Как объяснить детям, почему летают птицы. Почему птицы летают стаями

Многие люди, любуясь красивым полётом птиц, часто задумываются над тем, почему птицы летают. А романтики спрашивают себя: «Отчего люди не летают, как птицы?». Ответы на эти вопросы связаны с особенным строением птиц. Что и почему помогает птице парить в воздухе и не падать?

  • Самый главный инструмент при полёте – крылья. Крыло птицы имеет выгнутую форму, а это позволяет создавать силу, противодействующую силе тяжести. При работе крыла скорость течения воздуха над ним увеличивается, при этом давление уменьшается. Именно разница давлений над крылом и под ним позволяет противостоять силе тяжести, и птица может подняться в воздух.
  • Перья представляют собой роговые образования кожи, которые придают телу птицы гладкую и обтекаемую форму. Это делает полёт легче, так как нет большого сопротивления со встречным воздухом. Перья также помогают создать тягу и подъёмную силу. У птицы есть перья, которые регулируют направление полёта (рулевые перья на хвосте). Кроме того, они плотно прилегают друг к другу, что защищает тело птицы от неблагоприятных условий среды (дождь, ветер, жара, холод и т.д.).
  • Особенности скелета и мускулатуры также влияют на возможность полёта птиц. Скелет птицы очень прочный и лёгкий, а это помогает подниматься в воздух и сопротивляться окружающей среде. Прочность скелета достигается благодаря срастанию его костей. Лёгкость скелета связана с тем, что в некоторых костях содержатся воздухоносные полости. Ещё у скелета птиц есть важная особенность – на поверхности грудины имеется киль (небольшой вырост). Он служит местом закрепления грудных мышц, которые двигают крылья. Крупные мышцы, которые двигают конечности, расположены на туловище, а конечности имеют сухожилия. Поэтому птичьи ноги тонкие и лёгкие, что также уменьшает сопротивление воздуха при полёте.
  • Особенности систем организма птицы. Птица должна быть сильной для того, чтобы летать с высокой скоростью на большие расстояния. Поэтому чем больше птица летает, тем крупнее и выносливее у неё сердце. Частота сокращений сердца – до 1000 уд./ мин. Это гораздо больше, чем у млекопитающих. Таким образом обеспечивается быстрая циркуляция крови, и это помогает птице насыщаться кислородом. Чем больше кислорода получает птица, тем легче ей лететь. Температура тела птиц и давление также имеют высокие показатели по сравнению с млекопитающими (температура - от 40 до 42°С; давление - 180 мм рт.ст.). Высокая температура тела увеличивает процессы жизнедеятельности, в частности, скорость сокращения мышц. Это, в свою очередь, увеличивает скорость полёта. У нервной системы птиц также есть один существенный плюс – развитый мозжечок. Он помогает контролировать координацию движений, а это играет важную роль при полёте.

Теперь вы знаете, почему птицы летают. Это обусловлено не только крыльями и перьями, но и всеми системами организма. У многих возникает вопрос: а почему тогда многие птицы летают, а некоторые не летают вообще? Проблема заключается в массе и в строении тела нелетающих птиц. Небольшие птицы могут летать, потому что они мало весят, имеют хорошо развитую мускулатуру для полёта, и размер их крыльев пропорционален размеру их тел. У некоторых птиц, например у страуса и пингвина, нет такой хорошо развитой мускулатуры, да и масса их тел довольна большая для того, чтобы подняться в воздух. Зато отсутствие полёта они компенсируют передвижением по земле или воде. Такие птицы хорошо плавают, ходят, бегают, а некоторые даже лазают по деревьям! В отличие от летающих птиц, у них хорошо развиты нижние конечности, с помощью которых они и двигаются.

