Особенности восприятия человека. Зрение. Цвет и зрение человека Как глаз воспринимает свет

Особенности человеческого зрения

Человек не может видеть в полной темноте. Для того, чтобы человек увидел предмет, необходимо, чтобы свет отразился от предмета и попал на сетчатку глаза. Источники света могут быть естественные (огонь, Солнце) и искусственные (различные лампы).

глаз человека представляет собой радиоприемник, способный принимать электромагнитные волны определенного (оптического) диапазона частот. Первичными источниками этих волн являются тела, их излучающие (солнце, лампы и т.п.), вторичными – тела, отражающие волны первичных источников. Свет от источников попадает в глаз и делает их видимыми человеку. Таким образом, если тело является прозрачным для волн видимого диапазона частот (воздух, вода, стекло и т.п.), то оно не может быть зарегистрировано глазом.

Благодаря зрению мы получаем 90% информации об окружающем мире, поэтому глаз - один из важнейших органов чувств. Глаз можно назвать сложным оптическим прибором. Его основная задача - "передать" правильное изображение зрительному нерву.

Световая чувствительность человеческого глаза

Способность глаза воспринимать свет и распознавать различной степени его яркости называется светоощущением, а способность приспосабливаться к разной яркости освещения - адаптацией глаза; световая чувствительность оценивается величиной порога светового раздражителя. Человек с хорошим зрением способен разглядеть ночью свет от свечи на расстоянии нескольких километров. Максимальная световая чувствительность достигается после достаточно длительной темновой адаптации.

В глазу человека содержатся два типа светочувствительных клеток (рецепторов): высоко чувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.

В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зелёный и синий участки спектра. Распределение типов колбочек в сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом. Соответствие типов колбочек трём «основным» цветам обеспечивает распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета.

Равномерное раздражение всех трёх элементов, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета. За цветовое зрение человека отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия. У большинства млекопитающих таких генов только два, поэтому они имеют черно-белое зрение.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.[

Изменение зрения с возрастом

У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, его преломляющая способность выше. Это позволяет ребенку четко видеть предмет на меньшем расстоянии от глаза, чем взрослому. И если у младенца он прозрачный и бесцветный, то у взрослого человека хрусталик имеет легкий желтоватый оттенок, интенсивность которого с возрастом может усиливаться. Это не отражается на остроте зрения, но может повлиять на восприятие синего и фиолетового цветов. Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронны, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет формируется в возрасте от 5 дней до 3–5 месяцев. Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и уже в последнюю очередь – цвет. Острота зрения с возрастом повышается, улучшается и стереоскопическое зрение. Стереоскопическое зрение (от греч. στερεός - твёрдый, пространственный) - вид зрения, при котором возможно восприятие формы, размеров и расстояния до предмета, например благодаря бинокулярному зрению Стереоскопическое зрение к 17–22 годам достигает своего оптимального уровня, причем с 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков. Поле зрения интенсивно увеличивается. К 7 годам его размер составляет приблизительно 80 % от размера поля зрения взрослого. После 40 лет наблюдается падение уровня периферического зрения, то есть происходит сужение поля зрения и ухудшение бокового обзора. Примерно после 50 лет сокращается выработка слезной жидкости, поэтому глаза увлажняются хуже, чем в более молодом возрасте. Чрезмерная сухость может выражаться в покраснении глаз, рези, слезотечении под действием ветра или яркого света. Это может не зависеть от обычных факторов (частые напряжения глаз или загрязненность воздуха). С возрастом человеческий глаз начинает воспринимать окружающее более тускло, с понижением контрастности и яркости. Также может ухудшиться способность распознавать цветовые оттенки, особенно близкие в цветовой гамме. Это напрямую связано с сокращением количества клеток сетчатой оболочки, воспринимающих оттенки цвета, контрастность, яркость. Некоторые возрастные нарушения зрения обусловлены пресбиопией, которая проявляется нечеткостью, размытостью картинки при попытке рассмотреть предметы, расположенные близко от глаз. Возможность фокусировки зрения на небольших предметах требует аккомодацию около 20 диоптрий (фокусировка на объекте в 50 мм от наблюдателя) у детей, до 10 диоптрий в возрасте 25 лет (100 мм) и уровни от 0,5 до 1 диоптрии в возрасте 60 лет (возможность фокусировки на предмете в 1-2 метрах). Считается, что это связано с ослаблением мышц, которые регулируют зрачок, при этом так же ухудшается реакция зрачков на попадающий в глаз световой поток. Поэтому возникают трудности с чтением при тусклом свете и увеличивается время адаптации при перепадах освещенности.

Так же с возрастом начинает быстрее возникать зрительное утомление и даже головные боли.

Психология восприятия цвета

Психология восприятия цвета - способность человека воспринимать, идентифицировать и называть цвета. Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Первоначально исследования восприятия цвета проводились в рамках цветоведения; позже к проблеме подключились этнографы, социологи и психологи. Зрительные рецепторы по праву считаются «частью мозга, вынесенной на поверхность тела». Неосознаваемая обработка и коррекция зрительного восприятия обеспечивает «правильность» зрения, и она же является причиной «ошибок» при оценке цвета в определенных условиях. Так, устранение «фоновой» засветки глаза (например, при разглядывании удаленных предметов через узкую трубку) существенно меняет восприятие цвета этих предметов. В силу природы глаза, свет, вызывающий ощущение одного и того же цвета (например белого), то есть одну и ту же степень возбуждения трёх зрительных рецепторов, может иметь разный спектральный состав. Человек в большинстве случаев не замечает данного эффекта, как бы «домысливая» цвет. Это происходит потому, что хотя цветовая температура разного освещения может совпадать, спектры отражённого одним и тем же пигментом естественного и искусственного света могут существенно отличаться и вызывать разное цветовое ощущение.

Периферическое зрение (поле зрения ) - определяют границы поля зрения при проекции их на сферическую поверхность (при помощи периметра).

Страсть к цвету

Восприятие цвета. Физика

Около 80% всей входящей информации мы получаем визуально
Мы познаем окружающий мир на 78% благодаря зрению, на 13% - слуху, на 3% - тактильным ощущениям, на 3% - обонянию и на 3% - вкусовым рецепторам.
Мы запоминаем 40% увиденного и только 20% услышанного*
*Источник: R. Bleckwenn & B. Schwarze. Учебник дизайна (2004)

Физика цвета. Цвет мы видим только благодаря тому, что наши глаза способны регистрировать электромагнитное излучение в оптическом его диапазоне. А электромагнитное излучение это и радиоволны и гамма излучение и рентгеновское излучение, терагерцевое, ультрафиолетовое, инфракрасное.

Цвет - качественная субъективная характеристика электромагнитного излучения оптического диапазона, определяемая на основании возникающего
физиологического зрительного ощущения и зависящая от ряда физических, физиологических и психологических факторов.
Восприятие цвета определяется индивидуальностью человека, а также спектральным составом, цветовым и яркостным контрастом с окружающими источниками света,
а также несветящимися объектами. Очень важны такие явления, как метамерия, индивидуальные наследственные особенности человеческого глаза
(степень экспрессии полиморфных зрительных пигментов) и психики.
Говоря простым языком цвет - это ощущение, которое получает человек при попадании ему в глаз световых лучей.
Одни и те же световые воздействия могут вызвать разные ощущения у разных людей. И для каждого из них цвет будет разным.
Отсюда следует что споры "какой цвет на самом деле" бессмысленны, поскольку для каждого наблюдателя истинный цвет - тот, который видит он сам


Зрение дает нам информации об окружающей действительности больше, чем другие органы чувств: самый большой поток информации в единицу времени мы получаем именно глазами.





