Производственный шум: механизм явления, нормирование и методы защиты. Производственный шум

Производственный шум - совокупность звуков возникающих в ходе работы производственного предприятия, носящая хаотичный и беспорядочный характер, изменяющаяся во времени, и вызывающая дискомфорт у работающих. Поскольку производственный шум - это совокупность звуков имеющих разную природу возникновения, различную продолжительность и интенсивность, то при исследовании производственных шумов говорят о «спектре производственного шума». Исследуется слышимый диапазон 16 Гц - 20 кГц. Его разбивают на так называемые «полосы частот» или «октавы» и определяют звуковое давление, интенсивность или звуковую мощность, приходящиеся на каждую полосу.

Источники производственного шума

Как уже указывалось выше, в производственной среде шумы возникают в первую очередь из-за работы механизмов. И естественно, чем больше количество оборудования, тем выше уровень шумовой загрязненности. Кроме того, в настоящее время можно проследить тенденцию, при которой уровень шумовой загрязненности снижается прямо пропорционально росту технологической оснащенности предприятия современными машинами и механизмами. Эту тему мы рассмотрим более подробно в разделе, посвященном снижению уровня шумового загрязнения. Сейчас же давайте рассмотрим источники производственного шума.

1) Механические производственные шумы - возникают и преобладают на предприятиях, где широко используются механизмы с применением зубчатых передач и цепного привода, ударные механизмы, подшипники качения и т.п. В результате силовых воздействий вращающихся масс, ударов в сочленениях деталей, стуков в зазорах механизмов, движения материалов в трубопроводах и возникает этот вид шумового загрязнения. Спектр механического шума занимает широкую область частот. Определяющими факторами механического шума являются форма, размеры и тип конструкции, число оборотов, механические свойства материала, состояние поверхностей взаимодействующих тел и их смазывание. Машины ударного действия, к которым относится, например, кузнечно-прессовое оборудование, являются источником импульсного шума, причем его уровень на рабочих местах, как правило, превышает допустимый. На машиностроительных предприятиях наибольший уровень шума создается при работе металло- и деревообрабатывающих станков.

Аэродинамические и гидродинамические производственные шумы:

  • а) шумы, обусловленные периодическим выбросом газа в атмосферу, работой винтовых насосов и компрессоров, пневматических двигателей, двигателей внутреннего сгорания;
  • б) шумы, возникающие из-за образования вихрей потока у твердых границ механизмов (эти шумы наиболее характерны для вентиляторов, турбовоздуходувок, насосов, турбокомпрессоров, воздуховодов);
  • в) кавитационный шум, возникающий в жидкостях из-за потери жидкостью прочности на разрыв при уменьшении давления ниже определенного предела и возникновения полостей и пузырьков, заполненных парами жидкости и растворенными в ней газами.
  • 3) Электромагнитные шумы - возникают в различных электротехнических изделиях (например, при работе электрических машин). Их причиной является взаимодействие ферромагнитных масс под влиянием переменных во времени и пространстве магнитных полей. Электрические машины создают шумы с различными уровнями звука от 20ё30 дБ (микромашины) до 100ё110 дБ (крупные быстроходные машины).

Безусловно, встретить производство, в котором присутствуют шумы только одной природы практически, невозможно. В общем фоне производственного шума можно выделять шумы различного происхождения, но нейтрализовать шумы какого-то одного происхождения из общей массы шума практически невозможно.

Поскольку источники производственного шума, как правило, излучают звуки различной частоты и интенсивности, то полную шумовую характеристику источника дает шумовой спектр - распределение звуковой мощности (или уровня звуковой мощности) по октавным полосам частот. Источники шума часто излучают звуковую энергию неравномерно по направлениям. Эта неравномерность излучения характеризуется коэффициентом Ф(j) - фактором направленности.

Существуют различные методы измерения шума. Те из них, которые проводятся при помощи стандартизованного оборудованния и по методике, закрепленной в стандарте, принято называть стандартными. Все прочие методы измерения шума применяются при решении специальных задач, и в ходе научных исследований. Обобщенное название приборов предназначенных для измерения шумов - шумомеры.

Эти приборы состоят из датчика (микрофона), усилителя, частотных фильтров (анализатора частоты), регистрирующего прибора (самописца или магнитофона) и индикатора, показывающего уровень измеряемой величины в дБ. Шумомеры снабжены блоками частотной коррекции с переключателями А, В, С, D и временных характеристик c переключателями F (fast) - быстро, S (slow) - медленно, I (pik) - импульс. Шкалу F применяют при измерениях постоянных шумов, S - колеблющихся и прерывистых, I - импульсных.

Фактически шумомер представляет собой микрофон, к которому подключен вольтметр, отградуированный в децибелах. Поскольку электрический сигнал на выходе с микрофона пропорционален исходному звуковому сигналу, прирост уровня звукового давления, воздействующего на мембрану микрофона, вызывает соответствующий прирост напряжения электрического тока на входе в вольтметр, что и отображается посредством индикаторного устройства, отградуированного в децибелах. Для измерения уровней звукового давления в контролируемых полосах частот, например 31,5; 63; 125 Гц и т.п., а также для измерения уровней звука (дБ), корректированных по шкале А с учётом особенностей восприятия человеческим ухом звуков разных частот, сигнал после выхода с микрофона, но до входа в вольтметр пропускают через соответствующие электрические фильтры. Существуют шумомеры четырёх классов точности (0, 1, 2 и 3). Класс «0» - это образцовые средства измерения; класс 1 - применяется для лабораторных и натурных измерений; 2 класс - для технических измерений; 3 клас - для ориентировочных измерений. У каждого класса приборов есть соответствующий частотный: шумомеры классов 0 и 1 рассчитаны на частоты от 20 Гц до 18 кГц, класса 2 - от 20 Гц до 8 кГц, класса 3 - от 31,5 Гц до 8 кГц.

Для измерения производственных шумов в России до 2008 года действовал советский стандарт ГОСТ 17187-81. В 2008 этот ГОСТ гармонизирован с европейским стандартом МЭК 61672-1 (IEC 61672-1), результатом чего стал новый ГОСТ Р 53188.1-2008 . Таким образом технические требования к шумомерам и стандарты измерения шумов в России сейчас максимально приближены к европейским требованиям. Особняком стоят США, где применяются стандарты ANSI (в частности ANSI S1.4), существенно отличающиеся от европейских. Наиболее часто применяемый на производстве прибор - ВШВ-003-М2. Он относится к шумомерам I класса и предназначен для измерения шума в производственных помещениях и жилых кварталах в целях охраны здоровья; при разработке и контроле качества изделий; при исследованиях и испытаниях машин и механизмов.

Шум - комплекс звуков, вызывающий неприятное ощущение или болезненные реакции.

Шум - одна из форм физического загрязнения среды жизни. Он такой же медленный убийца, как и химическое отравление.

Уровень шума в 20-30 децибел (дБ) практически безвреден для человека. Это естественный шумовой фон, без которого невозможна человеческая жизнь. Для громких звуков допустимая граница составляет примерно 80 дБ. Звук в 130 дБ уже вызывает у человека болевое ощущение, а в 130 - становится для него непереносимым.

На некоторых производствах отрицательное влияние на здоровье и работоспособность оказывает воздействие длительного и очень интенсивного шума (80-100 дБ). Производственный шум утомляет, раздражает, мешает сосредоточиться, отрицательно действует не только на орган слуха, но и на зрение, внимание, память.

Шум достаточной эффективности и длительности может привести к снижению слуховой чувствительности, могут развиваться тугоухость и глухота.

Под влиянием сильного шума, особенно высокочастотного, в органе слуха постепенно происходят необратимые изменения.

При высоких уровнях шума понижение слуховой чувствительности наступает уже через 1-2 года работы, при средних уровнях оно обнаруживается гораздо позднее, через 5-10 лет.

Последовательность, с которой происходит утрата слуха, сейчас хорошо изучена. Сначала интенсивный шум вызывает временную потерю слуха. В нормальных условиях через день или два слух восстанавливается.

Но если воздействие шума продолжается месяцами или, как это имеет место в промышленности, годами, восстановления не происходит, и временный сдвиг порога слышимости превращается в постоянный.

Сначала повреждение нервов сказывается на восприятии высокочастотного диапазона звуковых колебаний, постепенно распространяясь на наиболее низкие частоты. Нервные клетки внутреннего уха оказываются настолько поврежденными, что атрофируются, гибнут, не восстанавливаются.

Шум оказывает вредное воздействие на центральную нервную систему, вызывая переутомление и истощение клеток коры головного мозга.

Возникает бессонница, развивается утомление, снижается работоспособность и производительность труда.

Шум оказывает вредное влияние на зрительный и вестибулярный анализаторы, которое может привести к нарушению координации движений и равновесия тела.

Исследования показали, что и неслышимые звуки также опасны. Ультразвук, занимающий заметное место в гамме производственных шумов, неблагоприятно воздействует на организм, хотя ухо его и не воспринимает.