А почему птицы улетают на юг? Многие люди ошибочно предполагают, что птицы покидают нас в зимний период из-за холода. Безусловно, на юге птицам теплее, но главная причина заключается в другом. Это отсутствие еды. С наступлением холодов птицы лишаются своей привычной пищи – насекомых, лягушек, жаб, рыбок и их личинок. Всё это они находят в южных краях. Перелётных птиц у нас довольно много: синицы, ласточки, стрижи, журавли, жаворонки, утки, гуси, лебеди и т.д. Большая часть птиц в России – перелётные. Но есть и неперелётные, которые приспособились питаться отходами. Это грачи, галки, сороки, вороны, воробьи, голуби. Поэтому не забывайте подкармливать птиц зимой!

Почему и как летают ? Почему одни могут парить, а другие нет? Почему стая птиц может мгновенно и одновременно изменить направление полета? Человечество издавна задумывается над вопросами, касающимися полетов птиц, насекомых. На многие из них биологи могли бы дать ответ уже сегодня, если бы не одно обстоятельство - если бы воздух не был прозрачным. До сих пор при съемке полета птиц даже высокоскоростной камерой чрезвычайно трудно проследить совершенство полета с точки зрения законов аэродинамики.

Что только не придумывали для облегчения поисков ответа на возникающие вопросы! Так, американский исследователь из Южнокалифорнийского университета Джефф Спеддинг стал использовать при съемках полетов птиц мыльные пузыри, заполненные . Если такой пузырь достаточно мал, например, с булавочную головку, находящийся внутри газ заставляет его стремиться вверх. Этими пузырьками можно заполнить относительно большие емкости. В начале восьмидесятых годов Спеддинг изучал полет . Он заставлял их пролетать сквозь облако таких пузырьков, созданное в большом просторном помещении, а затем высокоскоростной камерой фотографировал оставленный ими в этом облаке след полета.

Съемка показала, что при пролете голубей воздух закручивается совсем не так, как это должно быть согласно теории аэродинамики. При съемке можно было бы использовать и дым, но пузырьки с гелием оказались лучше; за ними было легче следить. Благодаря этому Джефф Спеддинг сумел довольно точно описать, как движется крыло голубя.

Чтобы проанализировать полет птиц, исследователи по традиции полагаются на теоретические законы аэродинамики, выведенные для летательных аппаратов с неподвижным крылом. Но оказалось, что при перенесении их на действия живых существ они уже не верны. Птицы и более сложны, и более совершенны, чем любые из современных летательных аппаратов. Рассматривая птицу как модель , ученые исследуют ее в аэродинамической трубе. Создают они и особые роботы-крылья. И все это делается с целью определить, что же делает птица, когда летит, и произвести соответствующие измерения. Зачем это нужно? Чтобы помочь человеку улучшить конструкции проектируемых им летательных аппаратов и в первую очередь военных самолетов с высокой маневренностью.

Полет птиц за счет мускульной энергии - это чудо, которому люди не перестают удивляться и сегодня. Ведь чтобы поднять в воздух человека с помощью мускулов, нужны крылья размером 42,7 метра. А его грудная клетка должна иметь толщину 1,8 метра, чтобы вместить мускулы, достаточно мощные для производства взмахов.

Птицы, как, впрочем, и летательные аппараты, должны быть легкими, но мощными. Сегодня птицы могут летать, поскольку в процессе их внутренние органы и кости стали намного легче, чем у их предков рептилий. Пример ультралегкой конструкции являет собой океаническая птица фрегат: при размахе крыльев более двух метров его скелет весит менее ста двадцати граммов - вдвое меньше общего веса перьев.

Кстати, летучие мыши - превосходные летуны - также получили в результате эволюции суперлегкие кости. Потому они и висят, отдыхая, вниз головой, просто не могут встать на ноги. Их кости слишком тонки, чтобы выдержать нагрузку тела в стоячем положении. А черепа птиц вообще напоминают скорее яичную скорлупу, чем бронезащиту. Крылья же птиц, состоящие в основном из перьев, являют собой прямо-таки шедевр инженерного искусства природы: легкие и гибкие, но почти не поддающиеся разрушению.