Отраженные от объектов лучи попадают через зрачок на сетчатку, которая представляет собой прозрачный шарообразный экран толщиной 0.1 - 0.5 мм, на который проецируется окружающий мир. Сетчатка содержит 2 типа фоточувствительных клеток: палочки и колбочки.

Цвет происходит из света
Чтобы видеть цвета, необходим источник света. В сумерках мир теряет свою цветность. Там, где нет света, возникновение цвета невозможно.

Учитывая огромное, многомиллионное количество цветов и их оттенков, колористу нужно обладать глубокими, полноценными знаниями о цветовосприятии и происхождении цвета.
Все цвета представляют собой часть луча света – электромагнитных волн, исходящих от солнца.
Эти волны являются частью спектра электромагнитного излучения, в который входят гамма-излучение, рентгеновское излучение, ультрафиолетовое излучение, оптическое излучение (свет), инфракрасное излучение, электромагнитное терагерцевое излучение,
электромагнитные микро- и радиоволны. Оптическое излучение – это та часть электромагнитного излучения, которую способны воспринимать наши глазные сенсоры. Мозг обрабатывает полученные от глазных сенсоров сигналы и интерпретирует их в цвет и форму.

Видимое излучение (оптическое)
Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра в широком смысле этого слова.
Выделение такой области обусловлено не только близостью соответствующих участков спектра, но и сходством приборов, применяющихся для её исследования и разработанных исторически главным образом при изучении видимого света (линзы и зеркала для фокусирования излучения, призмы, дифракционные решётки, интерференционные приборы для исследования спектрального состава излучения и пр.).
Частоты волн оптической области спектра уже сравнимы с собственными частотами атомов и молекул, а их длины - с молекулярными размерами и межмолекулярными расстояниями. Благодаря этому в этой области становятся существенными явления, обусловленные атомистическим строением вещества.
По этой же причине, наряду с волновыми, проявляются и квантовые свойства света.

Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагрета до температуры 6000 градусов по Кельвину и светит ярко-белым светом (максимум непрерывного спектра солнечного излучения расположен в «зелёной» области 550 нм, где находится и максимум чувствительности глаза).
Именно потому, что мы родились возле такойзвезды, этот участок спектра электромагнитного излучения непосредственно воспринимается нашими органами чувств.
Излучение оптического диапазона возникает, в частности, при нагревании тел (инфракрасное излучение называют также тепловым) из-за теплового движения атомов и молекул.
Чем сильнее нагрето тело, тем выше частота, на которой находится максимум спектра его излучения (см.: Закон смещения Вина). При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала красным цветом, потом жёлтым и так далее. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие (см.: Болометрия).
Оптическое излучение может создаваться и регистрироваться в химических и биологических реакциях.
Одна из известнейших химических реакций, являющихся приёмником оптического излучения, используется в фотографии.
Источником энергии для большинства живых существ на Земле является фотосинтез - биологическая реакция, протекающая в растениях под действием оптического излучения Солнца.

Цвет играет огромную роль в жизни обычного человека. Жизнь колориста посвящена цвету.

Заметно, что цвета спектра, начинаясь с красного и проходя через оттенки противоположные, контрастные красному (зелёный, циан), затем переходят в фиолетовый цвет, снова приближающийся к красному. Такая близость видимого восприятия фиолетового и красного цветов связана с тем, что частоты, соответствующие фиолетовому спектру, приближаются к частотам, превышающим частоты красного ровно в два раза.
Но сами эти последние указанные частоты находятся уже вне видимого спектра, поэтому мы не видим перехода от фиолетового снова к красному цвету, как это происходит в цветовом круге, в который включены неспектральные цвета, и где присутствует переход между красным и фиолетовым через пурпурные оттенки.

При прохождении луча света через призму различные по длине волны, его составляющие, преломляются под разными углами. В результате мы можем наблюдать спектр света. Этот феномен очень похож на феномен радуги.

Следует различать солнечный свет и свет, исходящий от искусственных источников освещения. Только солнечный свет можно считать чистым светом.
Все остальные искусственные источники освещения будут влиять на восприятие цвета. Например, лампы накаливания являются источниками теплого (желтого) света.
Флуоресцентные лампы, чаще всего, дают холодный (синий) свет. Для корректной диагностики цвета необходим дневной свет или же источник освещения, максимально к нему приближенный.
Только солнечный свет можно считать чистым светом. Все остальные искусственные источники освещения будут влиять на восприятие цвета.

Многообразие цветов: Цветовосприятие основывается на способности различать изменения в направлении тона, светлоте/яркости и насыщенности цвета в оптическом диапазоне с длинами волн от 750 нм (красный) до 400 нм (фиолетовый).
Изучив физиологию восприятия цвета, мы можем лучше понять, как формируется цвет, и использовать эти знания на практике.

Мы воспринимаем все многообразие цветов только при наличии и нормальном функционировании всех конусных сенсоров.
Мы способны различать тысячи различных направлений тона. Точное количество зависит от способности глазных сенсоров улавливать и различать световые волны. Эти способности можно развивать тренировками и упражнениями.
Цифры, приведенные ниже, звучат невероятно, но это реальные способности здорового и хорошо подготовленного глаза:
Мы можем различать около 200 чистых цветов. Меняя их насыщенность, мы получаем приблизительно по 500 вариаций каждого цвета. Меняя их светлоту, получаем еще по 200 нюансов каждой вариации.
Хорошо подготовленный человеческий глаз способен различать до 20 миллионов цветовых нюансов!
Цвет субъективен, поскольку мы все воспринимаем его по-разному. Хотя, пока наши глаза здоровы, эти отличия незначительны.

Мы можем различать 200 чистых цветов
Меняя насыщенность и светлоту этих цветов, мы можем различать до 20 миллионов оттенков!

“You only see what you know. You only know what you see.”
«Вы видите только ведомое. Вы ведаете только видимое ».
Марсель Пруст (французский романист), 1871-1922.

Восприятие нюансов одного цвета не одинаково для разных цветов. Тоньше всего мы воспринимаем изменения в зеленом спектре - достаточно изменения длины волны всего на 1 нм, чтобы мы могли увидеть отличие. В красном и синем спектрах необходимо изменение длины волны на 3-6 нм, чтобы отличие стало заметно для глаза. Возможно, отличие в более тонком восприятии зеленого спектра было связано с необходимостью отличать съедобное от несъедобного во времена зарождения нашего вида (профессор, доктор археологии, Герман Крастел BVA).

Цветные картинки, возникающие в нашем сознании, – это кооперация глазных сенсоров и мозга. Мы «ощущаем» цвета, когда конические сенсоры, находящиеся в сетчатке глаза, генерируют сигналы под воздействием попадающих на них волн определенной длины и передают эти сигналы в мозг. Поскольку в цветовосприятии задействованы не только глазные сенсоры, но и мозг, то в результате мы не только видим цвет, но и получаем на него определенный эмоциональный отклик.

