Строение живой и растительной клетки рисунок. Живая клетка

Клетка - это единица живой системы. Ее строение начал изучать Роберт Гук в 1665 году, заметив мелкие ячейки с помощью микроскопа. Чем больше совершенствовался микроскоп, тем больше сведений получали о строении растительных и животных клеток. Но даже при таком большом разнообразии форм все клетки имеют поразительное сходство в строении. Рассмотрим основы, чтобы узнать, как нарисовать клетку. C помощью рисунков, которые вы увидите, перейдя по этой ссылке , вы сможете понять строение клетки.

Растительная клетка

Растительную клетку изобразим в виде прямоугольника со сглаженными краями. Его края - оболочка, плазматическая мембрана. В центре - цитоплазма и клеточный центр, здесь же - ядерный сок и хромосомы. Левее - Аппарат Гольджи. Ниже центра - поры. Слева и справа от них - лизосомы. В верхнем углу прямоугольника над центром - ЭПС. Левее рисуем полукруг (делим его пополам и оставляем полуовал) - это рибосомы и вакуоль с клеточным соком. Нижний правый угол - плазматическая мембрана. Здесь же маленьким кругом изображаем ядро.

Вот как нарисовать клетку, правда, это схематическое изображение растительной клетки. Проще запомнить так: снаружи клетка покрыта клеточной оболочкой, которая заполнена порами, под ней расположена плазматическая мембрана; вся клетка наполнена цитоплазмой; цитоплазма состоит из ядра с ядрышками, вакуолей с клеточным соком и пластидами с пигментами.

Животная клетка

Теперь нарисуем животную клетку. Ее тоже изобразим в виде прямоугольника. Внутри еще один прямоугольник - плазматическая мембрана. Внутри нее (перпендикулярные линии) - митохондрии. В центре прямоугольника рисуем круг, обводим его еще одним - это цитоплазма, ядро и ядрышко. Левее полуовалом изобразим клеточный центр и ЭПС. Прямо под ним в нижнем левом углу рисуем овал - аппарат Гольджи и ядерный сок. В нижнем правом углу находятся рибосомы (овал, закрашенный в черный цвет). Над ним маленькими кружочками изображаем пиноцентозные пузырьки. Внутренняя стенка оболочки - лизосомы. В самом верху по центру (четырехугольник) - хромосомы.

Все живые существа и организмы на состоят из клеток: растения, грибы, бактерии, животные, люди. Несмотря на минимальный размер, все функции целого организма выполняет клетка. Внутри нее протекают сложные процессы, от которых зависит жизнеспособность тела и работа его органов.

Вконтакте

Структурные особенности

Учёные занимаются изучением особенности строения клетки и принципов ее работы. Детально рассмотреть особенности структуры клетки можно только при помощи мощного микроскопа.

Все наши ткани — кожные покровы, кости, внутренние органы состоят из клеток, которые являются строительным материалом , бывают разных форм и размеров, каждая разновидность выполняет определённую функцию, но основные особенности их строения сходны.

Сначала выясним, что лежит в основе структурной организации клеток . В ходе проведенных исследований ученые установили, что клеточным фундаментом является мембранный принцип. Получается, что все клетки образованы из мембран, которые состоят из двойного слоя фосфолипидов, куда с наружной и внутренней стороны погружены молекулы белков.

Какое свойство характерно для всех типов клеток: одинаковое строение, а также функционал — регулирование процесса обмена веществ, использование собственного генетического материала (наличие и РНК ), получение и расход энергии.

В основе структурной организации клетки выделяются следующие элементы, выполняющие определенную функцию:

  • мембрана — клеточная оболочка, состоит из жиров и протеинов. Ее основная задача – отделять вещества, находящиеся внутри, от внешней среды. Структуру имеет полупроницаемую: способна пропускать и оксид углерода;
  • ядро – центральная область и главный компонент, отделяется от других элементов мембраной. Именно внутри ядра находится информация о росте и развитии, генетический материал, представленный в виде молекул ДНК, входящих в состав ;
  • цитоплазма — это жидкая субстанция, образующая внутреннюю среду, где происходят разнообразные жизненно важные процессы, содержит в себе очень много важных компонентов.

Из чего состоит клеточное содержимое, каковы функции цитоплазмы и ее основных компонентов:

  1. Рибосома — важнейший органоид, который необходим для процессов биосинтеза белков из аминокислот, белки выполняют огромное количество жизненно важных задач.
  2. Митохондрии – ещё один компонент, находящийся внутри цитоплазмы. Его можно описать одним словосочетанием – энергетический источник. Их функция заключается в обеспечении компонентов питанием для дальнейшего производства энергии.
  3. Аппарат Гольджи состоит из 5 – 8 мешочков, которые соединены между собой. Основная задача этого аппарата – передача протеинов в другие части клетки для обеспечения энергетического потенциала.
  4. Очистку от повреждённых элементов производят лизосомы .
  5. Транспортировкой занимается эндоплазматическая сеть, по которой белки перемещают молекулы полезных веществ.
  6. Центриоли отвечают за воспроизводство.