Подъемная сила птицы создается за счет того, что воздух равномерно обтекает изогнутую поверхность крыла. А поступательное движение - за счет взмахов. Они-то и ставят в тупик многочисленных исследователей полета. Крыло - это не просто весло, которым птица «гребет» в воздухе, как полагал Леонардо да Винчи. Некоторые исследователи считают, что птица осуществляет повороты, вывернув внутреннюю часть крыла так, чтобы создать сопротивление на той стороне, куда она поворачивает, подобно действиям с портом сна на каноэ.

Сопротивление воздуха замедляет полет, а ведь от его скорости зависит иногда жизнь или смерть птицы. Американский биолог и летчик Кен Дайал обнаружил, что птицы часто осуществляют поворот за счет наклона крыла вниз, наподобие того, как отклоняются элероны у самолета. Используя рентгеновский аппарат, Дайал провел наблюдения за полетами птиц в аэродинамической трубе, благодаря чему увидел движение скелета во время полета, а также во время вдохов и выдохов птицы.

Совершая различные маневры, птицы должны координировать множество точных движений, начиная от изгибов и полного поворота крыла до изменения амплитуды взмахов. В полете им помогает центральная нервная система, управляющая . Но во многом птицы все же похожи на самый современный истребитель, обладающий высокой маневренностью и управляющийся компьютерной системой, позволяющей производить корректировку на большой высоте за доли секунд. Конечно, у птиц нет компьютера, зато есть крупный мозжечок, а, как известно, именно он участвует в координации движений животных.

Немало известно о полетах птиц и шведскому зоологу и ветеринару Ричарду Брауну. Если к крыше кабины планера прикрепить короткие нити, то при нормальном планировании они спокойно «летят» назад, но как только планер станет терять скорость, воздушные вихри поднимут нити вверх и даже могут направить их вперед - своего рода предупреждение об опасности. Точно так же, считает Браун, тысячи перьев, покрывающих крылья и тело птицы, могут работать как датчики воздушных потоков. Благодаря нервным окончаниям, птица сразу же чувствует движение перьев. Мускулы, на которых расположены перья, в основном действуют как пассивные датчики информации для нервной системы и в меньшей степени как движители. Чувствительные элементы на крыльях и определяют начало турбулентности (вихревого движения при активном перемешивании слоев воздуха) в обтекающем потоке, заставляя птицу изменить темп движения крыльев или несколько опустить их вниз.

Очень важны для птиц и акробатические способности. Ласточки, например, проводящие в воздухе до восьми часов в день, то и дело взмывают высоко в небо и бросаются вниз в погоне за насекомыми. А вот малиновки находятся днем в воздухе всего лишь несколько минут, совершая короткие перелеты, длящиеся обычно несколько секунд. Большая часть их полетов приходится на взлеты и посадки - самые утомительные моменты любого полета. Поэтому многие крупные птицы стараются делать их как можно реже. Грифы, соколы, альбатросы и другие крупные птицы почти все время проводят в парящем полете на воздушных течениях с распростертыми и почти неподвижными крыльями.

Для большей эффективности полета птицы искусно используют характерные особенности своих перьев. Например, грифы, совершая медленный полет по кругу, чтобы не потерять высоту, выпрямляют длинные, жесткие перья на концах крыльев и разворачивают их веером так, чтобы между ними образовались щели, препятствующие перемешиванию воздуха в потоке за птицей. В результате сопротивление снижается, а подъемная сила возрастает.

Сокол же, наоборот, пикируя на добычу, укладывает свои перья так, чтобы сократить площадь их поверхности. Ему нужна скорость, а не подъемная сила. Построить диаграмму полета птицы, пикирующей со скоростью 320 километров в час, непросто, и обычно скорость пикирования определяется приблизительно. Но специалисты надеются, что однажды им удастся вывести формулу построения диаграммы полета, применяемую к птицам любых размеров и форм.