Наше уникальное цветоощущение никоим образом не меняет наш эмоциональный отклик на определенные цвета., отмечают ученые. Независимо от того, каков для человека голубой цвет, он всегда становится немного более спокойным и расслабленным, смотря на небо. Короткие волны голубого и синего цветов успокаивают человека, тогда как длинные волны (красный, оранжевый, желтый) наоборот – придают активности и живости человеку.
Эта система реакции на цвета присуща каждому живому организму на Земле – от млекопитающих до одноклеточных (например, одноклеточные «предпочитают» обрабатывать рассеянный свет желтого цвета в процессе фотосинтеза). Считается, что данная взаимосвязь цвета и нашего самочувствия, настроения обуславливается дневным/ночным циклом существования. Например, на рассвете все окрашено в теплые и яркие цвета – оранжевый, желтый – это сигнал каждому, даже самому маленькому существу, что начался новый день и пора приниматься за дела. Ночью и в полдень, когда течение жизни замедляется, вокруг доминируют синие и фиолетовые оттенки.
В своих исследованиях Джей Нейц и его коллеги из Университета штата Вашингтон отметили, что изменение цвета рассеянного света может изменить суточный цикл рыб, в то время как изменение интенсивности этого света не имеет решающего влияния. На этом эксперименте и базируется предположение ученых, что именно благодаря доминированию синего цвета в ночной атмосфере (а не просто темнота), живые существа чувствуют усталость и желание спать.
Но наши реакции не зависят от цветочувствительных клеток сетчатки. В 1998 году ученые обнаружили совершенно отдельный набор цветовых рецепторов – меланопсинов – в человеческом глазу. Эти рецепторы определяют количество синего и желтого цветов в окружающем нас пространстве и отправляют эту информацию в участки мозга, отвечающие за регулирование эмоций и циркадного ритма. Ученые считают, что меланопсины – очень древняя структура, отвечавшая за оценку количества цветов еще в незапамятные времена.
«Именно благодаря этой системе, наше настроение и активность поднимаются, когда вокруг преобладают оранжевый, красный или желтый цвета», - считает Нейц. «Но наши индивидуальные особенности восприятия различных цветов – это совсем другие структуры – синие, зеленые и красные колбочки. Поэтому, тот факт, что у нас одинаковые эмоциональные и физические реакции на одни и те же цвета не может подтвердить, что все люди видят цвета одинаково».
Люди, которые в силу некоторых обстоятельств имеют нарушения в цветовосприятии, часто не могут видеть красный, желтый или синий цвет, но, тем не менее, их эмоциональные реакции не разнятся с общепринятыми. Для вас небо всегда голубое и оно всегда дарит ощущение умиротворенности, даже если для кого-то ваш «голубой» является «красным» цветом.

Три характеристики цвета.

Светлота - степень близости цвета к белому называют светлотой.
Любой цвет при максимальном увеличении светлоты становится белым
Другое понятие светлоты относится не к конкретному цвету, а к оттенку спектра, тону. Цвета, имеющие различные тона при прочих равных характеристиках, воспринимаются нами с разной светлотой. Жёлтый тон сам по себе - самый светлый, а синий или сине-фиолетовый - самый тёмный.

Насыщенность – степень отличия хроматического цвета от равного ему по светлоте ахроматического, «глубина» цвета. Два оттенка одного тона могут различаться степенью блёклости. При уменьшении насыщенности каждый хроматический цвет приближается к серому.

Цветовой тон - характеристика цвета, отвечающая за его положение в спектре: любой хроматический цвет может быть отнесён к какому-либо определённому спектральному цвету. Оттенки, имеющие одно и то же положение в спектре (но различающиеся, например, насыщенностью и яркостью), принадлежат к одному и тому же тону. При изменении тона, к примеру, синего цвета в зеленую сторону спектра он сменяется голубым, в обратную - фиолетовым.
Иногда изменение цветового тона соотносят с «теплотой» цвета. Так, красные, оранжевые и жёлтые оттенки, как соответствующие огню и вызывающие соответствующие психофизиологические реакции, называют тёплыми тонами, голубые, синие и фиолетовые, как цвет воды и льда - холодными. Следует учесть, что восприятие «теплоты» цвета зависит как от субъективных психических и физиологических факторов (индивидуальные предпочтения, состояние наблюдателя, адаптация и др.), так и от объективных (наличие цветового фона и др.). Следует отличать физическую характеристику некоторых источников света - цветовую температуру от субъективного ощущения «теплоты» соответственного цвета. Цвет теплового излучения при повышении температуры проходит по «тёплым оттенкам» от красного через жёлтый к белому, но максимальную цветовую температуру имеет цвет циан.

Человеческий глаз – это орган, дающий нам возможность видеть окружающий мир.
Зрение даёт нам информации об окружающей действительности больше, чем другие органы чувств: самый большой поток информации в единицу времени мы получаем именно глазами.

Каждое новое утро мы просыпаемся и открываем глаза - наша деятельность не возможна без зрения.
Зрению мы доверяем больше всего и его больше всего используем для получения опыта («не поверю, пока сам не увижу!»).
Мы говорим «с широко открытыми глазами», когда открываем разум навстречу чему-то новому.
Глаза используются нами постоянно. Они позволяют нам воспринимать формы и размеры объектов.
И, что самое главное для колориста, они позволяют нам видеть цвет.
Глаз является очень сложным по своему строению органом. Для нас важно понять, как мы видим цвет и как воспринимаем полученные оттенки на волосах.
Восприятие глаза основывается на светочувствительном внутреннем слое глаза, именуемом сетчаткой.
Отражённые от объектов лучи попадают через зрачок на сетчатку, которая представляет собой прозрачный шарообразный экран толщиной 0.1 - 0.5 мм, на который проецируется окружающий мир. Сетчатка содержит 2 типа фоточувствительных клеток: палочки и колбочки.
Эти клетки являются своего рода датчиками, которые реагируют на падающий свет, преобразовывая его энергию в сигналы, передаваемые в мозг. Мозг переводит эти сигналы в образы, которые мы «видим».