Ядро

Поскольку — клеточный центр, поэтому следует уделить его строению и функциям особое внимание. Данный компонент является важнейшим элементом для всех клеток: содержит наследственные признаки. Без ядра стали бы невозможными процессы размножения и передачи генетической информации . Посмотрите на рисунок, изображающий строение ядра.

  • Ядерная оболочка, которая выделена сиреневым цветом, пропускает внутрь нужные веществам и выпускает обратно через поры — маленькие отверстия.
  • Плазма представляет собой вязкую субстанцию, в ней находятся все остальные ядерные компоненты.
  • ядро размещается в самом центре, имеет форму сферы. Его главная функция – образование новых рибосом.
  • Если рассмотреть центральную часть клетки в разрезе, то можно увидеть малозаметные синие переплетения — хроматин, главное вещество, который состоит из комплекса белков и длинных нитей ДНК, несущих в себе необходимую информацию.

Клеточная мембрана

Давайте подробнее рассмотрим работу, строение и функции этого компонента. Ниже представлена таблица, наглядно показывающая важность внешней оболочки.

Хлоропласты

Это ещё один наиважнейший компонент. Но почему о хлоропластах не было упомянуто раньше, спросите вы. Да потому, что этот компонент содержится только в клетках растений. Главное различие между животными и растениями заключается в способе питания: у животных оно гетеротрофное, а у растений автотрофное. Это означает, что животные не способны создавать, то есть синтезировать органические вещества из неорганических – они питаются готовыми органическими веществами. Растения же, напротив, способны осуществлять процесс фотосинтеза и содержат особые компоненты — хлоропласты. Это пластиды зеленого оттенка, содержащие вещество хлорофилл. С его участием энергия света преобразуется в энергию химических связей органических веществ.

Интересно! Хлоропласты в большом объеме сосредоточены главным образом в надземной части растений — зелёных плодах и листьях.

Если вам зададут вопрос: назовите важную особенность строения органических соединений клетки, то ответ можно дать следующий.

  • многие из них содержат атомы углерода, которые обладают различными химическими и физическими свойствами, а также способны соединяться друг с другом;
  • являются носителями, активными участниками разнообразных процессов, протекающих в организмах, либо являются их продуктами. Имеются ввиду гормоны, разные ферменты, витамины;
  • могут образовывать цепи и кольца, что обеспечивает многообразие соединений;
  • разрушаются при нагревании и взаимодействии с кислородом;
  • атомы в составе молекул объединяются друг с другом с помощью ковалентных связей, не разлагаются на ионы и потому медленно взаимодействуют, реакции между веществами протекают очень долго — по нескольку часов и даже дней.

Строение хлоропласт

Ткани

Клетки могут существовать по одной, как в одноклеточных организмах, но чаще всего они объединяются в группы себе подобных и образуют различные тканевые структуры, из которых и состоит организм. В теле человека существует несколько видов тканей:

  • эпителиальная – сосредоточена на поверхности кожных покровов, органов, элементов пищеварительного тракта и дыхательной системы;
  • мышечная — мы двигаемся благодаря сокращению мышц нашего тела, осуществляем разнообразные движения: от простейшего шевеления мизинцем, до скоростного бега. Кстати, биение сердца тоже происходит за счёт сокращения мышечной ткани;
  • соединительная ткань составляет до 80 процентов массы всех органов и играет защитную и опорную роль;
  • нервная — образует нервные волокна. Благодаря ей по организму проходят различные импульсы.

Процесс воспроизводства

На протяжении всей жизни организма происходит митоз – так называют процесс деления, состоящий из четырёх стадий:

  1. Профаза . Две центриоли клетки делятся и направляются в противоположные стороны. Одновременно с этим хромосомы образуют пары, а оболочка ядра начинает разрушаться.
  2. Вторая стадия получила название метафазы . Хромосомы располагаются между центриолями, постепенно внешняя оболочка ядра полностью исчезает.
  3. Анафаза является третьей стадией, на протяжении которой продолжается движение центриолей в противоположном друг от друга направлении, а отдельные хромосомы также следуют за центриолями и отодвигаются друг от друга. Начинает сжиматься цитоплазма и вся клетка.
  4. Телофаза – окончательная стадия. Цитоплазма сжимается до тех пор, пока не появятся две одинаковые новые клетки. Формируется новая мембрана вокруг хромосом и появляется одна пара центриолей у каждой новой клетки.

Интересно! Клетки у эпителия делятся быстрее, чем у костной ткани. Все зависит от плотности тканей и других характеристик. Средняя продолжительность жизни основных структурных единиц составляет 10 дней.

Строение клетки. Строение и функции клетки. Жизнь клетки.

Вывод

Вы узнали каково строение клетки — самой важной составляющей организма. Миллиарды клеток составляют удивительно мудро организованную систему, которая обеспечивает работоспособность и жизнедеятельность всех представителей животного и растительного мира.