Вредное воздействие шума во время работы на шумных производствах можно избежать различными методами и средствами. Значительное уменьшение производственного шума достигается применением специальных технических средств шумогашения.

Гигиеническое нормирование шума.

Основная цель нормирования шума на рабочих местах - это установление предельно допустимого уровня шума (ПДУ), который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.

Допустимый уровень шума - это уровень, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к шуму.

Предельно допустимые уровни шума на рабочих местах регламентированы СН 2.2.4/2.8.562-96 “Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки”, СНиП 23-03-03 “Защита от шума”.

Мероприятия по защите от шума. Защита от шума достигается разработкой шумобезопасной техники, применением средств и методов коллективной защиты, а также средств индивидуальной защиты.

Разработка шумобезопасной техники - уменьшение шума в источнике - достигается улучшением конструкции машин, применением малошумных материалов в этих конструкциях.

Средства и методы коллективной защиты подразделяются на акустические, архитектурно-планировочные, организационно-техни-ческие.

Защита от шума акустическими средствами предполагает звукоизоляцию (устройство звукоизолирующих кабин, кожухов, ограждений, установку акустических экранов); звукопоглощение (применение звукопоглощающих облицовок, штучных поглотителей); глушители шума (абсорбционные, реактивные, комбинированные).

Архитектурно-планировочные методы - рациональная акустическая планировка зданий; размещение в зданиях технологического оборудования, машин и механизмов; рациональное размещение рабочих мест; планирование зон движения транспорта; создание шумозащищенных зон в местах нахождения человека.

Организационно-технические мероприятия - изменение технологических процессов; устройство дистанционного управления и автоматического контроля; своевременный планово-предупредительный ремонт оборудования; рациональный режим труда и отдыха.

Если невозможно уменьшить шум, действующий на работников, до допустимых уровней, то необходимо использовать средства индивидуальной защиты (СИЗ) - противошумные вкладыши из ультратонкого волокна “Беруши” одноразового использования, а также противошумные вкладыши многократного использования (эбонитовые, резиновые, из пенопласта) в форме конуса, грибка, лепестка. Они эффективны для снижения шума на средних и высоких частотах на 10–15 дБА. Наушники снижают уровень звукового давления на 7–38 дБ в диапазоне частот 125–8 000 Гц. Для предохранения от воздействия шума с общим уровнем 120 дБ и выше рекомендуется применять шлемофоны, оголовья, каски, которые снижают уровень звукового давления на 30–40 дБ в диапазоне частот 125–8 000 Гц.

Требования по ограничению шума на производстве и профилактике его действия на организм работающих изложены во «Временных санитарных нормах и правилах по ограничению шума на производстве», утвержденных Главным государственным санитарным инспектором СССР 9 февраля 1956 г. за № 295-56.

В этих правилах все шумы в зависимости от их частотного состава (спектра) разделяются на три класса:

  • низкочастотные,
  • среднечастотные,
  • высокочастотные.

    Воздействие производственного шума на организм человека

Для каждого из этих классов установлены допустимые уровни шума (в децибелах) в соответствии с графиком допустимых уровней шума.

Дополнительным обязательным условием к указанным в таблице уровням и спектрам является разборчивость речи, которая должна быть удовлетворительной в условиях шумов всех трех классов, а именно: речь, произносимая голосом нормальной громкости, должна быть хорошо понятна на расстоянии 1,5 м от говорящего.

В тихих производственных помещениях, расположенных на территории завода, таких, как конструкторское бюро, конторские и административные помещения, при закрытых дверях и окнах уровень громкости шума, проникающего в эти помещения из других производственных помещений, не должен превышать 50 фонов (или 60 дб, измеренные на горизонтальной частотной характеристике шумомера) независимо от частотного состава шума.

Уровни шума замеряются объективным шумомером, а спектры частот - шумомером с присоединенным к нему полосным фильтром или анализатором.

Допустимые уровни шума на производстве для шумов различных классов

Класс и характеристика шумов Допустимый уровень (в дб)
Класс 1.
Низкочастотные шумы (шумы тихоходных агрегатов неударного действия, шумы, проникающие сквозь звукоизолирующие преграды и стены, перекрытия, кожухи) - наибольшие уровни в спектре расположены ниже частоты 300 гц, выше которой уровни понижаются (не менее чем на 5 дб на октаву) 90 - 100
Класс 2.
Среднечастотные шумы (шумы большинства машин, станков и агрегатов неударного действия) - наибольшие уровни в спектре расположены ниже частоты 800 гц, выше которой уровни понижаются (не менее чем на 5 дб на октаву) 85 - 90
Класс 3.
Высокочастотные шумы (звенящие, шипящие и свистящие шумы, характерные для агрегатов ударного действия, потоков воздуха и газа, агрегатов, действующих с большими скоростями) - наибольшие уровни в спектре расположены выше частоты 800 гц 75 - 85

«Справочник помощника санитарного врача
и помощника эпидемиолога»,
под ред. члена-корреспондента АМН СССР
проф. Н.Н.Литвинова

Шум. Основные понятия и определения. Действие шума на человека.

Шум – всякий нежелательный для человека звук. Звуковые волны возбуждают колебания частиц звуковой среды, в результате чего изменяется атмосферное давление.

Звуковое давление – разность между мгновенным значением давления в точке среды и статическим давлением в той же точке, т.е.

2.3. Производственный шум и его воздействие на человека

давление в невозмущённой среде.

Область среды, в которой распространяются звуковые волны, называется звуковым полем.

Звуковые волны распространяются со скоростью, которая называется скоростью звука.

Действие шума на человека: Действие шума на человека зависит от уровня и характера шума, его продолжительности, а также от индивидуальных особенностей человека:

1. Во время действия шума, превышающего 85…90 Гц чувствительность слуха снижается. Происходит временное понижение порога слышимости (ВПП), которое исчезает после окончания воздействия шума.

Это снижение называется слуховой адаптацией и является защитной реакцией организма.

2. Действие шума на организм человека не ограничивается воздействием на орган слуха.

Патологические изменения, возникшие под влиянием шума, рассматривается как шумовая болезнь.

Шум — беспорядочное сочетание различных по силе и частоте звуков, негативно влияющих на здоровье человека. Источники:1) Механические производственные шумы – возникают и преобладают на предприятиях, где широко используются механизмы с применением зубчатых передач и цепного привода, ударные механизмы, подшипники качения и т.п. В результате силовых воздействий вращающихся масс, ударов в сочленениях деталей, стуков в зазорах механизмов, движения материалов в трубопроводах и возникает этот вид шумового загрязнения. Спектр механического шума занимает широкую область частот. Определяющими факторами механического шума являются форма, размеры и тип конструкции, число оборотов, механические свойства материала, состояние поверхностей взаимодействующих тел и их смазывание. Машины ударного действия, к которым относится, например, кузнечно-прессовое оборудование, являются источником импульсного шума, причем его уровень на рабочих местах, как правило, превышает допустимый. На машиностроительных предприятиях наибольший уровень шума создается при работе металло- и деревообрабатывающих станков.

2) Аэродинамические и гидродинамические производственные шумы — 1) шумы, обусловленные периодическим выбросом газа в атмосферу, работой винтовых насосов и компрессоров, пневматических двигателей, двигателей внутреннего сгорания; 2) шумы, возникающие из-за образования вихрей потока у твердых границ механизмов (эти шумы наиболее характерны для вентиляторов, турбовоздуходувок, насосов, турбокомпрессоров, воздуховодов); 3) кавитационный шум, возникающий в жидкостях из-за потери жидкостью прочности на разрыв при уменьшении давления ниже определенного предела и возникновения полостей и пузырьков, заполненных парами жидкости и растворенными в ней газами.

3) Электромагнитные шумы — возникают в различных электротехнических изделиях (например, при работе электрических машин). Их причиной является взаимодействие ферромагнитных масс под влиянием переменных во времени и пространстве магнитных полей. Электрические машины создают шумы с различными уровнями звука от 20¸30 дБ (микромашины) до 100¸110 дБ (крупные быстроходные машины)... Звук – беспорядочные колебания воздушной среды, передаваемые человеку через органы слуха. Слышимый диапазон лежит в пределах 20-20000 Гц. Ниже 20 Гц – инфразвук, выше 20000 Гц – ультразвук.

Промышленный шум

Инфразвук и ультразвук не вызывают слуховых ощущений, но оказывают биологическое воздействие на организм. Шум – сочетание звуков различной частоты и интенсивности.