А как летают насекомые? Мелкие осы и жуки, например, как бы гребут крыльями по воздуху, сопротивление которого им только помогает. Они ощущают воздух как что-то вязкое, наподобие сиропа. Им не нужна большая подъемная сила, и если они вдруг прекратили бы свое движение, то стали падать на землю не быстрее, чем комок пыли. Они «плывут» по воздуху, используя свои крылья, покрытые ворсинками, для создания большего сопротивления. При обратном движении крыла ворсинки моментально складываются. Происходит нечто подобное тому, как снижается сопротивление у весла, вынимаемого из воды. Кстати, крупным насекомым летать труднее.

Английский зоолог Чарлз Эллингтон из Кембриджского университета, интересующийся шмелями, в одной из своих работ писал, что по законам аэродинамики шмели летать не должны. Но они летают! Крылья шмелей и других крупных насекомых создают подъемную силу гораздо большую, чем определяет теория аэродинамики. Как это им удается? Теперь, кажется, ответ на этот вопрос получен. Это произошло при изучении полета крупных флоридских бражников (ночных бабочек), имеющих размах крыльев более десяти сантиметров. Когда такой бражник пролетает сквозь дым, который, кстати сказать, его совсем не беспокоит, можно видеть, как воздух вихрями закручивается от его тела к концам крыльев вместо того, чтобы согласно теории аэродинамики плавно обтекать крылья по направлению от их передней кромки к задней. Была построена большая механическая модель бражника (из ткани и меди) с двигающимися крыльями. И робот-бражник тоже создавал вихри, направленные в разные стороны.

Сегодня биологи уже вплотную приблизились к решению загадок: как насекомые и мелкие птицы создают такую большую подъемную силу при малом запасе энергии, как и почему они летают.

Человек всегда завидовал птицам. Как же, ведь они летают, а он не может! Двигатель развития летательного аппарата птиц - добывание пищи. Ну, а как же нелетающие птицы, например, страусы? Эти - исключение из правил. У людей вопрос с решен давно, и теперь, приблизившись к разгадке полета, узнав, насколько нелегко он дается птицам, может быть, не стоит им завидовать?

P. S. О чем еще думают британские ученные: о том, что исследования механики полета птиц могут быть очень перспективными в том числе и с коммерческой точки зрения. Ведь если какому-нибудь ученому вдруг удастся разгадать тайну птичьего полета и чего доброго смастерить настоящие крылья, как мифический Дедал смастерил их для себя и своего сына Икара, думаю, такой ученый вмиг стал бы миллионером. Позже появились бы книги об истории его успеха, а еще позже книги по бизнесу (как на сайте /biznes_literatura/buhgalterija__nalogi__audit/) о роли инноваций в бизнес планировании и крылья из средства безграничного полета превратились бы в бухгалтерскую категорию.

Почему журавли и некоторые другие крупные птицы во время своих миграций выбирают такую форму построения, как клин? Оказывается, этот строй позволяет им экономить энергию, поскольку птицы, выстроившись клином, так оптимизируют возникающие воздушные потоки, что те не мешают, а помогают им лететь. Но такое возможно только у крупных путешественников.

Когда речь заходит о перелетных птицах, почти сразу же вспоминается летящий по небу журавлиный клин. Впрочем, подобное построение используют не только журавли — многие другие крупные птицы, например, гуси, утки, ибисы также предпочитают путешествовать, построившись в виде клина. Таким образом, можно предположить, что этот строй является достаточно удобным для долгих перелетов. Однако сразу же возникает вопрос: почему?

Долгое время существовали две гипотезы, которые объясняли выгоду от подобного построения — одна из них, поведенческая, говорит о том, что птицы при путешествии просто следуют за лидером, то есть тем, кто летит перед ними, и из-за этого автоматически получается клин. Вторая гипотеза объясняет выгоду подобного построения законами аэродинамики — они благоприятствуют именно построению клином, поскольку при такой форме построения птицам легче лететь.