Просмотры: 9855

04.03.2018

Клетки растений, как и клетки большинства живых организмов, состоят из клеточной оболочки, которая отмежевывает содержимое клетки (протопласт) от окружающей его среды. Клеточная оболочка включает в себя достаточно жесткую и прочную клеточную стенку (снаружи) и тонкую, эластичную цитоплазматическую мембрану (внутри). Наружный слой клеточной стенки, представляющий собой пористую целлюлозную оболочку с присутствующим в ней лигнином, состоит из пектинов. Такие составляющие определяют прочность и жесткость растительной клетки, обеспечивают её форму, способствуют лучшей защите внутриклеточного содержимого (протопласта) от неблагоприятных условий. Составляющие цитоплазматической мембраны – белки и липиды. Как клеточная стенка, так и мембрана обладают полупроницаемыми способностями и выполняют транспортную функцию, пропуская внутрь клетки воду и необходимые для жизнедеятельности элементы питания, а также регулируя обмен веществ между клетками и со средой.


Протопласт растительной клетки включает в себя внутреннюю полужидкую среду мелкозернистой структуры (цитоплазму ), состоящую из воды, органических соединений и минеральных солей, в которой находятся ядро – главная часть клетки – и другие органоиды . Впервые описал жидкое содержимое клетки и назвал его (1825 – 1827 г.) чешский физиолог, микроскопист Ян Пуркине. Органоиды являются постоянными клеточными структурами, выполняющими специфические, предназначенные только им функции. Кроме того, они отличаются между собой строением и химическим составом. Различают немембранные органоиды (рибосомы, клеточный центр, микротрубочки, микрофиламенты), одномембранные (вакуоли, лизосомы, комплекс Гольджи, эндоплазматическая сеть) и двумембранные (пластиды, митохрондрии).


(одна или несколько) – важнейшая составляющая протопласта, характерная только для растительных клеток. В молодых клетках присутствуют, как правило, несколько небольших вакуолей, но по мере роста и старения клетки, мелкие вакуоли сливаются в одну большую (центральную) вакуоль. Она представляет собой ограниченный мембраной (тонопластом) резервуар с находящимся внутри него клеточным соком. Основной компонент клеточного сока – это вода (70 – 95%), в которой растворены органические и неорганические соединения: соли, сахара (фруктоза, глюкоза, сахароза), органические кислоты (щавелевая, яблочная, лимонная, уксусная и пр.), белки, аминокислоты. Все эти продукты являются промежуточным результатом метаболизма и временно накапливаются в вакуолях как запасные питательные вещества, чтобы в дальнейшем вторично участвовать в обменных процессах клетки. Также в клеточном соке присутствуют танины (дубильные вещества), фенолы, алкалоиды, антоцианы и различные пигменты, которые выводятся в вакуоль, изолируясь при этом от цитоплазмы. В вакуоли поступают и ненужные продукты жизнедеятельности клетки (отходы), например, щавелевокислый калий.




Благодаря вакуолям клетка обеспечивается запасами воды и питательных веществ (белков, жиров, витаминов, минеральных солей), а также в ней поддерживается осмотическое внутриклеточное давление (тургор). В вакуолях происходит расщепление старых белков и органелл.


Вторая отличительная особенность растительной клетки – присутствие в ней двумембранных органоидов – пластид . Открытие этих органоидов, их описание и классификация (1880 - 1883 г.) принадлежат немецким ученым – естествоиспытателю А. Шимперу и ботанику В. Мейеру. Пластиды представляют собой вязкие белковые тельца и разделяются на три основных типа: лейкопласты, хромопласты и хлоропласты. Все они под влиянием действия определенных факторов среды способны переходить из одного вида в другой.




Среди всех типов пластид наиболее важную роль выполняют хлоропласты : в них осуществляется процесс фотосинтеза. Эти органоиды отличаются зеленой окраской, что связано с наличием в их составе значительного количества хлорофилла – зеленого пигмента, поглощающего энергию солнечного света и синтезирующего органические вещества из воды и углекислого газа. Хлоропласты отмежевываются от цитоплазмы клетки двумя мембранами (внешней и внутренней) и имеют линзообразную овальную форму (длина составляет около 5 – 10 мкм, а ширина колеблется от 2 до 4 мкм). Кроме хлорофилла в хлоропластах присутствуют каротиноиды (вспомогательные пигменты оранжевого цвета). Количество хлоропластов в растительной клетке может варьироваться от 1 – 2-х (простейшие водоросли) до 15 – 20 штук (клетка листка высших растений).


Мелкие бесцветные пластиды лейкопласты встречаются в клетках тех органов растения, которые скрыты от действия солнечного света (корни или корневища, клубни, луковицы, семена). Форма их очень разнообразна (шаровидные, эллипсоидные, чашевидные, гантелевидные). Они осуществляют синтез питательных веществ (главным образом, крахмала, реже – жиров и белков) из моно- и дисахаридов. Под воздействием солнечных лучей лейкопласты имеют свойство превращаться в хлоропласты.


Хромопласты образуются в результате накопления каротиноидов и содержат значительное количество пигментов желтого, оранжевого, красного, бурого цвета. Они присутствуют в клетках плодов и лепестков, определяя их яркую окраску. Хромопласты бывают дисковидные, серповидные, зубчатые, шарообразные, ромбовидные, треугольные и пр. Участвовать в процессе фотосинтеза они не могут по причине отсутствия в них хлорофилла.