Человеческий глаз представляет из себя сложную систему, главной целью которой является наиболее точное восприятие, первоначальная обработка и передача информации, содержащейся в электромагнитном излучении видимого света. Все отдельные части глаза, а также клетки, их составляющие, служат максимально полному выполнению этой цели.
Глаз - это сложная оптическая система. Световые лучи попадают от окружающих предметов в глаз через роговицу. Роговица в оптическом смысле - это сильная собирающая линза, которая фокусирует расходящиеся в разные стороны световые лучи. Причём оптическая сила роговицы в норме не меняется и дает всегда постоянную степень преломления. Склера является непрозрачной наружной оболочкой глаза, соответственно, она не принимает участия в проведении света внутрь глаза.
Преломившись на передней и задней поверхности роговицы, световые лучи проходят беспрепятственно через прозрачную жидкость, заполняющую переднюю камеру, вплоть до радужки. Зрачок, круглое отверстие в радужке, позволяет центрально расположенным лучам продолжить свое путешествие внутрь глаза. Более периферийно оказавшиеся лучи задерживаются пигментным слоем радужной оболочки. Таким образом, зрачок не только регулирует величину светового потока на сетчатку, что важно для приспособления к разным уровням освещённости, но и отсеивает боковые, случайные, вызывающие искажения лучи. Далее свет преломляется хрусталиком. Хрусталик тоже линза, как и роговица. Его принципиальное отличие в том, что у людей до 40 лет хрусталик способен менять свою оптическую силу - феномен, называемый аккомодацией. Таким образом, хрусталик производит более точную до фокусировку. За хрусталиком расположено стекловидное тело, которое распространяется вплоть до сетчатки и заполняет собой большой объем глазного яблока.
Лучи света, сфокусированные оптической системой глаза, попадают в конечном итоге на сетчатку. Сетчатка служит своего рода шарообразным экраном, на который проецируется окружающий мир. Из школьного курса физики мы знаем, что собирательная линза дает перевёрнутое изображение предмета. Роговица и хрусталик - это две собирательные линзы, и изображение, проецируемое на сетчатку, также перевёрнутое. Другими словами, небо проецируется на нижнюю половину сетчатки, море - на верхнюю, а корабль, на который мы смотрим, отображается на макуле. Макула, центральная часть сетчатки, отвечает за высокую остроту зрения. Другие части сетчатки не позволят нам ни читать, ни наслаждаться работой на компьютере. Только в макуле созданы все условия для восприятия мелких деталей предметов.
В сетчатке оптическая информация воспринимается светочувствительными нервными клетками, кодируется в последовательность электрических импульсов и передается по зрительному нерву в головной мозг для окончательной обработки и сознательного восприятия.

Конусные сенсоры (0,006 мм в диаметре) способны различать малейшие детали, соответственно активными они становятся при интенсивном дневном или искусственном освещении. Они гораздо лучше, чем палочки, воспринимают быстрые движения и дают высокое визуальное разрешение. Но их восприятие снижается при уменьшении интенсивности света.

Самая высокая концентрация колбочек находится в середине сетчатки, в точке называемой центральной ямкой. Здесь концентрация колбочек достигает 147,000 на квадратный миллиметр, обеспечивая максимальное визуальное разрешение картинки.
Чем ближе к краям сетчатки, тем ниже концентрация конусных сенсоров (колбочек) и тем выше концентрация цилиндрических сенсоров (палочек), отвечающих за сумеречное и периферийное зрение. В центральной ямке палочки отсутствуют, что объясняет нам, почему ночью мы лучше видим тусклые звезды, когда смотрим на точку рядом с ними, а не на них самих.

Существует 3 типа конусных сенсоров (колбочек), каждый из которых отвечает за восприятие одного цвета:
Чувствительный к красному (750 нм)
Чувствительный к зеленому (540 нм)
Чувствительный к синему (440 нм)
Функции колбочек: Восприятие в условиях интенсивной освещенности (дневное зрение)
Восприятие цветов и мелких деталей. Количество колбочек в человеческом глазе: 6-7 миллионов

Эти 3 типа колбочек позволяют нам видеть все многообразие цветов окружающего мира. Поскольку все остальные цвета являются результатом сочетания сигналов, поступающих от этих 3 видов колбочек.

Например: Если объект выглядит желтым – это означает, что отраженные от него лучи стимулируют чувствительные к красному и чувствительные к зеленому колбочки. Если цвет объекта оранжево-желтый – это означает, что чувствительные к красному колбочки были простимулированы сильнее, а чувствительные к зеленому – слабее.
Белый мы воспринимаем в тех случаях, когда все три типа колбочек простимулированы одновременно в равной интенсивности. Такое трехцветное зрение описывается в теории Юнга-Гельмгольца.
Теория Юнга-Гельмгольца объясняет восприятие цвета только на уровне колбочек сетчатки, не раскрывая все феномены цветоощущения, такие как цветовой контраст, цветовая память, цветовые последовательные образы, константность цвета и др., а также некоторые нарушения цветового зрения, например, цветовую агнозию.

Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Существует т.н. цветоведение - анализ процесса восприятия и различения цвета на основе систематизированных сведений из физики, физиологии и психологии. Носители разных культур по-разному воспринимают цвет объектов. В зависимости от важности тех или иных цветов и оттенков в обыденной жизни народа, некоторые из них могут иметь большее или меньшее отражение вязыке. Способность цветораспознавания имеет динамику в зависимости от возраста человека. Сочетания цветов воспринимаются гармоничными (гармонирующими) либо нет.

Тренировка цветовосприятия.

Изучение теорие цвета и тренировка цветовосприятия важны в любой профессии работающей с цветом.
Глаза и разум нужно тренировать для постижения всех тонкостей цвета, также как тренируются и оттачиваются навыки стрижки или иностранные языки: повторение и практика.

Эксперимент 1: Выполняйте упражнение ночью. Выключите свет в комнате – вся комната мгновенно погрузится во мрак, вы ничего не будете видеть. Через несколько секунд глаза привыкнут к низкой освещенности и начнут все четче выявлять контрасты.
Эксперимент 2: Положите перед собой два чистых белых листа бумаги. На середину одного из них положите квадратик красной бумаги. В середине красного квадратика нарисуйте маленький крестик и в течение нескольких минут смотрите на него, не отрывая взора. Затем переведите взгляд на чистый белый лист бумаги. Почти сразу вы увидите на нем образ красного квадратика. Только цвет у него будет другой - голубовато-зеленый. Через несколько секунд он начнет бледнеть и вскоре исчезнет. Почему это происходит? Когда глаза были сфокусированы на красном квадрате, интенсивно возбуждался соответствующий этому цвету тип колбочек. При переводе взгляда на белый лист интенсивность восприятия этих колбочек резко падает и более активными становятся два других типа колбочек – зелено- и синечувствительных.

Как возникают изображения предметов на сетчатке? Лучи, отраженные от предметов, на которые направлено наш глаз, проходят через роговицу, жидкость, содержащаяся между ней и радужной оболочкой, хрусталик и стекловидное тело.

В каждом из этих сред они изменяют свое направление, т.е. преломляются. Основное значение для преломления света в глазу имеет хрусталик. У людей с нормальным зрением лучи, преломились в хрусталике, попадают на сетчатку и образуют на ней четкое изображение предметов. На рисунке 6 показано, как лучи от нижней точки предмета В, преломляясь, собираются на поверхности сетчатки в точке В1 лучи от верхней точки А собираются ниже в точке А1. Итак, изображение на сетчатке будет действительным, уменьшенным и перевернутым. В зрительных нервных центрах коры большого мозга формируется изображение таким, каким оно есть на самом деле.

Что такое аккомодация? Для четкого восприятия предметов необходимо, чтобы их изображение всегда попадал на сетчатку. Когда человек смотрит вдаль, предметы, расположенные на близком расстоянии, кажутся нечеткими. Если рассматривать близкие предметы, то нечетко видно отдаленные. Люди могут четко различать предметы, расположенные на разном расстоянии от глаза, благодаря способности хрусталика изменять свою кривизну. Способность глаза приспосабливаться к четкому видению предметов, находящихся на разном расстоянии, называют аккомодацией (от лат. АКОМ дате - приспособление к чему-либо) (рис. 7).

Наименьшее расстояние от глаза, с которой изображение еще воспринимается четко, для детей и подростков в норме составляет 7-10 см. С возрастом хрусталик теряет свою эластичность и аккомодационная способность глаза уменьшается.

Вспомните из курса физики, что такое свет.

