической системе координат имеет вид

\begin{cases}x=a\cdot\cos{t},\\ y=b\cdot\sin{t},\end{cases}0\leqslant t<2\pi.

Действительно, подставляя эти выражения в уравнение (3.49), приходим к основному тригонометрическому тождеству \cos^2t+\sin^2t=1 .


Пример 3.20. Изобразить эллипс \frac{x^2}{2^2}+\frac{y^2}{1^2}=1 в канонической системе координат Oxy . Найти полуоси, фокусное расстояние, эксцентриситет, коэффициент сжатия, фокальный параметр, уравнения директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: a=2 - большая полуось, b=1 - малая полуось эллипса. Строим основной прямоугольник со сторонами 2a=4,~2b=2 с центром в начале координат (рис.3.39). Учитывая симметричность эллипса, вписываем его в основной прямоугольник. При необходимости определяем координаты некоторых точек эллипса. Например, подставляя x=1 в уравнение эллипса, получаем

\frac{1^2}{2^2}+\frac{y^2}{1^2}=1 \quad \Leftrightarrow \quad y^2=\frac{3}{4} \quad \Leftrightarrow \quad y=\pm\frac{\sqrt{3}}{2}.

Следовательно, точки с координатами \left(1;\,\frac{\sqrt{3}}{2}\right)\!,~\left(1;\,-\frac{\sqrt{3}}{2}\right) - принадлежат эллипсу.

Вычисляем коэффициент сжатия k=\frac{b}{a}=\frac{1}{2} ; фокусное расстояние 2c=2\sqrt{a^2-b^2}=2\sqrt{2^2-1^2}=2\sqrt{3} ; эксцентриситет e=\frac{c}{a}=\frac{\sqrt{3}}{2} ; фокальный параметр p=\frac{b^2}{a}=\frac{1^2}{2}=\frac{1}{2} . Составляем уравнения директрис: x=\pm\frac{a^2}{c}~\Leftrightarrow~x=\pm\frac{4}{\sqrt{3}} .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Эллипсом называется геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух заданных точек F_1 , и F_2 есть величина постоянная (2a) , бо́льшая расстояния (2c) между этими заданными точками (рис.3.36,а). Это геометрическое определение выражает фокальное свойство эллипса .

Фокальное свойство эллипса

Точки F_1 , и F_2 называются фокусами эллипса, расстояние между ними 2c=F_1F_2 - фокусным расстоянием, середина O отрезка F_1F_2 - центром эллипса, число 2a - длиной большой оси эллипса (соответственно, число a - большой полуосью эллипса). Отрезки F_1M и F_2M , соединяющие произвольную точку M эллипса с его фокусами, называются фокальными радиусами точки M . Отрезок, соединяющий две точки эллипса, называется хордой эллипса.


Отношение e=\frac{c}{a} называется эксцентриситетом эллипса. Из определения (2a>2c) следует, что 0\leqslant e<1 . При e=0 , т.е. при c=0 , фокусы F_1 и F_2 , а также центр O совпадают, и эллипс является окружностью радиуса a (рис.3.36,6).


Геометрическое определение эллипса , выражающее его фокальное свойство, эквивалентно его аналитическому определению - линии, задаваемой каноническим уравнением эллипса:



Действительно, введем прямоугольную систему координат (рис.3.36,в). Центр O эллипса примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось или первую ось эллипса), примем за ось абсцисс (положительное направление на ней от точки F_1 к точке F_2 ); прямую, перпендикулярную фокальной оси и проходящую через центр эллипса (вторую ось эллипса), примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).



Составим уравнение эллипса, пользуясь его геометрическим определением, выражающим фокальное свойство. В выбранной системе координат определяем координаты фокусов F_1(-c,0),~F_2(c,0) . Для произвольной точки M(x,y) , принадлежащей эллипсу, имеем:


\vline\,\overrightarrow{F_1M}\,\vline\,+\vline\,\overrightarrow{F_2M}\,\vline\,=2a.