Двумембранные органоиды митохондрии представлены небольшими (несколько микронов в длину) образованиями чаще цилиндрической, но также гранулоподобной, нитевидной или округлой формы. Впервые обнаружены с помощью специального окрашивания и описаны немецким биологом Р. Альтманом как биопласты (1890 г.). Название митохондрий им дал немецкий патолог К. Бенда (1897 г.). Наружная мембрана митохондрии состоит из липидов и вдвое меньшего количества белковых соединений, она имеет гладкую поверхность. В составе внутренней мембраны преобладают белковые комплексы, а количество липидов не превышает третьей части от них. Внутренняя мембрана имеет складчатую поверхность, она образует гребневидные складки (кристы ), за счет которых поверхность ее значительно увеличивается. Пространство внутри митохондрии заполнено более плотным, чем цитоплазма вязким веществом белкового происхождения - матриксом. Митохондрии очень чувствительны к условиям окружающей среды, и под ее влиянием могут разрушаться или менять форму.




Они выполняют очень сложную физиологическую роль в процессах обмена веществ клетки. Именно в митохондриях происходит ферментативное расщепление органических соединений (жирных кислот, углеводов, аминокислот), и, опять-таки под воздействием ферментов синтезируются молекулы аденозинтрифосфорной кислоты (АТФ), являющейся универсальным источником энергии для всех живых организмов. Митохондрии синтезируют энергию и являются, в сущности, «энергетической станцией» клетки. Количество этих органоидов в одной клетке непостоянно и колеблется в пределах от нескольких десятков до нескольких тысяч. Чем активнее жизнедеятельность клетки, тем большее количество митохондрий она содержит. В процессе деления клетки митохондрии также способны делиться путем образования перетяжки. Кроме того, они могут сливаться между собой, образуя одну митохондрию.




Аппарат Гольджи назван так по имени его первооткрывателя, итальянского ученого К. Гольджи (1897 г.). Органоид расположен вблизи ядра и представляет собой мембранную структуру, имеющую вид многоярусных плоских дисковидных полостей, расположенных одна над другой, от которых ответвляются многочисленные трубчатые образования, завершающиеся пузырьками. Основная функция аппарата Гольджи – это удаление из клетки продуктов ее жизнедеятельности. Аппарат имеет свойство накапливать внутри полостей секреторные вещества, включающие пектины, ксилозу, глюкозу, рибозу, галактозу. Система мелких пузырьков (везикул ), расположенная на периферии этого органоида, выполняет внутриклеточную транспортную роль, перемещая синтезируемые внутри полостей полисахариды к периферии. Достигнув клеточной стенки или вакуоли, везикулы, разрушаясь, отдают им свое внутреннее содержимое. В аппарате Гольджи происходит также образование первичных лизосом.




были открыты бельгийским биохимиком Кристианом де Дювом (1955 г.). Они представляют собой небольшие тельца, ограниченные одной защитной мембраной и являются одной из форм везикул. Содержат более 40 различных гидролитических ферментов (гликозидаз, протеиназ, фосфатаз, нуклеаз, липаз и пр.), расщепляющих белки, жиры, нуклеиновые кислоты, углеводы, в связи с чем участвуют в процессах разрушения отдельных органоидов или участков цитоплазмы. Лизосомы выполняют важную роль в защитных реакциях и внутриклеточном питании.


Рибосомы – это очень мелкие немембранные органоиды близкой к шаровидной или эллипсоидной формы. Формируются в ядре клетки. Из-за маленьких размеров они воспринимаются как «зернистость» цитоплазмы. Некоторая часть их находится в свободном состоянии во внутренней среде клетки (цитоплазме, ядре, митохондриях, пластидах), остальные же прикреплены к наружным поверхностям мембран эндоплазматической сети. Количество рибосом в растительной клетке относительно невелико и составляет в среднем около 30000 шт. Рибосомы располагаются поодиночке, но иногда могут образовывать и группы – полирибосомы (полисомы). Этот органоид состоит из двух различных по величине частей, которые могут существовать порознь, но в момент функционирования органоида объединяются в одну структуру. Основная функция рибосом – синтез молекул белка из аминокислот.




Цитоплазму растительной клетки пронизывает огромное множество ультрамикроскопических жгутов, разветвленных трубочек, пузырьков, каналов и полостей, ограниченных трехслойными мембранами и образующих систему, известную как эндоплазматическая сеть (ЭПС ). Открытие этой системы принадлежит английскому ученому К. Портеру (1945 г.). ЭПС находится в контакте со всеми органоидами клетки и составляет вместе с ними единую внутриклеточную систему, осуществляющую обмен веществ и энергии, а также обеспечивающую внутриклеточный транспорт. Мембраны ЭПС с одной стороны связаны с наружной цитоплазматической мембраной, а с другой – с наружной оболочкой ядерной мембраны.




По своему строению ЭПС неоднородна, различают два её типа: гранулярную , на мембранах которой расположены рибосомы и агранулярную (гладкую) – без рибосом. В рибосомах гранулярной сети происходит синтез белка, который затем поступает внутрь каналов ЭПС, а на мембранах агранулярной сети синтезируются углеводы и липиды, также поступающие затем в каналы ЭПС. Таким образом, в каналах и полостях ЭПС происходит накопление продуктов биосинтеза, которые затем транспортируются к органоидам клетки. Кроме того, эндоплазматическая сеть разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым отдельную среду для различных реакций.