По природе возникновенияМеханический,Аэродинамический, Гидравлический, Электромагнитный

Отдеьные категории шумов [Белый шум - стационарный шум, спектральные составляющие которого равномерно распределены по всему диапазону задействованных частот. Цветные шумы - некоторые виды шумовых сигналов, которые имеют определённые цвета, исходя из аналогии между спектральной плотностью сигнала произвольной природы и спектрами различных цветов видимого света. Розовый шум (в строительной акустике), у которого уровень звукового давления изменяется в октавной полосе частот. Обозначение: С; «Шум дорожного движения» (в строительной акустике) - обычный шум оживленной магистрали, обозначение: Alt+F4

Шумы делятся:

1.по частоте:

— низкочастотные (<=400 Гц)

— среднечастотные (400

— высокочастотные (>=1000 Гц)

для определения частотной характеристики шума звуковой диапазон по частоте разбивают на октавные полосы, где верхняя граница частоты равна удвоенной нижней

2.по характеру спектра:

— тональный (четко выраженные дискретные тона)

3.по времени действия

— постоянный (уровень шума в течение 8 часов изменяется не более чем на 5 Дб)

— непостоянный (импульсивный, быстро изменяющийся во времени, уровень шума в течение 8 часов изменяется не менее чем на 5 Дб)

⇐ Предыдущая567891011121314Следующая ⇒

Дата публикования: 2015-02-03; Прочитано: 3447 | Нарушение авторского права страницы

Studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Введение

1. Шум. Его физическая и частотная характеристика. Шумовая болезнь.

1.1 Понятие шума.

1.2 Уровни шума. Основные понятия.

1.3. Болезнь, вызываемая шумом — патогенез и клинические проявления

1.4. Ограничение и нормирование шума.

2. Производственный шум. Его виды и источники. Основные характеристики.

2.1 Характеристика шумов в производстве.

2.2 Источники производственного шума.

2.3 Измерение шума. Шумомеры

2.4 Способы защиты от шума на предприятиях.

Производственный шум и его воздействие на человека

Бытовой шум.

3.1 Проблемы снижения бытового шума

3.2 Шум автомобильного транспорта

3.3 Шум от железнодорожного транспорта

3.4 Уменьшения воздействия авиа-шума

Заключение

Список использованной литературы

ВВЕДЕНИЕ

Двадцатый век стал не только самым революционным в смысле развития техники и технологии, но и стал самым шумным во всей человеческой истории. Невозможно найти область жизни современного человека, где бы отсутствовал бы шум - как смесь раздражающих или мешающих человеку звуков.

Проблема «шумового нашествия» в современном мире признана практически во всех развитых государствах. Если за 20 с небольшим лет уровень шума вырос с 80 ДБ до 100Дб на улицах городов, то можно предположить, что в течение следующих 20-30 лет, уровень шумового давления достигнет критических пределов. Именно поэтому, во всем мире предпринимаются серьёзные меры, направленные на понижение уровней звукового загрязнения. В нашей стране вопросы звукового загрязнения и меры по его недопущению регулируются на государственном уровне.

Шумом можно назвать любой вид звуковых колебаний, который в данный конкретный момент времени вызывает у данного конкретного индивидуума эмоциональный или физический дискомфорт.

При прочтении данного определения может возникнуть своего рода «дискомфорт восприятия» — т. е. Состояние, в котором длина фразы, количество оборотов и применяемые выражения заставляют читающего поморщиться. Условно, состояние дискомфорта, вызываемое звуком можно охарактеризовать теми же симптомами. Если звук вызывает подобную симптоматику, мы с вами говорим о шуме. Понятно, что указанный выше способ идентификации шума в известной степени условен и примитивен, но, тем не менее, он не перестает быть правильным.

Ниже мы рассмотрим проблематику вопроса шумового загрязнения и обозначим основные направления, в которых ведется работа по борьбе с ними.

1. Шум. Его физическая и частотная характеристика. Шумовая болезнь.

1.1 Понятие шума

Шум - это сочетание звуков различных по силе и частоте, способное оказывать воздействие на организм. С физической точки зрения источник шума — это любой процесс, в результате которого происходит изменение давления или возникают колебания в физических средах. На промышленных предприятиях, таких источников может присутствовать великое множество, в зависимости от сложности процесса производства и используемого в нем оборудования. Шум создают все без исключения механизмы и агрегаты, имеющие подвижные части, инструмент, в процессе его использования (в том числе и примитивный ручной инструмент). Кроме производственного, в последнее время все более значимую роль стал играть бытовой шум, весомую долю которого составляет шум транспортный.

1.2 Уровни шума. Основные понятия.

Основными физическими характеристиками звука (шума) являются частота, выражаемая в герцах (Гц) и уровень звукового давления, измеряемый в децибелах (дБ). Диапазон от 16 до 20 000 колебаний в секунду (Гц) человеческий слуховой аппарат в состоянии воспринять и интерпретировать. В таблице 1 приведены примерные уровни шума и соответствующие им характеристики и источники звука.

Таблица 1. Шкала шумов (уровни звука, децибел).

1.3 Болезнь вызываемая шумом — патогенез и клинические проявления

Поскольку шумовое воздействие на организм человека изучается сравнительно недавно, абсолютного понимания механизма воздействия шума на организм человека у ученых нет. Тем не менее, если говорить о влиянии шума, чаще всего изучается состояние органа слуха. Именно слуховой аппарат человека воспринимает звук, и соответственно, при экстремальных воздействиях звука слуховой аппарат реагирует в первую очередь. Кроме органов слуха, воспринимать звук человек может и через кожу (рецепторами вибрационной чувствительности). Известно, что люди, лишенные слуха, в состоянии при помощи прикосновений не только ощущать звук, но и оценивать звуковые сигналы.

Способность воспринимать звук посредством вибрационной чувствительности кожи, это своего рода функциональный атавизм. Дело в том, что на ранних этапах развития человеческого организма функцию органа слуха выполняли именно кожные покровы. В процессе развития, орган слуха эволюционировал и усложнился. Вместе с ростом его сложности, увеличилась и его уязвимость. Шумовое воздействие травмирует периферический отдел слуховой системы - так называемое «внутреннее ухо». Именно там и локализуется первичное поражение слухового аппарата. По мнению некоторых ученых, в воздействии шума на слух первостепенную роль играет перенапряжение и, как следствие, истощение аппарата воспринимающего звук. Специалисты – аудиологиисчитают длительное воздействие шума причиной, которая приводит к нарушению кровоснабжения внутреннего уха и является причиной изменений и дегенеративных процессов органе слуха, в том числе и перерождения клеток.

Существует термин «профессиональная глухота». Он имеет отношение к людям тех профессий, в которых избыточное шумовое воздействие носит более или менее постоянный характер. В ходе длительных наблюдений за такими пациентами, удалось зафиксировать изменения не только в органах слуха, но и на уровне биохимии крови, которые явились следствием избыточного шумового воздействия. К группе наиболее опасных воздействий шума следует отнести сложно диагностируемые изменения в нервной системе человека подвергающегося регулярному шумовому воздействию. Изменения в работе нервной системы обусловлены тесными связями слухового аппарата с разными её отделами. В свою очередь дисфункция в нервной системе приводит к дисфункции различных органов и систем организма. Нельзя в этой связи не вспомнить расхожего выражения о том, что «все болезни от нервов». В контексте рассматриваемой проблематики можно предложить следующий вариант этой фразы «все болезни от шума».

Первичные изменения слухового восприятия, легко обратимы, если слух не подвергался экстремальным нагрузкам. Однако со временем, при постоянном негативном вилянии изменения могут превратиться в стойкие и\или необратимые. В связи с этим следует контролировать продолжительность воздействия звука на организм, и меть ввиду, что первичные проявления «профессиональной глухоты» можно диагностировать у лиц, работающих в условиях шума около 5 лет. Далее риск потери слуха у работающих возрастает.

Для оценки состояния слуха у лиц, работающих в условиях воздействия шума, различают четыре степени потери слуха, представленные в таблице 2.

Таблица 2. Критерии оценки слуховой функции для лиц, работающих в условиях шума и вибрации (разработаны В.Е.Остапович и Н.И.Пономаревой).

Важно понимать, что вышесказанное не имеет касательства к экстремальным звуковым воздействиям (см.таблицу 1). Оказание кратковременного и интенсивного воздействия на орган слуха, может привести к полной потере слуха, ввиду разрушения слухового аппарата. Результатом получения такой травмы бывает полная потеря слуха. Такое воздействие звука встречается при сильном взрыве, крупной аварии и т. п.

Шум и его воздействие на организм работника.

28. Производственный шум и его воздействие на человека

Защита от шума.

Шум - совокупность звуков разной интенсивности и частоты, беспорядочно изменяющихся во времени, возникающих в производственных условиях и вызывающих у работников неприятные ощущения и объективные изменения в различных функциональных системах организма.

Для характеристики интенсивности звуков (или) шума принята измерительная система, учитывающая приближенную логарифмическую зависимость между раздражением слуховым восприятием - шкала бел (или децибел).
При измерении интенсивности звуков пользуются не абсолютными величинами энергии или давления, а относительными, выражающими отношение величины или давления данного звука к величинам давления, являющимся пороговыми для слуха.

