Ультразвуковая диагностика. Ультразвуковой метод исследования. История развития. Что определяет УЗИ. Физические свойства УЗИ

Введение

Возрастающее значение визуализирующих диагностических методик в клинической практике следует объяснять сту­дентам-медикам уже на ранних этапах образования. Ши­рокое распространение и неинвазивный характер сонографии требуют уже сегодня знакомить завтрашних врачей с этой сравнительно безопасной методикой. Не секрет, что подавляющее число специалистов ультразву­ковой диагностики проходили и проходят первичную специа­лизацию на рабочем месте, т.е. за спиной врача, проводящего обычный прием больных. Если везет - удается увидеть дос­таточно широкий спектр патологии, нет — только наиболее распространенные заболевания. В результате подготовка врача, вер­нувшегося после такого обучения, страдает большими пробе­лами в специальном образовании. В практической работе пе­ред ним возникает огромное количество вопросов, которые тре­буют немедленного ответа.

В то же время следует подчеркнуть, что каждый сонографический диагноз хорош настолько, насколько хорош специ­алист по ультразвуковой диагностике. Неправильных диаг­нозов можно избежать за счет глубокого знания анатомии и ультразвуковой морфологии, неослабевающей скрупулез­ности и, когда это необходимо, сопоставления с результа­тами других визуализирующих исследований. Начальный успех («Я уже вижу все паренхиматозные органы») не дол­жен порождать самоуверенности во время обучения. Дей­ствительно глубокие знания могут быть получены только путем длительной самостоятельной работы в клинике, на­копления практического опыта, изучения анатомических особенностей нормы и патологии.

При этом, тщательно подготовленный дидактический ма­териал, отражающий многолетний клинический опыт будет, стимулировать и возмож­но даже вдохновит многих обучающихся.

Теоретические основы метода

Звук - это механическая продольная волна, в которой колебания частиц находится в той же плос­кости, что и направление распространения энер­гии. Волна переносит энергию, но не ма­терию. Верхняя граница слышимого звука - 20000 Гц. Звук с частотой, превышающей эту величину, называется ультразвуком. Частота - эго число полных колебаний (циклов) за период вре­мени в 1 секунду. Единицами измерения частоты являются герц (Гц) и мегагерц (МГц). Один герц - это одно колебание в секунду. Один мега­герц = 1000000 герц. В современных ультразвуковых при­борах для получения изображения используется ультразвук частотой от 2 МГц и выше.

Для получения ультразвука используются специ­альные преобразователи или трансдьюсеры, кото­рые превращают электрическую энергию в энергию ультразвука. Получение ультразвука базируется на обратном пьезоэлектрическом эффекте, упражнения . Суть эф­фекта состоит в том, что если к определенным ма­териалам (пьезоэлектрикам) приложить электриче­ское напряжение, то произойдет изменение их формы. С этой целью в ультразвуковых приборах чаще всего применяются искусственные пьезоэлектрики, такие, как цирконат или титанат свинца. При отсутствии электрического тока пье­зоэлемент возвращается к исходной форме, а при изменении полярности вновь произойдет измене­ние формы, но уже в обратном направлении. Если к пьезоэлементу приложить быстропеременный ток, то элемент начнет с высокой частотой сжимать­ся и расширяться (т.е. колебаться), генерируя ульт­развуковое поле. Рабочая частота трансдьюсера (резонансная частота) определяется отношением скорости распространения ультразвука в пьезоэлементе к удвоенной толщине этого пьезоэлемента. Детектирование отраженных сигналов базируется на прямом пьезоэлектрическом эффекте. Возвращающиеся сигналы вызывают коле­бания пьезоэлемента и появление на его гранях переменного электрического тока. В этом случае пьезоэлемент функционирует как ультразвуковой датчик. Обычно в ультразвуковых приборах для из­лучения и приема ультразвука используются одни и те же элементы. Поэтому термины "преобразо­ватель", "трансдьюсер", "датчик" являются синони­мами.

В отличие от электромагнитных волн (свет, радиоволны и т.д.) для распространения звука не­обходима среда - он не может распространяться в вакууме. Как и все волны, звук можно описать ря­дом параметров. Кроме частоты это, длина волны, скорость распространения в среде, период, амплиту­да и интенсивность. Частота, период, амплитуда и интенсивность определяются источником звука, скорость распространения - средой, а длина вол­ны - и источником звука, и средой.