Ядро представляет собой самый крупный клеточный органоид, ограниченный от цитоплазмы чрезвычайно тонкой и эластичной двумембранной ядерной оболочкой и является наиважнейшей частью живой клетки. Открытие ядра растительной клетки принадлежит шотландскому ботанику Р. Брауну (1831 г.). В молодых клетках ядро размещено ближе к центру, в старых - смещается к периферии, что связано с образованием одной большой вакуоли, занимающей значительную часть протопласта. Как правило, в растительных клетках имеется лишь одно ядро, хотя случаются двухъядерные и многоядерные клетки. Химический состав ядра представлен белками и нуклеиновыми кислотами.



Ядро содержит значительное количество ДНК (дезоксирибонуклеиновой кислоты), выполняющей роль носителя наследственных свойств. Именно в ядре (в хромосомах) хранится и воспроизводится вся наследственная информация, которая определяет индивидуальность, особенности, функции, признаки клетки и всего организма вцелом. Кроме того, одним из наиболее важных предназначений ядра является управление обменом веществ и большинством процессов, происходящих в клетке. Информация, поступающая из ядра, определяет физиологическое и биохимическое развитие растительной клетки.

Внутри ядра находятся от одного до трех немембранных мелких телец округлой формы - ядрышек , погруженных в бесцветную, однородную, гелеобразную массу - ядерный сок (кариоплазму). Ядрышки состоят, главным образом, из белка; 5% их содержания составляет РНК (рибонуклеиновая кислота). Основная функция ядрышек - синтез РНК и формирование рибосом.

Изучая строение растительной клетки, рисунок с подписями станет полезным визуальным конспектом для усвоения этой темы. Но сначала немного истории.

Историю открытия и изучения клетки связывают с именем английского изобретателя Роберта Гука. В 17 веке, на срезе растительной пробки, рассматриваемой под микроскопом, Р. Гук обнаружил ячейки, которые и были в дальнейшем названы клетками.

Основные сведения о клетке были представлены позже немецким ученым Т. Шванном в клеточной теории, сформулированной в 1838 году. Основные положения этого трактата гласят:

  • все живое на земле состоит из структурных единиц - клеток;
  • по строению и функциям все клетки имеют общие черты. Эти элементарные частицы способны к размножению, которое возможно благодаря делению материнской клетки;
  • в многоклеточных организмах клетки способны объединяться на основании общих функций и структурно-химической организации в ткани.

Клетка растения

Растительная клетка, наряду с общими признаками и схожестью в строении с животной, имеет и свои отличительные особенности, присущие только ей:

  • наличие клеточной стенки (оболочки);
  • наличие пластид;
  • наличие вакуоли.

Строение растительной клетки

На рисунке схематично показана модель растительной клетки, из чего она состоит, как называются основные её части.

Ниже будет подробно рассказано о каждой из них.

Органоиды клетки и их функции — описательная таблица

В таблице собрана важная информация об органоидах клетки. Она поможет школьнику составить план рассказа по рисунку.

Органоид Описание Функция Особенности
Клеточная стенка Покрывает цитоплазматическую мембрану, состав – в основном целлюлоза. Поддержание прочности, механическая защита, создание формы клетки, поглощение и обмен различных ионов, транспорт веществ. Характерна для растительных клеток (отсутствует в животной клетке).
Цитоплазма Внутренняя среда клетки. Включает полужидкую среду, расположенные в ней органоиды и нерастворимые включения. Объединение и взаимодействие всех структур (органоидов). Возможно изменение агрегатного состояния.
Ядро Самый крупный органоид. Форма шаровидная или яйцевидная. В нем расположены хроматиды (молекулы ДНК). Ядро покрыто двумембранной ядерной оболочкой. Хранение и передача наследственной информации. Двумембранный органоид.
Ядрышко Сферическая форма, d – 1-3 мкм. Являются основными носителями РНК в ядре. В них синтезируются рРНК и субъединицы рибосом . Ядро содержит 1-2 ядрышка.
Вакуоль Резервуар с аминокислотами и минеральными солями. Регулировка осмотического давления, хранение запасных веществ, аутофагия (самопереваривание внутриклеточного мусора). Чем старше клетка, тем большее пространство в клетке занимает вакуоль.
Пластиды 3 вида: хлоропласты, хромопласты и лейкопласты. Обеспечивает автотрофный тип питания, синтез органических веществ из неорганических. Иногда могут переходить из одного вида пластид в другой.
Ядерная оболочка Содержит две мембраны. К внешней прикрепляются рибосомы, в некоторых местах происходит соединение с ЭПР. Пронизана порами (обмен между ядром и цитоплазмой). Разделяет цитоплазму от внутреннего содержимого ядра. Двумембранный органоид.

Цитоплазматические образования — органеллы клетки

Поговорим подробнее о составляющих растительной клетки.

Ядро

Ядро осуществляет хранение генетической информации и реализацию наследуемой информации. Местом хранения являются молекулы ДНК. При этом в ядре присутствуют репарационные ферменты, которые способны контролировать и ликвидировать самопроизвольное повреждение молекул ДНК.

Кроме этого, сами молекулы ДНК в ядре подвержены редупликации (удвоению). В этом случае клетки, образованные при делении исходной, получают одинаковый и в качественном и количественном соотношении объем генетической информации.