Весь диапазон человеческого слуха укладывается в 13- 14 Б. Обычно используют децибел (дБ) - единицу, в 10 раз меньшую бела, которая примерно соответствует минимальному приросту силы звука, различаемую ухом. Максимальная величина допустимого уровня шума зависит от тяжести и напряженности труда.

Технические средства борьбы с шумом: устранение причин возникновения шума, снижение его в источнике или ослабления шума на путях передачи, непосредственная защита работника (группы работников) от воздействия шума.
Применение звукопоглощающих облицовок для потолка и стен приводит к изменению спектра шума в сторону более низких частот. Что даже при относительно небольшом снижении уровня. Существенно улучшаются условия труда.
Следует помнить, что нарушение слуха, вызванные воздействием шума, неизлечимы, и поэтому необходимо применять средства индивидуальной защиты (антифоны, заглушки).

Воздействие производственного шума на работников оценивают по результатам медицинских осмотров. Слух считается нормальным при восприятии шепотной речи на расстоянии 6 м. Разговорную речь человек с нормальным слухом воспринимает на расстоянии до 60-80 м.
Основная цель предварительных медицинских осмотров заключается в оценке состояния здоровья работников для решения вопросов пригодности к работе в условиях воздействия шума. Данные предварительного осмотра имеют существенное значение для дальнейшего медицинского наблюдения за работниками.

Шум - это совокупность звуков разной интенсивности и частоты, беспорядочно изменяющихся во времени, возникающих в производственных условиях и вызывающих у работающих неприятные ощущения и объективные изменения органов и систем.

Для гигиенической оценки шумов практический интерес представляет звуковой диапазон частот от 45 до 11 000 Гц.

При акустических измерениях определяют уровни звукового давления [единица измерения - паскаль (Па)] в пределах частотных полос, равных октаве, полуоктаве или трети октавы. За октаву принимается диапазон частот, в котором верхняя граница частоты вдвое больше нижней (например, 40-80, 80-160 Гц и т.д.).

Для обозначения октавы обычно указывается не диапазон частот, а так называемые среднегеометрические частоты. Так, для октавы 40-80 Гц среднегеометрическая частота - 62 Гц, для октавы 80- 160 Гц - 125 Гц и т.д.

Для характеристики интенсивности звуков или шума принята измерительная система, учитывающая приближенную логарифмическую зависимость между раздражением и слуховым восприятием - шкала бел (или децибел). По этой шкале каждая последующая ступень интенсивности звука больше предыдущей в 10 раз. Например, если интенсивность одного звука выше уровня другого в 10, 100, 1000 раз, то по логарифмической шкале она увеличивается соответственно на 1, 2, 3 единицы. Логарифмическая единица, отражающая десятикратную степень увеличения интенсивности одного звука над уровнем другого, называется в акустике белом (Б).

При построении этой шкалы за исходную цифру 0 Б принята пороговая для слуха величина звукового давления - 2?10-5 Па. При возрастании ее в 10 раз звук воспринимается как вдвое более громкий, и его звуковое давление составляет 1 Б. При увеличении интенсивности в 100 раз в сравнении с пороговой звук оказывается вдвое громче предыдущего и звуковое давление будет равно 2 Б. Иными словами, при измерении звукового давления пользуются не абсолют-

ными величинами звукового давления, а относительными, выражающими отношение величины и давления данного звука к величинам давления, являющимся пороговыми для слуха. Пользование этой шкалой очень удобно: весь диапазон человеческого слуха укладывается в 13-14 Б.

В гигиенических исследованиях обычно используют децибел - единицу, в 10 раз меньшую бела, а шкалу называют шкалой децибел

Характеристика шума в децибелах не дает полного представления о его громкости, так как звуки, имеющие одну и ту же интенсивность, но разную частоту, на слух воспринимаются как неодинаково гром- кие: имеющие низкую или очень большую частоту (вблизи верхней границы воспринимаемых частот) ощущаются как более тихие в сравнении со звуками, находящимися в средней зоне.

Классификация шумов

По характеру спектра выделяют следующие шумы:

Широкополосные, с непрерывным спектром шириной более одной октавы;

Тональные, в спектре которых имеются выраженные тоны. Тональный характер шума устанавливают путем измерения в треть- октавных полосах частот по превышению уровня в одной полосе по сравнению с соседними не менее чем на 10 дБ.

По временным характеристикам различают шумы:

Постоянные, уровень звуков которых за 8-часовой рабочий день изменяется во времени не более чем на 5 дБА;

Непостоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени не менее чем на 5 дБА.

Непостоянные шумы можно подразделить на следующие виды:

Колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;

Прерывистые, уровень звука которых ступенчато изменяется (на 5 и более дБА), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 и более с;

Импульсные, состоящие из одного или нескольких звуковых сигналов, каждый из которых имеет длительность менее 1 с; при этом уровни звука, измеренные соответственно на временных характеристиках «импульс» и «медленно» шумомера, различаются не менее чем на 7 дБ.

Можно также классифицировать шумы по частотному составу:

Низкочастотные с преобладанием максимальных уровней звукового давления (в сравнении с ПДУ) в октавных полосах до 400 Гц;

Среднечастотные - от 400 до 1000 Гц;

Высокочастотные - свыше 1000 Гц. По происхождению:

Механические (ударные шумы, шумы трения и др.);

Аэро- и гидродинамические (работа вентиляторов, форсунок и

Регламентация параметров шума на рабочих местах. Характеристикой постоянного шума являются уровни звуковых давлений (в дБ) в октавных полосах со среднегеометрическими частотами 31,5, 63, 125, 250, 500, 1000, 2000, 4000, 8000; в ряде случаев для ориентировочной оценки шума допускается измерение уровня в дБА.

Характеристикой непостоянного шума является интегральный параметр, эквивалентный (по энергии) уровень звука в дБА.

Измерение шума на рабочих местах проводится согласно методическим указаниям по проведению измерений и гигиенической оценке шумов на рабочих местах (МУ 1844-78) и ГОСТу «Методы измерения шума на рабочих местах» (ГОСТ 12.1.050-86).

Уровни шума измеряют шумомерами 1-го или 2-го класса точности по ГОСТу 17187-81 «Шумомеры. Общие технические требования и методы испытаний» (табл. 5.1).

Таблица 5.1. Основные характеристики некоторых приборов для

измерения физических параметров

Рис. 5.1. Шумомер интегрирующий - виброметр ШИ-01В

Универсальный прибор первого класса точности для измерения параметров шума, инфразвука и вибрации.

Измерение параметров шума дополнено режимами измерения параметров вибрации:

уровни виброускорения на частотной характеристике ЛИН с временами усреднения 1; 5; 10 с и эквивалентные уровни виброускорения;

для локальной вибрации - уровни виброускорения с временами усреднения 1; 5; 10 с и эквивалентные уровни виброускорения в октавных полосах со средними геометрическими частотами 8; 16; 31,5; 63; 125; 250; 500; 1000 Гц. Корректированный (Wh) уровень виброускорения с временами усреднения 1; 5; 10 с и эквивалентный корректированный уровень;

для общей вибрации - уровни виброускорения с временами усреднения 1; 5; 10 с и эквивалентные уровни виброускорения в третьоктавных полосах со средними геометрическими частотами 0,8: 1; 1.25; 1.6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80 Гц. Корректированные (Wd, Wk) уровни виброускорения с временами усреднения 1; 5; 10 с и эквивалентные корректированные уровни.

Технические характеристики: частотный диапазон измерений, Гц: шумомера...от 2 Гц до 20 кГц; анализатора...от 0,8 до 10000; виброметра, ЛИН..от 10 до 1250. Масса: не более 0,8 кг; диапазон измерений уровней виброускорения: 70-180 дБ; диапазон частот: 0,5-1250 Гц (производитель: Приборостроительная компания «НТМ-Защита»).

Измерения шума для контроля соответствия фактических уровней шума на рабочих местах допустимым уровням по действующим нормам должны производиться при работе не менее 2/3 установленных в данном помещении единиц технологического оборудования в наиболее часто реализуемом (характерном) режиме его работы.

Во время проведения измерений должно быть включено оборудование вентиляции, кондиционирования воздуха и другие обычно используемые в помещении устройства, являющиеся источником шума.

Определение шума проводится на постоянных рабочих местах, при отсутствии фиксированного рабочего места - в рабочей зоне, в точках наиболее частого пребывания работающих.

Следует подчеркнуть, что измерение шума должно выполняться в каждой точке не менее трех раз.

Микрофон располагается на высоте 1,5 м от пола или на уровне головы, если работа выполняется сидя или в других положениях; он должен быть направлен в сторону источника шума и удален не менее чем на 0,5 м от оператора, проводящего измерения. Перед проведением исследования осуществляют электрическую калибровку прибора.

Продолжительность измерения должна составлять для прерывистого шума полный технологический цикл; для колеблющегося во времени - 30 мин, разбитых на 3 цикла по 10 мин; для импульсного - 30 мин при общем числе отсчетов 360.