Как мы воспринимаем свет? Лучи света попадают на сетчатку, состоящую из нескольких слоев клеток различных по форме и функциям (рис. 9, 10). Внешний слой клеток содержит черный пигмент, который поглощает световые лучи. В следующем слое имеются светочувствительные клетки - фоторецепторы: колбочки и палочки. Фоторецепторы соединяются с нервными клетками, образующими третий слой. Четвертый слой сетчатки состоит из крупных нервных клеток. их отростки образуют зрительный нерв, которым возбуждение передается в зрительной зоны коры большого мозга. Место, где зрительный нерв выходит из сетчатки, лишенное фоторецепторов, не воспринимает света и называется слепым пятном (рис. 8). Ее площадь (в норме) составляет от 2,5 до 6 мм2. Предметы, изображения которых попадает на участок, мы не видим.

В сетчатке человека насчитывают около 130 млн палочек и 7 млн. колбочек. Палочки расположены на периферии сетчатки. Они очень чувствительны к свету и поэтому возбуждаются даже при малом, так называемом сумеречном, освещении. Колбочки возбуждаются при ярком свете и малочувствительны к слабому освещению.

В центре сетчатки содержатся преимущественно колбочки. Это место называют желтым пятном (рис. 8). Желтое пятно, особенно его центральная ямка, считается местом наилучшего видения. В норме изображение всегда фокусируется на желтом пятне. При этом предметы, которые воспринимаются периферическим зрением, различаются хуже. Например, задержите взгляд на любом слове в середине строки, который вы читаете. Это слово будет хорошо видно, а слова, расположенные в начале и в конце строки, различаются значительно хуже.

В процессе преобразования энергии света в нервный импульс важную роль играет витамин А. Его недостаток вызывает значительное ухудшение сумеречного зрения, то есть так называемую куриную слепоту.

При возбуждении палочек возникает ощущение белого света (бесцветное ощущения), поскольку они воспринимают широкий спектр световых лучей.

Наш глаз способен воспринимать электромагнитные колебания с длиной волны от 320 до 760 нм (нм - нанометр - одна миллиардная доля метра). Лучи, длина волны которых короче 320 нм, называют ультрафиолетовыми, а с длиной волны больше 760 нм - инфракрасными.

Как мы воспринимаем цвет? Ли цвета мы воспринимаем? Мир разноцветный, и мы можем видеть его таким. Цвета мы воспринимаем с помощью колбочек, которые реагируют только на определенную длину волны.

Существует три типа колбочек. Колбочки первого типа реагируют преимущественно на красный цвет, другой - на зеленый и третьего - синий. Эти три цвета называют основными. Оптическим смешиванием основных цветов можно получить все цвета спектра и их оттенки. Если колбочки всех типов возбуждаются одновременно и одинаково, возникает ощущение белого цвета (рис. 11).

У некоторых людей цветовое зрение нарушено. Расстройство цветового зрения, или частичную цветовую слепоту, называют дальтонизмом. Название происходит от фамилии английского ученого Дж. Дальтона, который 1794 впервые описал это явление. Различают врожденный и приобретенный дальтонизм. Прирожденным (наследственным), собственно дальтонизмом, бывает, как правило, расстройство восприятия красного и зеленого цветов. Слепота на синий цвет является частью приобретенной. Расстройства цветового зрения объясняют отсутствием определенных колбочек в сетчатке глаза. Случается также частичный дальтонизм (неспособность воспринимать один из основных цветов). Дальтонизм наблюдается в 0,5% женщин и 5% мужчин. Люди, страдающие расстройствами цветового зрения, не могут работать на транспорте, в авиации и т.п.. Дальтонизм не лечится.

Как цвет влияет на эмоциональную сферу человека, его работоспособность? Известно, что один цвет успокаивает, другой раздражает. На этом основывается методика определения настроения человека. Еще немецкий поэт И. Гете писал о способности цвета создавать настроение: желтый - веселит и бодрит, зеленый - вмиротворюе, синий - вызывает грусть. Психологи доказали, что красный цвет приводит к цветовой усталости, а зеленый помогает ее снять. Цвет влияет на производительность труда человека. Гигиенисты установили, что зеленый и желтый цвета обостряют зрение, ускоряют зрительное восприятие, создают устойчивое ясное видение, снижают внутренне глазное давление, обостряют слух, способствуют нормальному кровообращению, т.е. в целом повышают работоспособность человека. Красный цвет действует противоположно. Эти данные используют дизайнеры при оформлении рабочих мест.

Цвет существует, только если представлены три его компонента: зритель, предмет и освещение. Несмотря на то, что чисто белый свет воспринимается как бесцветный, в действительности он содержит все цвета видимого спектра. Когда белый свет достигает объекта, поверхность избирательно поглощает одни цвета и отражает другие; только отражённые цвета создают у зрителя восприятие цвета.

Человеческое цветовосприятие: глаза и зрение

Человеческий глаз воспринимает этот спектр, используя для зрения комбинацию из клеток-палочек и клеток-колбочек. Палочки имеют более высокую светочувствительность, но различают только интенсивность света, тогда как колбочки могут также различать цвета, но лучше всего функционируют при ярком свете. В каждом нашем глазе есть три типа колбочек, каждый из которых более чувствителен к коротким (К), средним (С) или длинным (Д) световым волнам. Комбинация сигналов, возможных во всех трёх колбочках, описывает диапазон цвета, который мы можем видеть своими глазами. Нижеприведенный пример иллюстрирует относительную чувствительность каждого типа колбочек ко всему видимому спектру приблизительно от 400 до 700 нм.

Заметьте, что каждый из типов клеток воспринимает не единственный цвет, а имеет различную степень чувствительности в широком диапазоне длин волн. Наведите курсор на «Освещённость», чтобы увидеть, какие цвета вносят наибольший вклад в наше восприятие яркости. Заметьте также, что человеческое восприятие цвета максимально чувствительно к свету в жёлто-зелёном диапазоне спектра; этот факт используется матрицей Байера в современных цифровых камерах.

Аддитивный и субтрактивный синтез цвета

Практически все различимые нами цвета могут быть составлены из некоторого сочетания трёх первичных цветов, посредством аддитивного (суммирующего) либо субтрактивного (разностного) процессов синтеза. Аддитивный синтез создаёт цвет, добавляя свет к тёмному фону, а субтрактивный синтез использует пигменты или красители, чтобы избирательно блокировать свет. Понимание сути каждого из этих процессов создаёт основы понимания воспроизведения цветов.

Аддитивный Субтрактивный

Цвета трёх внешних кругов называются первичными, и они различны для каждой из диаграмм. Устройства, которые используют эти первичные цвета, могут воспроизвести максимальный диапазон цветов. Мониторы излучают свет, чтобы воспроизвести цвет в аддитивном режиме, в то время как принтеры используют пигменты или красители, чтобы поглотить свет и синтезировать субтрактивные цвета. Вот почему практически все мониторы используют комбинацию красных (R), зелёных (G) и синих (B) пикселей, а большинство цветных принтеров используют по меньшей мере голубые(C), пурпурные (M) и жёлтые (Y) чернила. Во многих принтерах в дополнение к цветным чернилам также применяются чёрные (CMYK), поскольку простое сочетание цветных чернил неспособно создать достаточно глубокие тени.