Записывая это равенство в координатной форме, получаем:


\sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a.


Переносим второй радикал в правую часть, возводим обе части уравнения в квадрат и приводим подобные члены:


(x+c)^2+y^2=4a^2-4a\sqrt{(x-c)^2+y^2}+(x-c)^2+y^2~\Leftrightarrow ~4a\sqrt{(x-c)^2+y^2}=4a^2-4cx.


Разделив на 4, возводим обе части уравнения в квадрат:


a^2(x-c)^2+a^2y^2=a^4-2a^2cx+c^2x^2~\Leftrightarrow~ (a^2-c^2)^2x^2+a^2y^2=a^2(a^2-c^2).


Обозначив b=\sqrt{a^2-c^2}>0 , получаем b^2x^2+a^2y^2=a^2b^2 . Разделив обе части на a^2b^2\ne0 , приходим к каноническому уравнению эллипса:


\frac{x^2}{a^2}+\frac{y^2}{b^2}=1.


Следовательно, выбранная система координат является канонической.


Если фокусы эллипса совпадают, то эллипс представляет собой окружность (рис.3.36,6), поскольку a=b . В этом случае канонической будет любая прямоугольная система координат с началом в точке O\equiv F_1\equiv F_2 , a уравнение x^2+y^2=a^2 является уравнением окружности с центром в точке O и радиусом, равным a .


Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.49), и только они, принадлежат геометрическому месту точек, называемому эллипсом. Другими словами, аналитическое определение эллипса эквивалентно его геометрическому определению, выражающему фокальное свойство эллипса.

Директориальное свойство эллипса

Директрисами эллипса называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии \frac{a^2}{c} от нее. При c=0 , когда эллипс является окружностью, директрис нет (можно считать, что директрисы бесконечно удалены).


Эллипс с эксцентриситетом 0геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e (директориальное свойство эллипса ). Здесь F и d - один из фокусов эллипса и одна из его директрис, расположенные по одну сторону от оси ординат канонической системы координат, т.е. F_1,d_1 или F_2,d_2 .


В самом деле, например, для фокуса F_2 и директрисы d_2 (рис.3.37,6) условие \frac{r_2}{\rho_2}=e можно записать в координатной форме:


\sqrt{(x-c)^2+y^2}=e\cdot\!\left(\frac{a^2}{c}-x\right)


Избавляясь от иррациональности и заменяя e=\frac{c}{a},~a^2-c^2=b^2 , приходим к каноническому уравнению эллипса (3.49). Аналогичные рассуждения можно провести для фокуса F_1 и директрисы d_1\colon\frac{r_1}{\rho_1}=e .


Уравнение эллипса в полярной системе координат

Уравнение эллипса в полярной системе координат F_1r\varphi (рис.3.37,в и 3.37(2)) имеет вид


r=\frac{p}{1-e\cdot\cos\varphi}

где p=\frac{b^2}{a} фокальный параметр эллипса.


В самом деле, выберем в качестве полюса полярной системы координат левый фокус F_1 эллипса, а в качестве полярной оси - луч F_1F_2 (рис.3.37,в). Тогда для произвольной точки M(r,\varphi) , согласно геометрическому определению (фокальному свойству) эллипса, имеем r+MF_2=2a . Выражаем расстояние между точками M(r,\varphi) и F_2(2c,0) (см. ):


\begin{aligned}F_2M&=\sqrt{(2c)^2+r^2-2\cdot(2c)\cdot r\cos(\varphi-0)}=\\ &=\sqrt{r^2-4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}.\end{aligned}


Следовательно, в координатной форме уравнение эллипса F_1M+F_2M=2a имеет вид


r+\sqrt{r^2-4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}=2\cdot a.


Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:


r^2-4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2~\Leftrightarrow~a\cdot\!\left(1-\frac{c}{a}\cdot\cos\varphi\right)\!\cdot r=a^2-c^2.