Для оценки шума на постоянных рабочих местах измерения следует проводить в точках, соответствующих установленным постоян- ным местам.

Для оценки шума на непостоянных рабочих местах измерения следует проводить в рабочей зоне в точке наиболее частого пребывания работающего

Результаты измерений необходимо представить в форме протокола. Средний уровень звука, средние октавные уровни звукового давления постоянного шума, эквивалентные уровни звука непостоянного шума рассчитывают следующим образом.

Определение среднего уровня звука. Для установления среднего значения уровней используют формулу:

Суммирование измеренных уровней L1 , L2, L3 ... Ln проводится попарно и последовательно. Сначала по разности двух уровней L1 и L2 по табл. 5.2. определяют величину добавки AL, которую прибавляют к большему уровню, в результате чего получают уровень L1 2 = L1 + AL. Уровень L1 2 суммируют таким же образом с уровнем L3 и получают уровень L13 и т.д. Результат округляют до целого числа.

Окончательный результат определяют с помощью табл. 5.2.

Пример 1. Определить среднее значение для измеренных уровней звука 84, 90 и 92 дБ А.

Определяем разность первых двух уровней - она равна 6 дБ.

По табл. 5.2 добавка для значения разности 6 равна 1 дБ, т.е. их сумма равна 90 + 1 = 91 дБ. Далее полученный уровень 91 дБ вычитаем из третьей величины - 92 дБ: их разность равна 1 дБ; величина добавки будет равна 2,5 дБ. Таким образом, суммарный уровень равен: 92 + 2,5 = 94,5 дБ, или округленно 95 дБ.

По табл. 5.3 величина 10 ? lg n для трех измеренных уровней равна 5 дБ. Окончательный результат для среднего значения равен: 95 - 5 = 90 дБ А.

Определение эквивалентного уровня звука. Эквивалентный по энергии уровень, являющийся однозначной характеристикой непостоянного шума, можно определить в результате усреднения фактических уровней с учетом времени действия каждого.

Расчет проводится следующим образом: к каждому измеренному уровню добавляется (с учетом знака) поправка по табл. 5.4, соответствующая его времени действия (в часах или процентах от общего времени действия), затем полученные уровни складываются в соответствии с табл. 5.2.

Таблица 5.2. Величина добавки

Таблица 5.4. Величины поправок в зависимости от времени воздействия

Пример 2. Уровни шума за 8-часовую рабочую смену составляли 80, 86, 94 дБ в течение 5, 2 и 1 ч соответственно. Этим срокам соответствуют поп- равки по табл. 5.4, равные -2, -6, -9 дБ.

Складывая их с уровнями шума, получаем 78, 80, 85 дБ. Затем, используя табл. 5.2, складываем эти уровни попарно: сумма первого и второго равна 82,2 дБ, а их сумма с третьим - 86,8 дБ. Округляя эту цифру, получаем окончательное значение эквивалентного уровня шума - 87 дБ. Таким образом, воздействие этих шумов равносильно действию шума с постоянным уровнем 87 дБ в течение 8 ч.

Пример 3. Прерывистый шум 119 дБА действовал в течение 6-часовой смены суммарно в течение 45 мин (т.е. 11% времени смены), уровень фонового шума в паузах (т.е. 11% времени смены) составлял 73 дБА.

По табл. 5.4. поправки равны -9 и -0,6 дБ; складывая их с соответствующими уровнями шума, получаем 110 и 72,4 дБ. Второй уровень значительно ниже первого, поэтому им можно пренебречь. Окончательно получаем эквивалентный уровень шума за смену 110 дБА, что превышает допустимый уровень 85 дБА на 25 дБ.

Гигиеническое нормирование. Основой всех правовых, организационных и технических мер по снижению производственного шума являются допустимые уровни шума на рабочих местах, в основу которых положено ограничение давления звука с учетом характера шума и особенностей труда.

При разработке новых технологических процессов, при проектировании, изготовлении, эксплуатации оборудования используются такие документы, как ГОСТ 12.1.003-83 «ССБТ. Шум, общие требо- вания безопасности» и санитарные нормы СН 2.24/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки». Извлечения из этого документа представлены в табл. 5.5.

Указанные уровни относятся к широкополосному постоянному и непостоянному шумам (кроме импульсного); для тонального и импульсного шумов величины должны быть снижены на 5 дБА. Для колеблющегося во времени и прерывистого шума максимальный уровень звука не должен превышать 110 дБА, а для импульсного шума - 125 дБА.

Неблагоприятное влияние шума на работающего находится в зависимости от характера его трудовой деятельности, а именно - от тяжести и напряженности выполняемой работы. Исходя из этого, в

Таблица 5.5. Предельно допустимые уровни звукового давления, уровни звука и эквивалентные уровни звука на рабочих местах (экспликация)

Таблица 5.6. Предельно допустимые уровни звука и эквивалентные уровни звука для трудовой деятельности

Примечание. Количественную оценку тяжести и напряженности труда можно провести в соответствии с «Руководством по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» (Р 2.2.2006-05).

дополнение к используемым санитарным нормам (СН 2.24/2.1.8.562- 96) необходимо также пользоваться руководством, в котором указаны корректированные предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах с учетом категории тяжести и напряженности труда - табл. 5.6 («Руководство 2.2.013- 94 «Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса»).

Определение результатов измерения шума и сравнение их с предельно допустимыми уровнями позволяют установить степень отклонения полученных показателей от гигиенических нормативов и класс условий труда по степени вредности и опасности при воздействии шума на работающих (табл. 5.7 ).

Исследование влияния шума на организм. Для оценки воздействия на здоровье рабочих производственного шума используются материалы изучения функционального состояния организма, медицинских осмотров, заболеваемости с временной утратой трудоспособности и др.

Для характеристики функционального состояния нервной системы используют хронорефлексометрию, треморометрию, тесты на внимание и др.

Состояние сердечно-сосудистой системы характеризуют частота пульса, артериальное давление, ЭКГ и др.

Состояние слухового анализатора исследуют с помощью камертона, шепотной, разговорной речи и тональной пороговой аудиометрии.

При камертональном исследовании определяется острота слуха при воздушной и костной звукопроводимости.

Оценку слуховой функции камертонами проводят путем количественного определения времени (в секундах), в течение которого максимально звучащий камертон воспринимается обследуемым через воздух или кость. В практических целях используют набор из четырех камертонов (С128, С1024, С2048, С4096). Полученные данные оценивают путем сравнения с паспортными данными применяемого для исследования набора камертонов. Этот метод прост в эксплуатации. Недостатком его является то, что он не дает представления о степени потери слуха, на основании которой решается вопрос о трудоспособности работающего.

Для ориентировочной оценки состояния слуха используют шепотную и разговорную речь как наиболее естественный критерий состо-

Таблица 5.7. Классы условий труда в зависимости от уровней шума, локальной и общей вибрации, инфра- и ультразвука на рабочем месте

яния слуха. Расстояние, на котором исследуемый разборчиво понимает речь, служит ориентировочным показателем остроты слуха. Шепотная речь исследуется с помощью акуметрической таблицы: слух считается нормальным при восприятии шепотной речи на расстоянии 6 м.

Разговорную речь человек с нормальным слухом воспринимает на расстоянии до 60-80 м. В обычных помещениях на таком расстоянии исследование маловероятно, поэтому слух оценивают шепотной речью и лишь при значительно ослабленной слуховой функции исследуется разговорная речь на расстоянии 6 м.

Одним из основных и широко распространенных методов исследования остроты слуха является тональная аудиометрия. С помощью этого метода определяются следующие показатели.

1. Постоянные смещения порогов слуха (ПСП), возникающие вследствие систематического длительного воздействия шума.

2. Временные смещения порогов слуха (ВСП), отражающие тот временной сдвиг слуховой чувствительности, который зависит от шумовой нагрузки за рабочую смену.

Тональная пороговая аудиометрия дает качественную и количественную характеристику слуховой функции, выраженную в сравниваемых величинах (в децибелах - дБ) над нормальным порогом слышимости (2?10-5 Па), заложенным в прибор в виде нулевого уровня.

Исследование осуществляется с помощью электроакустической аппаратуры - аудиометра, эквивалентные пороговые уровни которого должны соответствовать ГОСТу 13655-75. Применяемые аудиометры генерируют чистые тоны: 125, 250, 500, 1000, 1500, 2000, 3000, 4000, 6000, 8000 Гц с интенсивностью до 100 дБ при скачкообразной регулировке интенсивности до 5 дБ.

Результаты исследования порогов слухового восприятия чистых тонов переносят на аудиограмму, где на оси абсцисс указана частота в Гц, а на оси ординат - порог слухового восприятия в дБ (т.е. мини- мальное звуковое давление, которое воспринимается ухом обследуемого).