(цвета RGB)

(цвета CMYK)
красный + зелёный жёлтый голубой + пурпурный синий
зелёный + синий голубой пурпурный + жёдтый красный
синий + красный пурпурный жёлтый + голубой зелёный
красный + зелёный + синий белый голубой + пурпурный + жёлтый чёрный

Субтрактивный синтез более чувствителен к изменению рассеянного света, поскольку именно избирательное блокирование света приводит к появлению цветов. Вот почему цветные отпечатки требуют определённого типа рассеянного освещения, чтобы точно воспроизвести цвета.

Свойства цвета: тон и насыщенность

Цвет имеет два уникальных компонента, которые отличают его от ахроматического света: тон (оттенок) и насыщенность. Визуальное описание цвета основывается на каждом из этих терминов и может быть весьма субъективно, однако каждый из них может быть более объективно описан путём анализа его спектра.

Естественные цвета в действительности не являются светом определённой длины волны, но на самом деле содержат полный спектр длин волн. «Тон» описывает, какая длина волны является наиболее мощной. Полный спектр показанного ниже объекта мог бы восприниматься как синий, несмотря на то, что он содержит волны по всей длине спектра.


Несмотря на то, что максимум данного спектра находится в той же области, что и тон объекта, это не обязательное условие. Если бы у объекта присутствовали отдельные выраженные пики только в красном и зелёном диапазонах, его тон воспринимался бы как жёлтый (см. таблицу аддитивного цветосинтеза).

Насыщенность цвета - это степень его чистоты. Высоконасыщенный цвет будет содержать очень узкий набор длин волн и будет выглядеть гораздо более выраженным, чем аналогичный, но менее насыщенный цвет. Следующий пример иллюстрирует спектры насыщенного и ненасыщенного синего.

Выберите степень насыщенности: низкая высокая



В процессе зрения происходит восприятие параметров потока света. В светочувствительном рецепторе сходятся процессы из разных сфер действительности – взаимодействуют квантовые объекты (фотоны), рецепторы, как измерительные приборы, оценивающие параметры квантовых объектов, и нейроны, относящиеся к элементам, осуществляющим процессы высшей нервной деятельности.

Эта проблема интересна еще и тем, что эта сфера знания недостаточно изучена, причем от нее отказываются как физики, так и биологи. Кроме того, проблема восприятия света входит в состав проблем восприятия информации человеком, рассмотренных в статье «Восприятие информации» как часть решения психофизической проблемы -

Непосредственно сопряжение электромагнитного излучения и вещества осуществляется в зрительных рецепторах сетчатки глаза живого организма, здесь свет преобразуется в нервные сигналы в виде пачек электрических импульсов, из которых уже в мозгу создается образ видимых предметов. Светочувствительные рецепторы выступают в качестве границы, разделяющей (и соединяющей) квантовые и нервные процессы, на которой сопрягаются разные сферы реальности - излучение, вещество и нервная деятельность.

Исследования показывают, что энергия воздействующего на рецептор фотона воспринимается конкретным электроном фоточувствительного белка. Этот электрон не просто находится в составе конкретного белка, но и белок, в свою очередь, вмонтирован в тело определенного светочувствительного рецептора, а рецептор имеет вполне определенное местоположение на сетчатке глаза и связан с конкретными нейронами. На сетчатке глаза имеется специальное место, которое принимается за центр общей системы отсчета всех рецепторов.

Рецепторы имеют строение в виде столбика из пластин (порядка 2000 шт.), на каждой пластине располагаются порядка 60 тыс. светочувствительных белков. Рецепторы располагаются на сетчатке сплошным массивом, закрывают все поле сетчатки. Различают цветоразличающие рецепторы – колбочки, и черно-белые рецепторы – палочки. Количество цветных колбочек оценивается в 6 – 10 млн., колбочки располагаются преимущественно вокруг центра зрения. Палочек насчитывается порядка 100 млн. Они располагаются по всему полю сетчатки.

Зрительная система воспринимает свет в диапазоне 400 - 780 нм, ультрафиолетовое излучение (волны меньшие 360) поглощает хрусталик, большие не воспринимаются рецепторами, к тому же инфракрасные волны (1000 нм и больше) излучаются самим телом и являлись бы засветкой зрительной системы.

Для зрительной информации естественно важен спектр излучения, однако светочувствительный рецептор не просто принимает излучение, но и определяет различия между локальными характеристиками потока света. Существуют специальные горизонтальные клетки в рецепторе и между рецепторами, определяющие градиент потока света по интенсивности, длине волны и насыщенности доминантного цвета - соответственно информация передается не только о цвете, но и о яркости и насыщенности цвета на фоне белого. Необходимо также отметить, что рецептор не только воспринимает характеристики потока света и передает их в мозг, но и управляет общей и раздельно локальной прозрачностью вещества до рецептора, чтобы можно было видеть различия в потоке света даже при различной его интенсивности и контрастности.

Вследствие поглощения фотонов в рецепторе происходят электрохимические процессы, вызывающие срабатывание последующих нейронов. В целях рецепции, фотон может быть воспринят только в том случае, если воспринявший его светочувствительный белок встроен в измерительную цепь рецептора. Если белок, воспринявший фотон находится вне измерительной схемы рецептора, то поглощение фотона произойдет, но не вызовет необходимых для рецепции химических воздействий и такое поглощение окажется бесполезным, поскольку информация о таком фотоне не дойдет до следующих нейронов. Из этого можно сделать вывод, что поглощение фотонов в рамках процедур, происходящих в сенсорных системах, носит не случайный характер.

В соответствии с трехкомпонентной теорией строения цветочувствидельных рецепторов (колбочек) считается, что светочувствительная колбочка реагирует только на фотоны определенной длины волны. Однако данная теория вызывает сомнения в достоверности. Электрон в белке (или сам белок) должен сначала как-то определиться с тем - реагировать ему, если у фотона соответствующая длина волны, и не реагировать, если длина волны чуть больше (или меньше). Он же не знает длину волны, которая попадет в этот белок, не знает, на сколько длина волны отличается от той, которую он может принять. Причем неважно, на сколько отличается от "своей". В любом случае электрон (или кто-то из участников поглощения) каким-то образом должен "почувствовать", поглощать или пропустить фотон. Офтальмологи на эти вопросы не смогли ответить мне. А физики вообще отказались рассматривать проблему восприятия света глазом, под предлогом, что в этой ситуации им невозможно осуществить какие-либо измерения, а без достоверных измерений они не вправе что-либо утверждать и делать какие-либо умозаключения.

Ситуация еще больше запуталась от мысли, что цветное зрение способно воспринимать цвет (длину волны фотона) и одновременно определять его местоположение на сетчатке. Как вообще возможно определение длины волны фотона, если локализация электрона, который реагирует на фотон, составляет единицы Ангстрем (0,1 нм), а длина волны фотона примерно в пять тысяч раз больше (от 400 до 770 нм)? Ведь поглощаемая энергия фотона должна быть размазана случайным образом по несоизмеримо большему пространству, чем локализация электрона.

Возникают и другие вопросы. Какова природа энергии фотона (кинетическая, электрическая, магнитная, еще какая-то)? Что происходит с энергией фотона при поглощении его электроном? Какие происходят преобразования энергии?