Выражаем полярный радиус r и делаем замену e=\frac{c}{a},~b^2=a^2-c^2,~p=\frac{b^2}{a} :


r=\frac{a^2-c^2}{a\cdot(1-e\cdot\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{b^2}{a\cdot(1-e\cdot\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{p}{1-e\cdot\cos\varphi},


что и требовалось доказать.

Геометрический смысл коэффициентов в уравнении эллипса

Найдем точки пересечения эллипса (см. рис.3.37,а) с координатными осями (вершины зллипса). Подставляя в уравнение y=0 , находим точки пересечения эллипса с осью абсцисс (с фокальной осью): x=\pm a . Следовательно, длина отрезка фокальной оси, заключенного внутри эллипса, равна 2a . Этот отрезок, как отмечено выше, называется большой осью эллипса, а число a - большой полуосью эллипса. Подставляя x=0 , получаем y=\pm b . Следовательно, длина отрезка второй оси эллипса, заключенного внутри эллипса, равна 2b . Этот отрезок называется малой осью эллипса, а число b - малой полуосью эллипса.


Действительно, b=\sqrt{a^2-c^2}\leqslant\sqrt{a^2}=a , причем равенство b=a получается только в случае c=0 , когда эллипс является окружностью. Отношение k=\frac{b}{a}\leqslant1 называется коэффициентом сжатия эллипса.

Замечания 3.9


1. Прямые x=\pm a,~y=\pm b ограничивают на координатной плоскости основной прямоугольник, внутри которого находится эллипс (см. рис.3.37,а).


2. Эллипс можно определить, как геометрическое место точек, получаемое в результате сжатия окружности к ее диаметру.


Действительно, пусть в прямоугольной системе координат Oxy уравнение окружности имеет вид x^2+y^2=a^2 . При сжатии к оси абсцисс с коэффициентом 0

\begin{cases}x"=x,\\y"=k\cdot y.\end{cases}


Подставляя в уравнение окружности x=x" и y=\frac{1}{k}y" , получаем уравнение для координат образа M"(x",y") точки M(x,y) :


(x")^2+{\left(\frac{1}{k}\cdot y"\right)\!}^2=a^2 \quad \Leftrightarrow \quad \frac{(x")^2}{a^2}+\frac{(y")^2}{k^2\cdot a^2}=1 \quad \Leftrightarrow \quad \frac{(x")^2}{a^2}+\frac{(y")^2}{b^2}=1,


поскольку b=k\cdot a . Это каноническое уравнение эллипса.


3. Координатные оси (канонической системы координат) являются осями симметрии эллипса (называются главными осями эллипса), а его центр - центром симметрии.


Действительно, если точка M(x,y) принадлежит эллипсу . то и точки M"(x,-y) и M""(-x,y) , симметричные точке M относительно координатных осей, также принадлежат тому же эллипсу.


4. Из уравнения эллипса в полярной системе координат r=\frac{p}{1-e\cos\varphi} (см. рис.3.37,в), выясняется геометрический смысл фокального параметра - это половина длины хорды эллипса, проходящей через его фокус перпендикулярно фокальной оси (r=p при \varphi=\frac{\pi}{2} ).



5. Эксцентриситет e характеризует форму эллипса, а именно отличие эллипса от окружности. Чем больше e , тем эллипс более вытянут, а чем ближе e к нулю, тем ближе эллипс к окружности (рис.3.38,а). Действительно, учитывая, что e=\frac{c}{a} и c^2=a^2-b^2 , получаем


e^2=\frac{c^2}{a^2}=\frac{a^2-b^2}{a^2}=1-{\left(\frac{a}{b}\right)\!}^2=1-k^2,


где k - коэффициент сжатия эллипса, 0

6. Уравнение \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 при a

7. Уравнение \frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}=1,~a\geqslant b определяет эллипс с центром в точке O"(x_0,y_0) , оси которого параллельны координатным осям (рис.3.38,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36).