Эндоплазматическая сеть (ЭПС)

Выделяют два типа: шероховатый и гладкий. Первый тип синтезирует белки на экспорт и клеточные мембраны . Второй тип способен осуществлять детоксикацию вредных продуктов обмена.

Аппарат Гольджи

Открыт исследователем из Италии К. Гольджи в 1898 году. В клетках располагается вблизи ядра. Эти органоиды представляют собой мембранные структуры, укомплектованные вместе. Такую зону скопления называют диктиосомой.

Они принимают участие в накоплении продуктов, которые синтезируются в эндоплазматическом ретикулуме и являются источником клеточных лизосом.

Лизосомы

Не являются самостоятельными структурами. Они представляют собой результат деятельности эндоплазматического ретикулума и аппарата Гольджи. Их главное предназначение — участвовать в процессах расщепления внутри клетки.

В лизосомах насчитывается около четырех десятков ферментов, которые разрушают большинство органических соединений. При этом сама мембрана лизосом устойчива к действию таких ферментов.

Митохондрии

Двумембранные органеллы. В каждой клетке их число и размеры могут варьироваться. Они окружены двумя высокоспециализированными мембранами. Между ними расположено межмембранное пространство.

Внутренняя мембрана способна образовывать складки — кристы. Благодаря наличию крист, внутренняя мембрана превосходит в 5 раз площадь внешней мембраны.

Повышенная функциональная активность клетки обусловлена увеличенным числом митохондрий и большим количеством крист в них, тогда как в условиях гиподинамиии количество крист в митохондрии и число митохондрий резко и быстро изменяется.

Обе мембраны митохондрий отличаются по своим физиологическим свойствам. При повышенном или пониженном осмотическом давлении внутренняя мембрана способна сморщиваться или растягиваться. Для наружной мембраны характерно только необратимое растяжение, которое может привести к разрыву. Весь комплекс митохондрий, наполняющих клетку, называют хондрионом.

Пластиды

По своим размерам эти органоиды уступают только ядру. Существует три вида пластид:

  • отвечающие за зелёную окраску растений — хлоропласты;
  • ответственные за осенние цвета - оранжевый, красный, жёлтый, охра — хромопласты;
  • не влияющие на окрашивание, бесцветные лейкопласты.

Стоит отметить: установлено, что в клетках одновременно может быть только какой-то один из видов пластид.

Строение и функции хлоропластов

В них осуществляются процессы фотосинтеза . Присутствует хлорофилл (придает зеленую окраску). Форма – двояковыпуклая линза. Количество в клетке – 40-50. Имеет двойную мембрану. Внутренняя мембрана формирует плоские пузырьки – тилакоиды, которые упакованы в стопки – граны.

Хромопласты

За счет ярких пигментов придают органам растений яркие цвета: разноцветным лепесткам цветов, созревшим плодам, осенним листьям и некоторым корнеплодам (морковь).

Хромопласты не имеют внутренней мембранной системы. Пигменты могут накапливаться в кристаллическом виде, что придает пластидам разнообразные формы (пластина, ромб, треугольник).

Функции данного вида пластид пока до конца не изучены. Но по имеющейся информации, это устаревшие хлоропласты с разрушенным хлорофиллом.

Лейкопласты

Присущи тем частям растений, на которые солнечные лучи не попадают. Например, клубни, семена, луковицы, корни. Внутренняя система мембран развита слабее, чем у хлоропластов.

Ответственны за питание, накапливают питательные вещества, принимают участие в синтезе. При наличии света лейкопласты способны переродиться в хлоропласты.

Рибосомы

Мелкие гранулы, состоящие из РНК и белков. Единственные безмембранные структуры. Могут располагаться одиночно или в составе группы (полисомы).

Рибосому формируют большая и малая субъединица, соединенные ионами магния. Функция – синтез белка.

Микротрубочки

Это длинные цилиндры, в стенках которых расположен белок тубулин. Этот органоид – динамическая структура (может происходить его наращивание и распад). Принимают активное участие в процессе деления клеток.

Вакуоль - строение и функции

На рисунке обозначена голубым цветом. Состоит из мембраны (тонопласта) и внутренней среды (клеточного сока).

Занимает большую часть клетки, центральную её часть.

Запасает воду и питательные вещества, а также продукты распада.

Несмотря на единую структурную организацию в строении основных органоидов, в мире растений наблюдается огромное видовое разнообразие.

Любому школьнику, а тем более взрослому, нужно понимать и знать, какие обязательные части имеет растительная клетка и как выглядит её модель, какую роль они выполняют, и как называются органоиды, отвечающие за окраску частей растений.

Тип урока : комбинированный.

Методы : словесный, наглядный, практический, проблемно-поисковый.

Цели урока

Образовательная: углубить знания учащихся о строении клеток эукариот, научить применять их на практических занятиях.

Развивающие: совершенствовать умения учащихся работать с дидактическим материалом; развивать мышление учащихся, предлагая задания для сравнения клеток прокариот и эукариот, клеток растений и клетки животных с выявлением схожих и отличительных признаков.

Оборудование : плакат «Строение цитоплазматической мембраны»; карточки-задания; раздаточный материал (строение прокариотической клетки, типичная растительная клетка, строение животной клетки).