Аудиометрические исследования с целью установления потерь слуха (постоянное смещение порога слышимости - ПСП) проводятся не менее чем через 14 ч после того, как на исследуемого воздействовал производственный шум с уровнем более 80 дБ.

Аудиометрические исследования с целью определения временных смещений порогов слышимости - ВСП (обратимое функциональное

изменение слуховой чувствительности от воздействия шума) необходимо выполнять на 5-й минуте после прекращения шумового воздействия на исследуемого. Изучение состояния слухового анализа- тора проводится согласно ГОСТ 12.4.062-78 «Методика определения потерь слуха человека».

Потери слуха оцениваются для хуже слышащего уха в соответствии с табл. 5.8. Степень потери слуха устанавливают по величине потери на речевых частотах с учетом потери слуха на частоте 4000 Гц как признака профессионального воздействия шума.

Таблица 5.8. Величины потери слуха, дБ

Профилактические мероприятия. Борьба с вредным воздействием производственного шума включает целый комплекс мероприятий, состоящих из технических, организационных, архитектурно-планировочных, медицинских методов и мер профилактики.

К наиболее эффективным относятся технические способы защиты: уменьшение шума в источнике его образования, снижение по пути распространения (звукоизоляция и звукопоглощение), использование средств индивидуальной защиты, замена оборудования менее шумным, рациональное его размещение.

Для улучшения условий труда важное значение имеет предупредительный санитарный надзор по разработке шумобезопасной тех- ники. Шумовые характеристики машин должны быть указаны в их паспорте, они должны отвечать требованиям и рекомендациям соот-

ветствующих ГОСТов, обеспечивающих выполнение установленных ПДУ шума на рабочих местах. К нормативно-техническим документам на оборудование и машины относятся «ССБТ. Шум. Методы установления шумовых характеристик стационарных машин», ГОСТ 23941-79 «Шум. Методы определения шумовых характеристик. Общие требования», а также ГОСТы на машины конкретных типов: ГОСТ 12.4.095-80 «Машины сельскохозяйственные самоходные. Методы определения вибрационных и шумовых характеристик», СН 2498-81 «Санитарные нормы шума на морских судах» и др.

Одной из важнейших мер медицинской профилактики вредного влияния шума является проведение предварительных и периодических медицинских осмотров: лица, подвергающиеся воздействию этого производственного фактора, подлежат предварительным и периодическим медицинским осмотрам при поступлении на работу в соответствии с приказом Минздрава РФ «О порядке проведения предварительных и периодических медицинских осмотров работ- ников и медицинских регламентах допуска к профессии» ? 90 от 14.03.1996 г. При поступлении на работу противопоказаниями к приему являются стойкое понижение слуха хотя бы на одно ухо любой этиологии, отосклероз и другие хронические заболевания уха с неблагоприятным прогнозом, нарушение функции вестибулярного аппарата, в том числе болезнь Меньера.

Периодические осмотры рабочих шумных цехов проводят отоларинголог, невропатолог, терапевт (с обязательным исследованием слуха - аудиометрией). Частота осмотров находится в зависимости от уровней шума на рабочих местах (от 81 до 99 дБА - раз в 2 года, от 100 дБА и выше - раз в год).

Весьма эффективным способом защиты от шума является рационализация режимов труда путем использования регламентирован- ных перерывов (табл. 5.9). Длительность дополнительных перерывов устанавливается с учетом уровня шума, его спектра и наличия или отсутствия средств индивидуальной защиты (противошумов). Для тех же групп работников, где по характеру работы (прослушивание сигналов и т.п.) не допускается применение противошумов, учитывается только уровень шума и его спектр («Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» Р 2.2.2006-05).

Отдых в период регламентированных перерывов следует проводить в специально оборудованных помещениях. Во время обеденного

Примечание. Длительность перерыва в случае воздействия импульсного шума должна быть такой же, как для постоянного шума с уровнем на 10 дБА выше импульсного. Например, для импульсного шума 105 дБА длительность перерывов должна быть такой же, как при постоянном шуме в 115 дБА.

перерыва работающие при воздействии повышенных уровней шума должны находиться в оптимальных акустических условиях (при уровне звука не выше 50 дБА).

На сегодняшний день используется просто огромное количество спец-технологических установок на производстве, а также различных энергетических приспособлений, которые непроизвольно издают шум и вибрации разных частот. Разная интенсивность звуков пагубно влияет на организм человека. Стоит отметить, что продолжительное воздействие шума и вибрации на работника производства уменьшает его трудоспособность, а также становится причиной возникновения профессиональных болезней.

Шум и вибрация как факторы производственной среды

Шумом можно назвать совокупность нежелательных звуков, которые оказывают пагубное действие на живые организмы, а также мешают полноценной работе и отдыху. Источником звука является любое колеблющееся тело, вследствие его прикосновения с окружающей средой образуются звуковые волны.

Итак, производственный шум – это комплекс звуков разных частот и насыщенности. Они хаотично преображаются во времени, и вызывают у работников нежелательные субъективные чувства.

Производственный шум отличается огромным спектром, составляющие которого это звуковые волны разных частот. При изучении производственного шума и вибрации привычным ощутимым диапазоном является 16гц-20 гц. Этот отрезок частот разбивают на полосы частот, а после оценивают звуковое давление. Также насыщенность и мощность, которая приходиться на все полосы частот. Если Вы хотите обследовать свое помещение на различные факторы можно обратиться в нашу лабораторию, где сможете провести ряд исследований, начиная от и заканчивая .

Что касается вибрации то ее понимание и ощущение напрямую зависит от частоты колебаний, а также их силы и диапазона амплитуды. Исследование вибрации так же, как и исследование частоты звука описывается в герцах. В ходе недавних экспериментов было исследовано, что вибрация так же, как и шум оказывает свое действие на организм человека, причем довольно активно. Стоит отметить, что вибрация будет ощущаться лишь при взаимосвязи с вибрирующим телом или же через инородные твердые тела, которые будут иметь связь с вибрирующим телом.

Вибрация на производстве считается угрожающим для здоровья фактором, ведь такие поверхности, касающиеся к телу человека, вызывают возбуждение многочисленных нервных окончаний в стенках кровеносных сосудов, и вызывают нарушения работы внутренних органов и разных систем. Все это представляется в виде немотивированных болей в руках, преимущественно по ночам, онемения, чувство "ползания мурашек", неожиданного побеления пальцев, снижения всех видов кожной чувствительности (болевой, температурной, касательной). Весь этот набор симптомов, типичный для воздействия вибрации, унаследовал название вибрационной болезни.

Шум на рабочих местах

В зависимости от рода деятельности к каждой профессии будут свои требования по соблюдению тишины. Если вы работаете в офисе нормы шума на рабочем месте будут ниже, чем у работающих в шумных цехах. Итак, норма шума при работе в офисе достигает всего 75 дБ, а вот норма шума на производстве 100 дБ.


Шум как вредный производственный фактор

К сожалению, на производстве больше подвергаться влиянию шума женщины и люди старших возрастных категорий. Повышение звукового давления может негативно сказаться на органе слуха. Поэтому, стоит отметить, что на производстве обязательно должны происходить замеры шума двушкальным шумомером. В цехах разрешен шум громкостью до 100 дБ. Что касается кузнечных цехов, то там норма шума может достигать отметки 140 дБ. Громкость, которая будет превышать этот порог у рабочих, вызовет болевой эффект. Также стоит отметить, что учеными обоснована теория о пагубном действии инфразвука и ультразвука на организм человека. Чтобы обезопасить своих рабочих стоит провести .

Эти колебания не могу вызывать болевых ощущений, но будут производить специфическое физиологическое воздействие на человеческий организм. Уровень производственного шума не должен быть выше 140 дБ, после преодоления этого порога уже будут возникать болевые ощущения, и шум несет неисправимый вред на здоровье человека. Если на производстве повышенный уровень шума, то у работника будет всегда повышенное кровеносное давление, учащённый пульс и дыхание, нарушения координации движения, а также ухудшение слуха.

Защита от производственного шума может быть в виде специальных глушителей аэродинамического шума, также возможно использовать индивидуальные средства защиты, также можно применить технические тонкости звукоизоляции и звукопоглощения.


Классификация производственного шума

Итак, шум систематизируется по четырём основным критериям. По спектральным и временным характеристикам, по частоте, а также по природе возникновения.

По спектральным характеристикам выделяют широкополосный шум с непрерывным спектром больше одной октавы, а также тональный или, как еще его называют, дискретный. В его спектре содержится выражение дискретного тона.

По временным характеристикам есть постоянный шум, он длится больше восьми часов, и непостоянный. Стоит отметить, что непостоянные шумы еще разделяют на колеблющиеся, уровень звука у которых постоянно изменяется, а также прерывистые, уровень звука у таких изменяется ступенчато. Есть еще импульсные, они представляют собой простые звуковые импульсы, которые длятся не больше одной секунды.