При a=b=R уравнение (x-x_0)^2+(y-y_0)^2=R^2 описывает окружность радиуса R с центром в точке O"(x_0,y_0) .

Параметрическое уравнение эллипса

Параметрическое уравнение эллипса в канонической системе координат имеет вид


\begin{cases}x=a\cdot\cos{t},\\ y=b\cdot\sin{t},\end{cases}0\leqslant t<2\pi.


Действительно, подставляя эти выражения в уравнение (3.49), приходим к основному тригонометрическому тождеству \cos^2t+\sin^2t=1 .

Пример 3.20. Изобразить эллипс \frac{x^2}{2^2}+\frac{y^2}{1^2}=1 в канонической системе координат Oxy . Найти полуоси, фокусное расстояние, эксцентриситет, коэффициент сжатия, фокальный параметр, уравнения директрис.


Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: a=2 - большая полуось, b=1 - малая полуось эллипса. Строим основной прямоугольник со сторонами 2a=4,~2b=2 с центром в начале координат (рис.3.39). Учитывая симметричность эллипса, вписываем его в основной прямоугольник. При необходимости определяем координаты некоторых точек эллипса. Например, подставляя x=1 в уравнение эллипса, получаем


\frac{1^2}{2^2}+\frac{y^2}{1^2}=1 \quad \Leftrightarrow \quad y^2=\frac{3}{4} \quad \Leftrightarrow \quad y=\pm\frac{\sqrt{3}}{2}.


Следовательно, точки с координатами \left(1;\,\frac{\sqrt{3}}{2}\right)\!,~\left(1;\,-\frac{\sqrt{3}}{2}\right) - принадлежат эллипсу.


Вычисляем коэффициент сжатия k=\frac{b}{a}=\frac{1}{2} ; фокусное расстояние 2c=2\sqrt{a^2-b^2}=2\sqrt{2^2-1^2}=2\sqrt{3} ; эксцентриситет e=\frac{c}{a}=\frac{\sqrt{3}}{2} ; фокальный параметр p=\frac{b^2}{a}=\frac{1^2}{2}=\frac{1}{2} . Составляем уравнения директрис: x=\pm\frac{a^2}{c}~\Leftrightarrow~x=\pm\frac{4}{\sqrt{3}} .

Лекции по алгебре и геометрии. Семестр 1.

Лекция 15. Эллипс.

Глава 15. Эллипс.

п.1. Основные определения.

Определение. Эллипсом называется ГМТ плоскости сумма расстояний которых до двух фиксированных точек плоскости, называемых фокусами, есть величина постоянная.

Определение. Расстояние от произвольной точки М плоскости до фокуса эллипса называется фокальным радиусом точки М.

Обозначения:
– фокусы эллипса,
– фокальные радиусы точки М.

По определению эллипса, точка М является точкой эллипса тогда и только тогда, когда
– постоянная величина. Эту постоянную принято обозначать 2а:

. (1)

Заметим, что
.

По определению эллипса, его фокусы есть фиксированные точки, поэтому расстояние между ними есть также величина постоянная для данного эллипса.

Определение. Расстояние между фокусами эллипса называется фокусным расстоянием.

Обозначение:
.

Из треугольника
следует, что
, т.е.

.

Обозначим через bчисло равное
, т.е.

. (2)

Определение. Отношение

(3)

называется эксцентриситетом эллипса.

Введем на данной плоскости систему координат, которую мы будем называть канонической для эллипса.

Определение. Ось, на которой лежат фокусы эллипса, называется фокальной осью.

Построим каноническую для эллипса ПДСК, см. рис.2.

В качестве оси абсцисс выбираем фокальную ось, а ось ординат проводим через середину отрезка
перпендикулярно фокальной оси.

Тогда фокусы имеют координаты
,
.

п.2. Каноническое уравнение эллипса.