Однако обе этих версии совершенно не объясняют того факта, что клин не является единственной формой построения птичьей стаи. Например, кулики летят зигзагообразным строем, напоминающим змейку, скворцы — четкой линией, а чайки — вообще беспорядочной толпой. Почему же в таком случае эти птицы позволяют себе так наплевательский относиться к законам термодинамики — ведь они могли бы, изменив построение, весьма облегчить себе путешествие? Кроме того, необходимость видеть лидера, указывающего направление движения, есть и у этих пернатых, и, более того, судя по всему им это удается и при других формах построения.

И вот недавно ученые из Международной группы зоологов под руководством Джеймса Ашервуда из Королевского ветеринарного колледжа Лондонского университета (Великобритания) решила разгадать загадку птичьего клина. Для этого исследователи снабдили 14 молодых лесных ибисов (Geronticus eremita ) GPS-датчиками, которые фиксировали положение птицы с точностью до 30 см, и акселерометрами, которые регистрировавали движения крыльев. После чего прошлой осенью вернули этих выращенных в неволе птиц в естественную среду обитания — как раз накануне их традиционного путешествия из Австрии в Италию (оно прошло под руководством приемных "родителей", то есть людей на параплане). Во время полета эти "родители" получили уникальную возможность исследовать полет ибисов, находясь вблизи самих птиц.

В итоге, когда ибисы благополучно долетели до приготовленного им места зимовки, а ученые проанализировали данные приборов и результаты собственных наблюдений, выяснилось, что аэродинамическая гипотеза была абсолютно корректной. В статье, которая была опубликована в журнале Nature , ученые пишут про то, что ибисы старались лететь сзади и слегка сбоку впереди летящего товарища, чтобы поймать крылом поднимающиеся вверх вихревые потоки, которые тот оставлял позади себя. Если же ведомый оказывался строго позади ведущего, то характер взмахов менялся — так, чтобы минимизировать влияние нисходящих потоков от тела того, кто летел впереди.

Таким образом было выяснено, что построение при полете определяется в основном двумя факторами: птицам нужно поймать восходящие потоки от лидера и избежать нисходящих, которые тоже тянутся за тем, кто движется впереди. Также орнитологи выяснили, что при этом птицы специально синхронизируют друг с другом движения крыльев — опять же для лучшей настройки на воздушные потоки. В результате получается, что во время полета ибисы как бы тянут друг друга за собой. Без сомнения, подобное дает немалый энергетический выигрыш, хотя сами авторы работы не проводили измерения расходов калорий путешествующих ибисов, ссылаясь на то, что это сильно повредило бы этим редким птицам, которые и так находятся на грани исчезновения.

Любопытно, что результаты исследования группы Ашервуда подтверждают одну закономерность, которая давно уже известна всем военным летчикам — если эскадрилья построена клином, то каждый самолет расходует меньше топлива. Прежде ученые считали подобную аналогию неуместной, поскольку воздушные потоки, которые создает самолет, достаточно стабильны (ведь аэропланы крыльями не машут), а вот вихри от крыльев летящей птицы гораздо более непредсказуемы и непостоянны. Но оказалось, что и птицам подобное построение помогает минимизировать энергетические затраты, вызванные воздушными вихрями.

Однако все-таки, почему же далеко не все птицы летают клином, если это таит в себе огромную энергетическую выгоду? Построив модель передвижения подобным строем группы птиц с более и менее большим весом, нежели у ибисов, ученые обнаружили, что такая выгода возникает только у крупных птиц — вроде тех же ибисов, аистов, пеликанов, гусей и т. п. А вот их более мелким пернатым сородичам из-за меньшего веса, а также размера тела и крыльев приходится иметь дело с другими аэродинамическими закономерностями, и они уже не могут вот так просто выбрать строй и ритм взмахов крыльями, чтобы ловить одни потоки и избегать другие. Наверное, именно поэтому у перелетных птиц малого размерного класса и наблюдается такое разнообразие построений для путешествий, тогда как почти все крупные птицы летают клином.