Межпредметные связи : ботаника, зоология, анатомия и физиология человека.

План урока

I. Организационный момент

Проверка готовности к уроку.
Проверка списочного состава учащихся.
Сообщение темы и целей урока.

II. Изучение нового материала

Разделение организмов на про- и эукариоты

По форме клетки необычайно разнообразны: одни имеют округлую форму, другие похожи на звездочки со многими лучами, третьи вытянутые и т.д. Различны клетки и по размеру – от мельчайших, с трудом различимых в световом микроскопе, до прекрасно видимых невооруженным глазом (например, икринки рыб и лягушек).

Любое неоплодотворенное яйцо, в том числе гигантские окаменевшие яйца ископаемых динозавров, которые хранятся в палеонтологических музеях, тоже были когда-то живыми клетками. Однако, если говорить о главных элементах внутреннего строения, все клетки схожи между собой.

Прокариоты (от лат. pro – перед, раньше, вместо и греч. karyon – ядро) – это организмы, клетки которых не имеют ограниченного мембраной ядра, т.е. все бактерии, включая архебактерии и цианобактерии. Общее число видов прокариот около 6000. Вся генетическая информация прокариотической клетки (генофор) содержится в одной-единственной кольцевой молекуле ДНК. Митохондрии и хлоропласты отсутствуют, а функции дыхания или фотосинтеза, обеспечивающие клетку энергией, выполняет плазматическая мембрана (рис. 1). Размножаются прокариоты без выраженного полового процесса путем деления надвое. Прокариоты способны осуществлять целый ряд специфических физиологических процессов: фиксируют молекулярный азот, осуществляют молочнокислое брожение, разлагают древесину, окисляют серу и железо.

После вступительной беседы учащиеся рассматривают строение прокариотической клетки, сравнивая основные особенности строения с типами эукариотической клетки (рис. 1).

Эукариоты – это высшие организмы, имеющие четко оформленное ядро, которое оболочкой отделяется от цитоплазмы (кариомембраной). К эукариотам относятся все высшие животные и растения, а также одноклеточные и многоклеточные водоросли, грибы и простейшие. Ядерная ДНК у эукариот заключена в хромосомах. Эукариоты обладают клеточными органоидами, ограниченными мембранами.

Отличия эукариот от прокариот

– Эукариоты имеют настоящее ядро: генетический аппарат эукариотической клетки защищен оболочкой, схожей с оболочкой самой клетки.
– Включенные в цитоплазму органоиды окружены мембраной.

Строение клеток растений и животных

Клетка любого организма представляет собой сис-тему. Она состоит из трех взаимосвязанных между собой частей: оболочки, ядра и цитоплазмы.

При изучении ботаники, зоологии и анатомии человека вы уже знакомились со строением различных типов клеток. Кратко повторим этот материал.

Задание 1. Определите по рисунку 2, каким организмам и типам тканей соответствуют клетки под цифрами 1–12. Чем обусловлена их форма?

Строение и функции органоидов растительных и животных клеток

Используя рисунки 3 и 4 и пользуясь Биологическим энциклопедическим словарем и учебником, учащиеся заполняют таблицу, сравнивая животную и растительную клетки.

Таблица. Строение и функции органоидов растительных и животных клеток

Органоиды клетки

Строение органоидов

Функция

Присутствие органоидов в клетках

растений

животных

Хлоропласт

Представляет собой разновидность пластид

Окрашивает растения в зеленый цвет, в нем происходит фотосинтез

Лейкопласт

Оболочка состоит из двух элементарных мембран; внутренняя, врастая в строму, образует немногочисленные тилакоиды

Синтезирует и накапливает крахмал, масла, белки

Хромопласт

Пластиды с желтой, оранжевой и красной окраской, окраска обусловлена пигментами – каротиноидами

Красная, желтая окраска осенних листьев, сочных плодов и др.

Занимает до 90% объема зрелой клетки, заполнена клеточным соком

Поддержание тургора, накопление запасных веществ и продуктов обмена, регуляция осмотического давления и др.

Микротрубочки

Состоят из белка тубулина, расположены около плазматической мембраны

Участвуют в отложении целлюлозы на клеточных стенках, перемещении в цитоплазме различных органоидов. При делении клетки микротрубочки составляют основу структуры веретена деления

Плазматическая мембрана (ЦПМ)

Состоит из липидного бислоя, пронизанного белками, погруженными на различную глубину

Барьер, транспорт веществ, сообщение клеток между собой

Гладкий ЭПР

Система плоских и ветвящихся трубочек

Осуществляет синтез и выделение липидов

Шероховатый ЭПР

Название получил из-за множества рибосом, находящихся на его поверхности

Синтез белков, их накопление и преобразование для выделения из клетки наружу

Окружено двойной ядерной мембраной, имеющей поры. Наружная ядерная мембрана образует непрерывную структуру с мембраной ЭПР. Содержит одно или несколько ядрышек

Носитель наследственной информации, центр регуляции активности клетки

Клеточная стенка

Состоит из длинных молекул целлюлозы, собранных в пучки, называемые микрофибриллами