Теорема. В канонической для эллипса системе координат уравнение эллипса имеет вид:

. (4)

Доказательство. Доказательство проведем в два этапа. На первом этапе мы докажем, что координаты любой точки, лежащей на эллипсе удовлетворяют уравнению (4). На втором этапе мы докажем, что любое решение уравнения (4) дает координаты точки, лежащей на эллипсе. Отсюда будет следовать, что уравнению (4) удовлетворяют те и только те точки координатной плоскости, которые лежат на эллипсе. Отсюда и из определения уравнения кривой будет следовать, что уравнение (4) является уравнением эллипса.

1) Пусть точка М(х, у) является точкой эллипса, т.е. сумма ее фокальных радиусов равна 2а:

.

Воспользуемся формулой расстояния между двумя точками на координатной плоскости и найдем по этой формуле фокальные радиусы данной точки М:

,
, откуда получаем:

Перенесем один корень в правую часть равенства и возведем в квадрат:

Сокращая, получаем:

Приводим подобные, сокращаем на 4 и уединяем радикал:

.

Возводим в квадрат

Раскрываем скобки и сокращаем на
:

откуда получаем:

Используя равенство (2), получаем:

.

Разделив последнее равенство на
, получаем равенство (4), ч.т.д.

2) Пусть теперь пара чисел (х, у) удовлетворяет уравнению (4) и пусть М(х, у) – соответствующая точка на координатной плоскости Оху.

Тогда из (4) следует:

.

Подставляем это равенство в выражение для фокальных радиусов точки М:

.

Здесь мы воспользовались равенством (2) и (3).

Таким образом,
. Аналогично,
.

Теперь заметим, что из равенства (4) следует, что

или
и т.к.
, то отсюда следует неравенство:

.

Отсюда, в свою очередь, следует, что

или
и

,
. (5)

Из равенств (5) следует, что
, т.е. точка М(х, у) является точкой эллипса, ч.т.д.

Теорема доказана.

Определение. Уравнение (4) называется каноническим уравнением эллипса.

Определение. Канонические для эллипса оси координат называются главными осями эллипса.

Определение. Начало канонической для эллипса системы координат называется центром эллипса.

п.3. Свойства эллипса.

Теорема. (Свойства эллипса.)

1. В канонической для эллипса системе координат, все

точки эллипса находятся в прямоугольнике

,
.

2. Точки лежат на

3. Эллипс является кривой, симметричной относительно

своих главных осей.

4. Центр эллипса является его центром симметрии.

Доказательство. 1, 2) Сразу же следует из канонического уравнения эллипса.

3, 4) Пусть М(х, у) – произвольная точка эллипса. Тогда ее координаты удовлетворяют уравнению (4). Но тогда координаты точек также удовлетворяют уравнению (4), и, следовательно, являются точками эллипса, откуда и следуют утверждения теоремы.

Теорема доказана.

Определение. Величина 2а называется большой осью эллипса, величина а называется большой полуосью эллипса.

Определение. Величина 2bназывается малой осью эллипса, величинаbназывается малой полуосью эллипса.

Определение. Точки пересечения эллипса с его главными осями называются вершинами эллипса.

Замечание. Эллипс можно построить следующим образом. На плоскости в фокусы "забиваем по гвоздю" и закрепляем на них нить длиной
. Затем берем карандаш и с его помощью натягиваем нить. Затем передвигаем карандашный грифель по плоскости, следя за тем, чтобы нить была в натянутом состоянии.

Из определения эксцентриситета следует, что

Зафиксируем число а и устремим число с к нулю. Тогда при
,
и
. В пределе мы получаем

или
– уравнение окружности.

Устремим теперь
. Тогда
,
и мы видим, что в пределе эллипс вырождается в отрезок прямой
в обозначениях рисунка 3.

п.4. Параметрические уравнения эллипса.

Теорема. Пусть
– произвольные действительные числа. Тогда система уравнения

,
(6)

является параметрическими уравнениями эллипса в канонических для эллипса системе координат.

Доказательство. Достаточно доказать, что система уравнений (6) равносильна уравнению (4), т.е. они имеют одно и то же множество решений.