Итак, почти все загадки, связанные с тем, почему крупные перелетные птицы летают клином, ученые вроде бы разгадали. Впрочем, кое-что пока осталось неясным — например то, каким образом птицам удается найти оптимальное построение. Могут ли они преднамеренно образовывать клин, корректируя построение на глаз или же просто действуют методом проб и ошибок, ощущая воздушные потоки и находя положение с наименьшим сопротивлением воздуха?

Вопрос о птичьих перелетах можно разделить на два:

1. Почему птицы ежегодно улетают в чужие края?

2. Почему они возвращаются обратно, не остаются там, где им было совсем неплохо?

Вопросы столь же интересны, сколь и трудны для ответа!

Долгое время перелеты птиц объясняли только одним: зимой им холодно и необходимо сменить климат. Однако, как ни странно, температура сама по себе не является причиной перелетов. Перья могут неплохо защищать птицу от холода. К примеру, канарейка способна выжить на морозе до -45°С, если у нее будет достаточно пищи.

Сейчас считается, что зимой птицы улетают в теплые края от зимней бескормицы. Птицы очень быстро расходуют энергию, которую они получают с пищей, а это означает, что есть им нужно часто и много. Поэтому, когда земля замерзает и пищу найти трудно, особенно насекомоядным птицам, многие из них отправляются на юг.

Доказательством того, что птиц "гонит" на юг недостаток еды, является такой факт: если пища есть в достатке, некоторые перелетные птицы даже в морозы не покидают мест, где появились на свет.

Например, ласточка покидает холодные края, чтобы перезимовать в Африке или Азии, под безоблачным летним небом. Но почему она пролетает над всей Африкой, тогда как может найти теплые края и поближе?

Бывает и так: буревестники летают из Антарктики на Северный полюс. Какие уж тут поиски тепла!

А многие тропические птицы, которым не угрожает ни холод, ни голод, выкормив птенцов, отправляются в далекие путешествия. Серый тиранн, например, (он похож немного на нашего сорокопута) каждый год посещает сельву Амазонки и возвращается обратно в Вест-Индию, когда приходит пора размножаться.

Если ученым до сих пор не все понятно о причинах, по которым птицы срываются с насиженных мест в теплые края, то с вопросом о том, зачем они возвращаются обратно на север с благодатного юга, дело обстоит еще сложнее.

Считается, что при наступлении осенней поры на юге для птиц и для их потомства возникают неблагоприятные условия. Например, в тропиках и на экваторе часты такие грозы, которых просто не знают страны умеренного климата. К тому же и число грозовых дней там намного больше, чем у нас, в десятки раз. Птицы, которые перелетают в Индию и субтропики, вынуждены летом бежать от засушливого сезона.

Белая сова гнездится в тундре, где лето холодное, климат влажный и много леммингов, которыми сова питается. Зиму она проводит в лесостепи средней полосы. Может ли эта сова остаться на лето в жаркой сухой степи, где мало привычной для нее пищи? Конечно, нет. Она улетает в родную тундру.

Отчасти тягу к возвращению домой можно объяснить внутренними изменениями в организме птицы. Когда наступает период размножения, железы внутренней секреции под влиянием внешних раздражителей выделяют в организм птицы особые вещества - гормоны. Под влиянием гормонов начинается и проходит сезонное развитие половых желез. Это, по-видимому, и побуждает птиц к перелету.

Еще одна причина возвращения птиц домой состоит в том, что птицам летом выгоднее выводить потомство в средних широтах, потому что здесь летом дни длиннее, чем на юге. А перелетные птицы ведут дневной образ жизни, и длинный день дает им больше возможностей, чтобы прокормить потомство.

Наблюдая за удивительным животным миром, малыши не могут понять, как летают птицы. Юным исследователям кажется странным, что эти пернатые создания парят в воздухе и не падают вниз. Как же маме и папе объяснить своему любознательному малышу, почему птицы умеют летать? Начнем по порядку.

  • Строение птиц

Будет удобно, если у родителей под рукой окажется иллюстрированная энциклопедия. В противном случае придется нарисовать птицу от руки, чтобы малыш мог наглядно увидеть, из чего она состоит и какое имеет строение.