По частоте выделяют акустические колебания, которые распределяют на инфразвук, ультразвук и просто звук. Что касается акустических колебаний звукового диапазона, то они подразделяются на низкочастотные, среднечастотные и высокочастотные. Низкочастотные звуки воспроизводят меньше 350 гц, среднечастотные же от 350 гц до 800гц, а высокочастотные выдают свыше 800 гц.

По природе возникновения шумы делятся на электромагнитные, аэродинамические, механические, гидравлические.


Производственный шум и вибрация пагубно влияют на человеческий организм. Из-за этого у людей, работающих на производстве, уменьшается работоспособность.

Шум на производстве является одним из неблагоприятных факторов для физического и психического здоровья индивида. Если вам кажется, что уровень шума превышает нормы или хотите провести другое лабораторное исследование () всегда можно обратиться в лабораторию "ЭкоТестЭкспресс", ее специалисты сделают все необходимые исследование и дадут заключение об уровне шума на рабочем месте.

Уровень шума на рабочем месте определяется в зависимости рода деятельности

Для человека, который работает на руководящей должности, имеет творческую профессию, или же просто работает в офисе, то разрешенный придел шума в этих случаях должен быть 50 дБ. А в лаборатории, или административном здании, где находятся кабинеты, уровень шума не может быть выше предела в 60 дБ.

Если рабочие места находятся в диспетчерской службе, машинописном бюро, в залах обработки информации на вычислительных машинах, уровень шума тут не может быть выше 65 дБ. В зданиях лабораторий с громким оборудованием, или же кабинетах с пультами управления шум должен быть не выше 75 дБ. В производственных зданиях на территории предприятия недопустимый уровень шума свыше 80 дБ.


На рабочем месте машиниста тепловоза или поезда уровень шума допускается до 80 дБ. В кабине же машиниста пригородного электропоезда придел шума должен быть 75 дБ. В комнатах для персонала вагонов и поездов шум может находиться в пределе 60 дБ. Что касается речного и морского транспорта, то у таких работников уровень шума колеблется от 80 дБ до 55 дБ в зависимости от места работы на корабле.

Вот уровень шума в производственных помещениях, где работают инженерно-технические работники, не должен превышать 60т дБ. В помещениях у операторов ЭВМ звуковой не допустимый диапазон свыше 65дб. А вот в помещениях, где находятся вычислительные агрегаты, уровень шума не должен быть больше 75 дБ. Человек, постоянно работающий в шумном помещении, привыкает к шуму, но продолжительное его воздействие вызывает частое утомление и ухудшение здоровья.

Нормирование производственного шума на рабочем месте осуществляется с учетом факторов человеческого организма. Стоит отметить, что в зависимости от частотной характеристики шума организм по-разному откликается на шум одинаковой интенсивности. Итак, при повышении частоты звука его влияние на нервную систему индивида будет сильнее, а степень вредоносности шума напрямую зависит от его спектрального состава.

Нормирование шума на рабочих местах осуществляют, принимая во внимание тот факт, что организм индивида, в зависимости от частотной характеристики, по-разному реагирует на шум одинаковой интенсивности. Чем выше частота звука, тем сильнее его действие на нервную систему человека, т. е. степень вредности шума, зависит от его спектрального состава. Влияние производственного шума на организм человека является пагубным. Спектр шума указывает, на какую область частот припадает самая большая доля всей звуковой энергии, что содержится в данном шуме.

Вы всегда можете обратиться в нашу лабораторию "ЭкоТестЭкспресс" для того, чтобы провести различные исследования, включая .

Производственные шумы и их влияние на организм животных

Животные обладают более острым слухом, поэтому более восприимчивы ко всем производственным шумам. Стоит отметить, что у кроликов шум реактивного самолета вызывает гибель. А кроты под воздействием производственного шума ощущают учащение пульса и дыхания. Производственные шумы угнетают условно рефлекторную деятельность организма животных.

Нормы шума на производстве, во всяком случае, никогда не должны превышаться, чтобы не наносить еще больший вред организму человека. Если же это случается, то необходимо проводить мероприятия по удалению повышенного шума.

Защита от производственного шума и вибрации заключается в установке различных шумопоглащающих приспособлений. Также стоит улучшить шумоизоляцию.


Характеристика и виды производственных шумов

Производственный шум – совокупность звуков различной интенсивности и частоты, беспорядочно изменяющихся во времени и вызывающих у работающих неприятные субъективные ощущения.

Производственный шум характеризуется спектром, который состоит из звуковых волн разных частот. При исследовании шумов обычно слышимый диапазон 16 Гц - 20 кГц разбивают на полосы частот и определяют звуковое давление, интенсивность или звуковую мощность, приходящиеся на каждую полосу.

Как правило, спектр шума характеризуется уровнями названных величин, распределенными по октавным полосам частот.

Полоса частот, верхняя граница которой превышает нижнюю в два раза, т.е. f 2 = 2 f 1 , называется октавой.

Для более детального исследования шумов иногда используются третьеоктавные полосы частот, для которых f 2 = 2 1/3 f 1 = 1,26 f 1 .

Октавная или третьеоктавная полоса обычно задается среднегеометрической частотой. Существует стандартный ряд среднегеометрических частот октавных полос, в которых рассматриваются спектры шумов (f сг мин = 31,5 Гц, f сг макс = 8000 Гц).

Таблица 2 Стандартный ряд среднегеометрических частот

f сг, Гц f 1 , Гц f 2 , Гц
16 11 22
31,5 22 44
63 44 88
125 88 177
250 177 355
500 355 710
1000 710 1420
2000 1420 2840
4000 2840 5680
8000 5680 11360

По частотной характеристике различают шумы: низкочастотные (f сг < 250); cреднечастотные (250 < f сг ≤ 500); высокочастотные (500 < f сг ≤ 8000).

Производственные шумы имеют различные спектральные и временные характеристики, которые определяют степень их воздействия на человека. По этим признакам шумы подразделяют на несколько видов. Выше характеристика шумов уже рассматривалась. В таблице 3 дана характеристика шумов с точки зрения производства.

Таблица 3 Классификация шумов

Способ классификации Вид шума Характеристика шума
По характеру спектра шума Широкополосные Непрерывный спектр шириной более одной октавы
Тональные В спектре которого имеются явно выраженные дискретные тона
По временным характеристикам Постоянные Уровень звука за 8 часовой рабочий день изменяется не более чем на 5 дБ
Непостоянные:

колеблющиеся во времени

прерывистые

импульсные

Уровень звука за 8 часовой рабочий день изменяется более чем на 5 дБ

Уровень звука непрерывно изменяется во времени

Уровень звука изменяется ступенчато не более чем на 5 дБ(А), длительность интервала 1с и более

Состоят из одного или нескольких звуковых сигналов, длительность интервала меньше 1с

Источники производственного шума

По природе возникновения шумы машин или агрегатов делятся на:

→ механические;

→ аэродинамические и гидродинамические;

→ электромагнитные.

На ряде производств преобладает механический шум, основными источниками которого являются зубчатые передачи, механизмы ударного типа, цепные передачи, подшипники качения и т.п. Он вызывается силовыми воздействиями неуравновешенных вращающихся масс, ударами в сочленениях деталей, стуками в зазорах, движением материалов в трубопроводах и т.п. Спектр механического шума занимает широкую область частот. Определяющими факторами механического шума являются форма, размеры и тип конструкции, число оборотов, механические свойства материала, состояние поверхностей взаимодействующих тел и их смазывание. Машины ударного действия, к которым относится, например, кузнечно-прессовое оборудование, являются источником импульсного шума, причем его уровень на рабочих местах, как правило, превышает допустимый. На машиностроительных предприятиях наибольший уровень шума создается при работе металло- и деревообрабатывающих станков.

Аэродинамические и гидродинамические шумы – это

1) шумы, обусловленные периодическим выбросом газа в атмосферу, работой винтовых насосов и компрессоров, пневматических двигателей, двигателей внутреннего сгорания;

2) шумы, возникающие из-за образования вихрей потока у твердых границ. Эти шумы наиболее характерны для вентиляторов, турбовоздуходувок, насосов, турбокомпрессоров, воздуховодов;

3) кавитационный шум, возникающий в жидкостях из-за потери жидкостью прочности на разрыв при уменьшении давления ниже определенного предела и возникновения полостей и пузырьков, заполненных парами жидкости и растворенными в ней газами.

При работе различных механизмов, агрегатов, оборудования одновременно могут возникать шумы различной природы.

Любой источник шума характеризуется, прежде всего, звуковой мощностью. Звуковая мощность источника – это общее количество звуковой энергии, излучаемой источником шума в окружающее пространство.

Поскольку источники производственного шума, как правило, излучают звуки различной частоты и интенсивности, то полную шумовую характеристику источника дает шумовой спектр – распределение звуковой мощности (или уровня звуковой мощности) по октавным полосам частот.