1) Пусть (х, у) – произвольное решение системы (6). Разделим первое уравнение на а, второе – на b, возводим оба уравнения в квадрат и складываем:

.

Т.е. любое решение (х, у) системы (6) удовлетворяет уравнению (4).

2) Обратно, пусть пара (х, у) является решением уравнения (4), т.е.

.

Из этого равенства следует, что точка с координатами
лежит на окружности единичного радиуса с центром в начале координат, т.е. является точкой тригонометрической окружности, которой соответствует некоторый угол
:

Из определения синуса и косинуса сразу же следует, что

,
, где
, откуда и следует, что пара (х, у) является решением системы (6), ч.т.д.

Теорема доказана.

Замечание. Эллипс можно получить в результате равномерного "сжатия" окружности радиуса а к оси абсцисс.

Пусть
– уравнение окружности с центром в начале координат. "Сжатие" окружности к оси абсцисс есть ни что иное, как преобразование координатной плоскости, осуществляемое по следующему правилу. Каждой точке М(х, у) поставим в соответствие точку этой же плоскости
, где
,
– коэффициент "сжатия".

При этом преобразовании каждая точка окружности "переходит" в другую точку плоскости, имеющую ту же самую абсциссу, но меньшую ординату. Выразим старую ординату точки через новую:

и подставим в уравнение окружности:

.

Отсюда получаем:

. (7)

Отсюда следует, что если до преобразования "сжатия" точка М(х, у) лежала на окружности, т.е. ее координаты удовлетворяли уравнению окружности, то после преображования "сжатия" эта точка "перешла" в точку
, координаты которой удовлетворяют уравнению эллипса (7). Если мы хотим получить уравнение эллипса с малой полуосьюb, то нужно взять коэффициент сжатия

.

п.5. Касательная к эллипсу.

Теорема. Пусть
– произвольная точка эллипса

.

Тогда уравнение касательной к этому эллипсу в точке
имеет вид:

. (8)

Доказательство. Достаточно рассмотреть случай, когда точка касания лежит в первой или второй четверти координатной плоскости:
. Уравнение эллипса в верхней полуплоскости имеет вид:

. (9)

Воспользуемся уравнением касательной к графику функции
в точке
:

где
– значение производной данной функции в точке
. Эллипс в первой четверти можно рассматривать как график функции (8). Найдем ее производную и ее значение в точке касания:

,

. Здесь мы воспользовались тем, что точка касания
является точкой эллипса и поэтому ее координаты удовлетворяют уравнению эллипса (9), т.е.

.

Подставляем найденное значение производной в уравнение касательной (10):

,

откуда получаем:

Отсюда следует:

Разделим это равенство на
:

.

Осталось заметить, что
, т.к. точка
принадлежит эллипсу и ее координаты удовлетворяют его уравнению.

Аналогично доказывается уравнение касательной (8) в точке касания, лежащей в третьей или четвертой четверти координатной плоскости.

И, наконец, легко убеждаемся, что уравнение (8) дает уравнение касательной в точках
,
:

или
, и
или
.

Теорема доказана.

п.6. Зеркальное свойство эллипса.

Теорема. Касательная к эллипсу имеет равные углы с фокальными радиусами точки касания.

Пусть
– точка касания,
,
– фокальные радиусы точки касания, Р иQ– проекции фокусов на касательную, проведенную к эллипсу в точке
.

Теорема утверждает, что

. (11)

Это равенство можно интерпретировать как равенство углов падения и отражения луча света от эллипса, выпущенного из его фокуса. Это свойство получило название зеркального свойства эллипса:

Луч света, выпущенный из фокуса эллипса, после отражения от зеркала эллипса проходит через другой фокус эллипса.

Доказательство теоремы. Для доказательства равенства углов (11) мы докажем подобие треугольников
и
, в которых стороны
и
будут сходственными. Так как треугольники прямоугольные, то достаточно доказать равенство