Желание получить ответы на возникающие вопросы заставляет углубляться в подробности процесса поглощения света веществом. Физика утверждает, что для возбуждения электрона необходимо затратить не какую-то там энергию, а вполне конкретную величину - разницу между двумя энергетическими состояниями, что вполне определенно подтверждается в физических экспериментах. Поглощение происходит в виде определенной полосы поглощения в электронном спектре молекулы. Однако это всего лишь констатация факта поглощения конкретной порции энергии, эмпирическое его подтверждение, но еще не объяснение механизма поглощения.

Чтобы обострить проблему и показать ее физическую, а не физиологическую природу отметим, что именно из факта поглощения конкретным электроном конкретного фотона следует, что в процессе зрительной рецепции возможно одновременное и достаточно точное измерение энергии (импульса) фотона и местоположения этого фотона. Местоположение квантового объекта соответствует местоположению (месту локализации) электрона, поглотившего фотон, и это местоположение вполне определяемо на макроуровне, так как от него идет "ниточка" к приемнику сигнала, а энергия фотона соответствует разнице между энергиями состояний электрона - тоже вполне определима. Если энергия фотона соответствует разнице энергий, необходимых для изменения местоположения электрона, то поглощение происходит. Если не соответствует, то фотон проходит сквозь данную молекулу. Теперь посмотрим, что из этого получается.

Для фотона имеется уравнение

λ·P=ħ, где λ – длина волны, P – импульс фотона, а ħ – постоянная Планка. Это уравнение фотона очень похоже на соотношение неопределенности Гейзенберга:

ΔХ · ΔР >= ħ, где ΔХ - ошибка в определении местоположения квантового объекта, ΔР - ошибка в определении его импульса.

Есть возможность оценить ошибку измерения параметров фотона при его поглощении конкретным электроном конкретного светочувствительного белка сетчатки. Величину возникающей ошибки в измерении импульса можно установить по разрешительной способности зрительной системы в определении цвета. Экспериментально установлено, что чувствительность оценивается в 2 – 3 нм. Это составляет менее 1 % от длины волны света в видимом диапазоне - (0,3 – 0,5) %. По уравнению фотона λ·P=ħ определяем разницу в изменении импульса, фиксируемого зрительной системой: ΔР = ħ/λ – ħ/1,01·λ, что примерно = 0,01· ħ/λ

ΔР = 0,01· ħ/λ

Ошибку в измерении местоположения фотона (ΔХ) можно оценить, как размер области локализации самого электрона в молекуле белка. Если размер атома оценить примерно в 0,1 нм, то ошибку локализации электрона (с большим завышением) можно принять 0,5 нм. Эту величину целесообразно выразить в условных единицах, как долю от длины волны фотона (500 нм). В итоге получаем, что ошибка измерения местоположения фотона примерно (0,5/500) λ = 0,001· λ.

ΔХ = 0,001· λ

Подставляя относительные ошибки определения местоположения и импульса фотона в соотношение неопределенности, получаем:

ΔХ · ΔР = 0,001· λ · 0,01· ħ/λ = 0,00001· ħ.

В соответствии с произведенными оценками произведение ошибок измерения координат и импульса рецептором глаза оказывается в сто тысяч раз меньше, чем постоянная Планка. Причем следует учесть, что обе ошибки взяты с некоторым завышением, если взять реальные ошибки в определении ΔХ и ΔР, то их произведение будет примерно в миллион раз меньше постоянной Планка. А по соотношению неопределенностей Гейзенберга произведение этих ошибок не может быть меньше ħ. Что это: ошибка в приведенных рассуждениях или действительно с соотношением неопределенностей какая-то неувязка?

Попробуем разобраться.

Количественные значения ошибок измерения в приведенных рассуждениях можно считать соответствующими реальным, или завышенными, поэтому величина в 0,00001 - это еще заниженная степень нарушения соотношения неопределенности Гейзенберга. С другой стороны размер неувязки столь велик, что ошибки можно еще многократно завысить без ущерба для общего вывода о справедливости соотношения неопределенностей. Из чего можно сделать вывод, что если и есть ошибка в приведенных рассуждениях, то она не в количественных значениях, а в чем-то другом.

Может быть, одна из процедур (либо соотношение неопределенностей, либо рецепция света в зрительной системе) не относится к процедуре измерения? Ведь соотношение неопределенностей характеризует именно возможные ошибки измерения параметров квантового объекта.

Поскольку каждый фотон является квантовым объектом, то из этого следует, что каждый фотон поглощается индивидуально, хоть в зрительной системе, хоть в другом месте. Оценка характеристик фотона в рамках зрительной рецепции осуществляется самим актом его поглощения хромофором, а не различением характеристик фотонов нервными клетками. Если он поглотился, то уже самим фактом поглощения его энергия перешла конкретному электрону. А это значит, что в результате акта поглощения становятся известными и местоположение фотона (по исходному местоположению электрона), и энергия фотона (по величине изменения энергии электрона). И то, и другое о фотоне становится не просто "известным" конкретному электрону и белку, в котором он находится, но и известными измерительной схеме в целом. Физические и химические изменения в характеристиках электрона и белка, порождаемые поглощением, становятся известными определенному нейрону, который можно уже считать макро «наблюдателем». С другой стороны, место на сетчатке, в которое попал фотон, детерминируется пространственным местоположением предмета, который излучил этот фотон, и настройкой оптической части зрительной системы – линзой хрусталика и фокусировкой получаемого изображения.

Если же поглощения фотона не произошло, то, увы, не произошло и измерения параметров квантового объекта. Поглощение такого фотона произойдет пигментом задней стенки сетчатки, то есть вне измерительной схемы. В этом и заключается специфика электрона (хромофора, белка, рецептора в целом): они размещены в составе измерительной системы местоположения предмета, позволяющей не просто поглощать, а поглощать в рамках измерительной процедуры.

Из этого следует, что анализируемая процедура поглощения фотона в зрительной системе рассматривается именно в рамках процедуры измерения параметров фотона, а не просто его поглощения. Из этого следует, что предназначение рассматриваемой процедуры соответствует заявленному назначению и «области действия» соотношения неопределенностей.

Может быть, в процедуре измерения параметров фотонов в зрительной системе имеется какая-то уникальная специфика, порождающая столь существенное отклонение от соотношения неопределенностей?

Действительно, такие отличия имеются.

Во-первых, соотношение неопределенностей рассматривается применительно к процедуре измерения параметров квантового объекта, осуществляемой с сохранением самого квантового объекта. Например, Луи де Бройль в книге «Революция в физике» отмечает, что сама процедура измерения не должна вносить изменения в сами измеряемые параметры - вносимые измерительным прибором изменения в измеряемые параметры должны быть как можно меньше.

Суть идеи соотношения неопределенностей заключается в том, что для более точного измерения нужны фотоны с меньшей собственной локализацией, но такие фотоны являются и более энергичными. Специфика квантового объекта такова, что измерение местоположения квантового объекта с большей точностью требует применения, как указывает де Бройль, воздействия на измеряемый объект более коротких фотонов, но чем меньше длина волны фотонов, измеряющих местоположение квантового объекта, тем больше их энергия, тем большее изменение энергии происходит в измеряемом объекте. Сама процедура измерения вносит изменения в измеряемые параметры, поэтому и считается, что этого эффекта принципиально невозможно избежать. Ошибки одновременного измерения пространственных и энергетических характеристик квантового объекта подчинены рассматриваемому соотношению неопределенностей.