Внешний каркас, защитная оболочка

Плазмодесмы

Мельчайшие цитоплазматические каналы, которые пронизывают клеточные стенки

Объединяют протопласты соседних клеток

Митохондрии

Синтез АТФ (аккумуляция энергии)

Аппарат Гольджи

Состоит из стопки плоских мешочков – цистерн, или диктиосом

Синтез полисахаридов, формирование ЦПМ и лизосом

Лизосомы

Внутриклеточное пищеварение

Рибосомы

Состоят из двух неравных субъединиц –
большой и малой, на которые могут диссоциировать

Место биосинтеза белка

Цитоплазма

Состоит из воды с большим количеством растворенных в ней веществ, содержащих глюкозу, белки и ионы

В ней расположены другие органоиды клетки и осуществляются все процессы клеточного метаболизма

Микрофиламенты

Волокна из белка актина, обычно располагаются пучками вблизи поверхности клеток

Участвуют в подвижности и изменении формы клеток

Центриоли

Могут входить в состав митотического аппарата клетки. В диплоидной клетке содержится две пары центриолей

Участвуют в процессе деления клетки у животных; в зооспорах водорослей, мхов и у простейших образуют базальные тельца ресничек

Микроворсинки

Выступы плазматической мембраны

Увеличивают наружную поверхность клетки, микроворсинки в совокупности образуют кайму клетки

Выводы

1. Клеточная стенка, пластиды и центральная вакуоль присущи только растительным клеткам.
2. Лизосомы, центриоли, микроворсинки присутствуют в основном только в клетках животных организмов.
3. Все остальные органоиды характерны как для растительных, так и для животных клеток.

Строение оболочки клеток

Клеточная оболочка располагается снаружи клетки, отграничивая последнюю от внешней или внутренней среды организма. Ее основу составляет плазмалемма (клеточная мембрана) и углеводно-белковая составляющая.

Функции клеточной оболочки:

– поддерживает форму клетки и придает механическую прочность клетке и организму в целом;
– защищает клетку от механических повреждений и попадания в нее вредных соединений;
– осуществляет узнавание молекулярных сигналов;
– регулирует обмен веществ между клеткой и средой;
– осуществляет межклеточное взаимодействие в многоклеточном организме.

Функция клеточной стенки:

– представляет собой внешний каркас – защитную оболочку;
– обеспечивает транспорт веществ (через клеточную стенку проходит вода, соли, молекулы многих органических веществ).

Наружный слой клеток животных, в отличие от клеточных стенок растений, очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток называется гликокаликсом , выполняет функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами, опорной роли не выполняет.

Под гликокаликсом животной и клеточной стенкой растительной клетки расположена плазматическая мембрана, граничащая непосредственно с цитоплазмой. В состав плазматической мембраны входят белки и липиды. Они расположены упорядоченно за счет различных химических взаимодействий друг с другом. Молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной липидный бислой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину. Молекулы белков и липидов подвижны.

Функции плазматической мембраны:

– образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды;
– обеспечивает транспорт веществ;
– обеспечивает связь между клетками в тканях многоклеточных организмов.

Поступление веществ в клетку

Поверхность клетки не сплошная. В цитоплазматической мембране есть многочисленные мельчайшие отверстия – поры, через которые с помощью или без помощи специальных белков, внутрь клетки могут проникать ионы и мелкие молекулы. Кроме того, некоторые ионы и мелкие молекулы могут попадать в клетку непосредственно через мембрану. Поступление важнейших ионов и молекул в клетку не пассивная диффузия, а активный транспорт, требующий затрат энергии. Транспорт веществ носит избирательный характер. Избирательная проницаемость клеточной мембраны носит название полупроницаемости .

Путем фагоцитоза внутрь клетки поступают: крупные молекулы органических веществ, например белков, полисахаридов, частицы пищи, бактерии. Фагоцитоз осуществляется с участием плазматической мембраны. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в «мембранной капсуле» погружается внутрь клетки. Образуется пищеварительная вакуоль, и в ней перевариваются поступившие в клетку органические вещества.

Путем фагоцитоза питаются амебы, инфузории, лейкоциты животных и человека. Лейкоциты поглощают бактерии, а также разнообразные твердые частицы, случайно попавшие в организм, защищая его таким образом от болезнетворных бактерий. Клеточная стенка растений, бактерий и синезеленых водорослей препятствует фагоцитозу, и потому этот путь поступления веществ в клетку у них не реализуется.

Через плазматическую мембрану в клетку проникают и капли жидкости, содержащие в растворенном и взвешенном состоянии разнообразные вещества.Это явление было названо пиноцитозом . Процесс поглощения жидкости сходен с фагоцитозом. Капля жидкости погружается в цитоплазму в «мембранной упаковке». Органические вещества, попавшие в клетку вместе с водой, начинают перевариваться под влиянием ферментов, содержащихся в цитоплазме. Пиноцитоз широко распространен в природе и осуществляется клетками всех животных.

III. Закрепление изученного материала

На какие две большие группы разделяются все организмы по строению ядра?
Какие органоиды свойственны только растительным клеткам?
Какие органоиды свойственны только животным клеткам?
Чем различается строение оболочки клеток растений и животных?
Каковы два способа поступления веществ в клетку?
Каково значение фагоцитоза для животных?