На сегодняшний день существует больше 9000 видов различных птиц. Все они имеют похожее строение, приспособленное для полета, и отличаются только некоторыми особенностями.

Существует мнение, что птицы произошли от мелких динозавров. Раньше это были хищные создания, которые имели крепкие задние ноги и неразвитые передние конечности. Охотясь на летающих насекомых, этим динозаврам приходилось отталкиваться от земли при помощи своих мощных ног, а короткими конечностями захватывать добычу. Чешуя со временем превратилась в перья, а хвост значительно сократился в размерах и покрылся длинными перьями. Постепенно преображаясь, такие динозавры научились летать.

  • Крылья

Крылья у птиц устроены таким образом, что служат некоторым «разграничителем» давления воздуха. Над крылом – одно давление, под крылом – другое. За счет этой разницы образуется подъемная сила. Именно эта сила и позволяет птицам парить в воздухе.

  • Перья

Птичьи перья очень легкие, а внутри полые («пустые»). Перья отличаются большой прочностью и теплостойкостью. Покрыты они специальной смазкой, благодаря которой они не мокнут под дождем. Сложенные друг на друга перья образуют равномерно уложенный слой, который повторяет контуры их тела. Этот слой оберегает птиц от переохлаждения и служит защитником от пагубного влияния окружающей среды (ветер, сырость, перегрев).

Мамам на заметку!


Девочки привет) вот не думала, что и меня коснется проблема растяжек, а еще буду писать про это))) Но деваться некуда, поэтому пишу тут: Как я избавилась от растяжек после родов? Очень буду рада, если и вам мой способ поможет...

Из-за перьевого покрова птицы имеют гладкую и обтекаемую форму, благодаря которой не происходит сопротивления с воздухом. А это позволяет им свободно летать и регулировать направление своего полета.

  • Кости

Кости птиц легкие, но довольно прочные. На костях имеются стенки, которые так же, как и перья полые внутри. По этой причине птицы имеют очень небольшой вес. Благодаря легкому скелету и развитой мускулатуре основных мышц птицы могут удерживаться в состоянии полета долгое время.

  • Дыхание

Чтобы летать, птицам необходим большой объем кислорода. Для его размещения в их теле (помимо легких) предусмотрены специальные воздушные мешки. Сначала птица вдыхает воздух, потом воздух попадает в легкие через бронхиолы, затем уже в воздушные мешки. «Возвращаясь» обратно, воздух снова проходит через легкие, образуя повторный газообмен. Этот процесс называется «двойное дыхание». Оно позволяет птицам иметь в запасе необходимое количество кислорода для совершения полета.

  • Хвост

Для птиц хвост — это своеобразный механизм, который выполняет функцию тормоза и руля в полете.

  • Сердечная и кровеносная система

Птицы имеют довольно крупное для своих размеров сердце, которое обеспечивает отличную циркуляцию крови в сосудах (сердечное сокращение доходит до 1000 ударов в минуту). По этой причине у птиц высокая температура тела и очень быстрый обмен веществ. Именно поэтому птицам необходимо хорошо питаться. Объясните своему малышу, что кормить птиц зимой очень важно. Зима – это такой период, когда добыть корм самостоятельно им бывает очень трудно, и они могут погибнуть.

Тема про птиц должна стать вызвать у ребенка интерес к изучению их жизни и желание помочь выжить им в суровых условиях климата. Разговаривая с ребенком на интересующую его тему, старайтесь отвечать четко, ясно и на доступном для него языке. Ваш ответ должен заинтересовать ребенка, побудить в нем желание изучать этот мир еще активнее.

Киножурнал «Хочу всё знать». Почему летают птицы?

Мамам на заметку!


Девочки привет! Сегодня я расскажу вам, как же мне удалось прийти в форму, похудеть на 20 килограммов, и, наконец, избавиться от жутких комплексов полных людей. Надеюсь, информация окажется для вас полезной!