Источники шума часто излучают звуковую энергию неравномерно по направлениям. Эта неравномерность излучения характеризуется коэффициентом Ф(j) - фактором направленности.

Фактор направленности Ф(j) показывает отношение интенсивности звука I(j), создаваемого источником в направлении с угловой координатой j к интенсивности I ср, которую развил бы в этой же точке ненаправленный источник, имеющий ту же звуковую мощность и излучающий звук во все стороны равномерно:

Ф(j) = I(j) /I ср = p 2 (j)/p 2 ср,

где р ср - звуковое давление (усредненное по всем направлениям на постоянном расстоянии от источника); p (j) - звуковое давление в угловом направлении j, измеренное на том же расстоянии от источника.

Измерение шума. Шумомеры

Все методы измерения шумов делятся на стандартные и нестандартные. Стандартные измерения регламентируются соответствующими стандартами и обеспечиваются стандартизованными средствами измерения. Величины, подлежащие измерению, так же стандартизованы. Нестандартные методы применяются при научных исследованиях и при решении специальных задач.

Измерительные стенды, установки, приборы и звукоизмерительные камеры подлежат метрологической аттестации в соответствующих службах с выдачей аттестационных документов, в которых указываются основные метрологические параметры, предельные значения измеряемых величин и погрешности измерения.

Стандартными величинами, подлежащими измерению, для постоянных шумов являются: уровень звукового давления в октавных или третьоктавных полосах частот в контрольных точках; уровень звука в контрольных точках.

Шумоизмерительные приборы – шумомеры – состоят, как правило, из датчика (микрофона), усилителя, частотных фильтров (анализатора частоты), регистрирующего прибора (самописца или магнитофона) и индикатора, показывающего уровень измеряемой величины в дБ. Шумомеры снабжены блоками частотной коррекции с переключателями А, В, С, D и временных характеристик c переключателями F (fast) – быстро, S (slow) – медленно, I (pik) – импульс. Шкалу F применяют при измерениях постоянных шумов, S – колеблющихся и прерывистых, I – импульсных.

По точности шумомеры делятся на четыре класса 0, 1, 2 и 3. Шумомеры класса 0 используются как образцовые средства измерения; приборы класса 1 – для лабораторных и натурных измерений; 2 – для технических измерений; 3 – для ориентировочных измерений. Каждому классу приборов соответствует диапазон измерений по частотам: шумомеры классов 0 и 1 рассчитаны на диапазон частот от 20 Гц до 18 кГц, класса 2 - от 20 Гц до 8 кГц, класса 3 - от 31,5 Гц до 8 кГц.

Для измерения эквивалентного уровня шума при усреднении за длительный период времени применяются интегрирующие шумомеры.

Приборы для измерения шума строятся на основе частотных анализаторов, состоящих из набора полосовых фильтров и приборов, показывающих уровень звукового давления в определенной полосе частот. В зависимости от вида частотных характеристик фильтров анализаторы подразделяются на октавные, третьеоктавные и узкополосные.

Частотная характеристика фильтра К (f) =U вых /U вх представляет собой зависимость коэффициента передачи сигнала со входа фильтра U вх на его выход U вых от частоты сигнала f.

Для измерения производственных шумов преимущественно используется прибор ВШВ-003-М2, относящийся к шумомерам I класса точности и позволяющий измерять корректированный уровень звука по шкалам А, В, С; уровень звукового давления в диапазоне частот от 20 Гц до 18 кГц и октавных полосах в диапазоне среднегеометрических частот от 16 до 8 кГц в свободном и диффузном звуковых полях. Прибор предназначен для измерения шума в производственных помещениях и жилых кварталах в целях охраны здоровья; при разработке и контроле качества изделий; при исследованиях и испытаниях машин и механизмов.

Способы защиты от шума на предприятиях

Согласно ГОСТ 12.1.003-83 при разработке технологических процессов, проектировании, изготовлении и эксплуатации машин, производственных зданий и сооружений, а также при организации рабочих мест следует принимать все необходимые меры по снижению шума, воздействующего на человека, до значений, не превышающих допустимые.

Защита от шума должна обеспечиваться разработкой шумобезопасной техники, применением средств и методов коллективной защиты, в том числе строительно-акустических, применением средств индивидуальной защиты.

В первую очередь следует использовать средства коллективной защиты. По отношению к источнику возбуждения шума коллективные средства защиты подразделяются на средства, снижающие шум в источнике его возникновения, и средства, снижающие шум на пути его распространения от источника до защищаемого объекта.

Снижение шума в источнике осуществляется за счет улучшения конструкции машины или изменения технологического процесса. Средства, снижающие шум в источнике его возникновения в зависимости от характера шумообразования подразделяются на средства, снижающие шум механического происхождения, аэродинамического и гидродинамического происхождения, электромагнитного происхождения.

Методы и средства коллективной защиты в зависимости от способа реализации подразделяются на строительно-акустические, архитектурно-планировочные и организационно-технические и включают в себя:

→ изменение направленности излучения шума;

→ рациональную планировку предприятий и производственных помещений;

→ акустическую обработку помещений;

→ применение звукоизоляции.

В ряде случаев величина показателя направленности достигает 10 - 15 дБ, что необходимо учитывать при использовании установок с направленным излучением, ориентируя эти установки так, чтобы максимум излучаемого шума был направлен в противоположную сторону от рабочего места.

Рациональная планировка предприятий и производственных помещений позволяет снизить уровень шума на рабочих местах за счет увеличения расстояния до источников шума.

При планировке территории предприятий наиболее шумные помещения должны быть сконцентрированы в одном - двух местах. Расстояние между шумными и тихими помещениями должно обеспечивать необходимое снижение шума. Если предприятие расположено в черте города, то шумные помещения должны находиться в глубине территории предприятия, как можно дальше от жилой застройки.

Внутри здания тихие помещения необходимо располагать вдали от шумных так, чтобы их разделяло несколько других помещений или ограждение с хорошей звукоизоляцией.

Акустическая обработка помещения – это облицовка части внутренних ограждающих поверхностей звукопоглощающими материалами, а также размещение в помещении штучных поглотителей, представляющих собой свободно подвешиваемые объемные поглощающие тела различной формы.

Под звукопоглощением понимают свойство поверхностей уменьшать интенсивность отраженных ими волн за счет преобразования звуковой энергии в тепловую. Эффективность снижения шума звукопоглощением зависит в основном от акустических характеристик самого помещения и частотных характеристик материалов, применяемых для акустической обработки. Наиболее часто для акустической обработки применяют однородные пористые материалы, критерием выбора которых является соответствие максимума в частотной эффективности материала максимуму в спектре снижаемого шума в помещении.

Акустически обработанные поверхности помещения уменьшают интенсивность отраженных звуковых волн, что приводит к снижению шума в зоне отраженного звука; в зоне прямого звука эффект акустической обработки значительно ниже.

Звукопоглощающая облицовка размещается на потолке и в верхних частях стен (при высоте помещения не более 6-8 м) таким образом, чтобы акустически обработанная поверхность составляла не менее 60% от общей площади ограничивающих помещение поверхностей. В относительно низких (менее 6 м) и протяженных помещениях облицовки рекомендуется размещать на потолке. В узких и очень высоких помещениях целесообразно размещать облицовку на стенах, оставляя только их нижние части (2 м высоты) необлицованными. В помещениях высотой более 6 м следует предусматривать устройство звукопоглощающего подвесного потолка.

Если площадь поверхностей, на которых возможно размещение звукопоглощающей облицовки мала, или конструктивно невозможно выполнить облицовку на ограждающих поверхностях, то применяются штучные звукопоглотители.

В области средних и высоких частот эффект от применения акустической облицовки может составлять 6¸15 дБ.

К архитектурно-планировочным решениям также относится создание санитарно-защитных зон вокруг предприятий. По мере увеличения расстояния от источника уровень шума уменьшается. Поэтому создание санитарно-защитной зоны необходимой ширины является наиболее простым способом обеспечения санитарно-гигиенических норм вокруг предприятий.

Выбор ширины санитарно-защитной зоны зависит от установленного оборудования, например, ширина санитарно-защитной зоны вокруг крупных ТЭС может составлять несколько километров. Для объектов, находящихся в черте города, создание такой санитарно-защитной зоны порой становится неразрешимой задачей. Сократить ширину санитарно-защитной зоны можно уменьшением шума на путях его распространения.

Средства индивидуальной защиты (СИЗ) применяются в том случае, если другими способами обеспечить допустимый уровень шума на рабочем месте не удается. Принцип действия СИЗ – защитить наиболее чувствительный канал воздействия шума на организм человека – ухо. Применение СИЗ позволяет предупредить расстройство не только органов слуха, но и нервной системы от действия чрезмерного раздражителя.

Наиболее эффективны СИЗ, как правило, в области высоких частот.

СИЗ включают в себя противошумные вкладыши (беруши), наушники, шлемы и каски, специальные костюмы.