Итак, отличия измерений в рамках процедуры рецепции и рамках объяснения соотношения неопределенностей – имеются.

Во-первых, в отличие от измерительных процедур, описанных у де Бройля, в измерительной процедуре, осуществляемой в рамках зрительной рецепции, сам объект, параметры которого измеряются, не сохраняется , а погибает полностью в процессе измерительной процедуры. А если не погибает, то и не попадает в измерительную процедуру. В зрительной системе оцениваемый квантовый объект просто поглощается, проглатывается светочувствительным белком, в результате чего обе измеряемые величины (координата и импульс) становятся известными этому белку. Он «измеряет» указанные параметры с точностями, на несколько порядков не вписывающиеся в соотношение неопределенности. Правда, ценой уничтожения измеряемого объекта. Этот белок и есть тот измерительный прибор, который якобы невозможно построить в принципе.

Во-вторых, в процессе зрительной рецепции измерения местоположения фотона вообще-то не осуществляется. Местоположением фотона считается местоположение электрона, поглощающего фотон. Местоположение электрона является не измеряемым параметром, а априорно известным измерительной системе. Фотон «сам» натыкается на тот или иной светочувствительный белок, имеющий этот самый электрон. Но данное обстоятельство не меняет существа принципа неопределенности. В соответствии с этим принципом «невозможно построить измерительный прибор, который позволил бы нарушить ограничения, накладываемые неравенствами Гейзенберга». Невозможно построить в принципе .

В сущности, зрительная система просто обходит установленный запрет. В зрительной системе установлено огромное множество измерительных приборов. Куда бы ни попал фотон, он наткнется на «измерительный прибор», каковым является молекула светочувствительного белка. А от нее обязательно тянется ниточка к макро измерительному прибору – рецептору и далее к нейрону. Преобразование микро сигнала от квантового объекта в макро сигнал это уже другая проблема, которую целесообразно рассматривать отдельно. В данном аспекте следует сделать акцент на понимании светочувствительного белка в качестве измерительного прибора для оценки пространственных и энергетических параметров фотона, специфического измерительного прибора, который позволяет нарушить ограничения, накладываемые неравенствами Гейзенберга.

В-третьих, нужно разобраться с пониманием величин, входящих в соотношение неопределенностей. Вообще, имеет смысл задаться вопросом - в соотношении неопределенности, дельта икс, это что? Может быть, это вообще не ошибка измерения? Общность математической структуры уравнения фотона с соотношением неопределенности подсказывает, что дельта икс это вовсе не ошибка в измерении координаты местоположения частицы, а длина волны, так что это вовсе не ошибка измерения, размер частицы. Длина волны фотона жестко связана с импульсом фотона соответствующим уравнением. Поэтому само соотношение и включенные в него переменные в таком понимании приобретают иной смысл.

Это не мы не можем одновременно измерить пространственную и энергетическую характеристики фотона, а фотон не может иметь иных величин импульса и длины волны, кроме как соответствующих уравнению фотона (и совпадающему с ним по структуре соотношению неопределенности). У уравнения фотона и соотношения неопределенностей общая математическая структура. Соотношение неопределенностей применительно к фотону приобретает форму зависимости между длиной волны и импульсом. Правда при таком понимании неопределенность превращается в определенность . А ПНГ перестает иметь исключительное отношение к измерению параметров квантового объекта и начинает описывать соотношение не между ошибками измерения, а между собственными параметрами квантового объекта. Для фотона, как самого простого из квантовых объектов, связь между длиной волны и импульсом - естественным образом совпадает с соотношением "неопределенностей". При этом измерительный аспект (измерение координаты и импульса фотона) вовсе не исключается, а приобретает вполне здравый смысл: как же можно измерить местоположение квантового объекта точнее, чем его размер? Объект есть везде в пределах своего размера.

При этом размер квантового объекта, в данном случае фотона, жестко связан с энергетической характеристикой фотона. Чем энергичнее происходят электромагнитные колебания (чем больше частота) тем меньше длина волны и размер фотона, тем меньше общая локализация фотона.

В результате подобного изменения интерпретации математическая составляющая соотношения полностью сохраняется. И это объясняет, почему соотношение так прекрасно подтверждается в экспериментах, на которые все ссылаются. Участвующие в соотношении величины имеют отношение не к процедуре измерения, а к собственным характеристикам самой частицы, в данном случае - фотона. И соотношение между собственными пространственными и энергетическими характеристиками имеет жесткую связь, описываемую этим соотношением.

В-четвертых, при обосновании необходимости введения принципа неопределенности специально указывается, что его введение есть следствие вероятностной интерпретации частиц. В частности де Бройль указывает: «Еще раз подчеркнем, что соотношение неопределенности – неизбежное следствие, с одной стороны, возможности сопоставить частице некоторую волну, с другой – общих принципов вероятностной интерпретации». Возникает закономерный вопрос: а является ли фотон, параметры которого оцениваются рецепторами зрительной системы, частицей с вероятностной природой?

Привлечение в рассматриваемое соотношение параметра «размер» частицы, оказывается, в рамках квантовой механики с вероятностной интерпретации частиц - вообще не имеет смысла. В существующей квантовой механике просто нет такого понятия и параметра, как "размер" частицы, и нет именно по причине вероятностной интерпретации самой частицы. У нее не может быть размера, поскольку при вероятностной интерпретации у частицы нет, и не может быть границ, они просто размыты. Но это только при вероятностной интерпретации. Для реального фотона "размером" частицы является длина волны. Один период электромагнитных колебаний, собственно, и есть фотон, квант света.

Таким пониманием, кстати, легко объясняется корпускулярно волновой дуализм. Внутри частицы - волна, а один период колебания - частица. Волновые свойства частицы это ее внутренние свойства, а при рассмотрении той же частицы снаружи – это корпускула, квант, частица, нечто дискретное.

Естественно, такое понимание не соответствует пониманию, принятому в квантовой механике. Когда создавалась квантовая механика, для квантовых объектов было принято матричное описание частиц. Под частицей, как правило, рассматривался электрон, и для него вывели все квантовые закономерности. Затем уже эти закономерности начали переносить и на электромагнитное излучение. В качестве фотона также стали понимать волновой пакет. Даже если волна монохроматическая, в реальных условиях она распадается на множество гармоник. Совокупность всех колебаний, связанных с основной монохроматической волной стали называть волновым пакетом, а пакет - фотоном. Для волнового пакета естественным образом подошло принятое для частиц вероятностное описание.

Однако, «что» в реальности поглощается зрительной системой человека, «какой» фотон поглощается рецептором - волновой пакет из совокупности гармоник, или один период монохроматического электромагнитного колебания?

Что является «зеленым», «красным» и т.д.?

Параметры «какого» объекта оценивает рецептор?

По моим представлениям – конечно же фотон как период электромагнитного колебания. Всякие там разбегания волнового пакета возможно и существуют, но они лишь мешает измерению и поэтому игнорируется или сглаживается измерительной системой, а оценивается основной параметр главной гармоники. Причем достаточно оценить лишь один параметр: либо импульс, либо длину волны, чтобы знать и то и другое. В силу наличия жесткой связи между длиной волны и импульсом – это же два взаимодополняющих параметра частицы по соотношению определенностей.