Период - это время, необходимое для получения одного полно­го цикла колебаний. Единицами измере­ния периода являются секунда (с) и микросекунда (мкс). Одна микросекунда является одной милли­онной долей секунды. Период (мкс) = 1/частота (МГц).

Длина волны - это длина, которую занима­ет в пространстве одно колебание. Еди­ницы измерения - метр (м) и миллиметр (мм). Ско­рость распространения ультразвука - это ско­рость, с которой волна перемещается в среде. Еди­ницами скорости распространения ультразвука яв­ляются метр в секунду (м/с) и миллиметр в микро­секунду (мм/мкс). Скорость распространения ульт­развука определяется плотностью и упругостью среды. Скорость распространения ультразвука уве­личивается при увеличении упругости и уменьшении плотности среды.

Усредненная скорость распространения ультразвука в тканях тела чело­века составляет 1540 м/с - на эту скорость запро­граммировано большинство ультразвуковых диаг­ностических приборов.

Эта величина, введенная в программу компьютера, основана на допущении, что скорость рас­пространения звука в тканях постоянна. Однако звук проходит через печень со скоростью около 1570 м/с, в то время как через жировую ткань идет с меньшей скорос­тью - около 1476 м/с. Предполагаемое среднее значение скорости, которое хранится в компьютере, приводит к некоторым отклонениям, но не вызывает больших иска­жений.

Скорость распространения ультразвука (С), частота (f) и длина волны () свя­заны между собой следующим уравнением: С= f х .

Так как в нашем случае скорость считается по­стоянной (1540 м/с), то оставшиеся две перемен­ные f и связаны между собой обратно пропор­циональной зависимостью. Чем выше частота, тем меньше длина волны и тем меньше размеры объ­ектов, которые мы можем увидеть.

Для получения изображения в ультразвуковой диагностике используется не ультразвук, который излучается трансдьюсером непрерывно (посто­янной волной), а ультразвук, излучаемый в виде коротких импульсов (импульсный).

Эти колебания испускаются кристаллом (пьезоэлектрический эф­фект) как звуковая волна точно так же, как звуковые волны испускаются мембраной громкоговорителя, хотя частоты, используемые в сонографии, не слышны челове­ческим ухом.

В зависимости от цели применения, монографическая частота может быть от 2.0 до 15.0 МГц.

Для характеристики импульсного ультразвука используются дополни­тельные параметры. Частота повторения импуль­сов - это число импульсов, излучаемых в едини­цу времени (секунду). Частота повторения им­пульсов измеряется в герцах (Гц) и килогерцах (кГц).

Продолжительность импульса - это вре­менная протяженность одного импульса.

Измеряется в секундах (с) и микросекундах (мкс).

Фактор занятости - это часть времени, в которое происходит излучение (в форме импуль­сов) ультразвука.

Пространственная протяжен­ность импульса (ППИ) - это длина пространст­ва, в котором размещается один ультразвуковой импульс.

Для мягких тканей простран­ственная протяженность импульса (мм) равна произведению 1.54 (скорость распространения ультразвука в мм/мкс) и числа колебаний (циклов) в импульсе (n), отнесенному к частоте в МГц. Или, ППИ = 1,54хn/f.

Уменьшения пространственной протяженности импульса можно достичь (а это очень важно для улучшения осевой разрешающей способности) за счет уменьшения числа колеба­ний в импульсе или увеличения частоты.

Ампли­туда ультразвуковой волны - это максимальное отклонение наблюдаемой физической перемен­ной от среднего значения

Интенсив­ность ультразвука - эго отношение мощности волны к площади, по которой распределяется ультразвуковой поток. Измеряется в ваттах на квадратный сантиметр (Вт/кв.см).

При равной мощности излучения, чем меньше площадь пото­ка, тем выше интенсивность. Интенсивность так­же пропорциональна квадрату амплитуды. Так, если амплитуда удваивается, то интенсивность учетверяется. Интенсивность неоднородна как по площади потока, так и, в случае импульсного ульт­развука, во времени.

При прохождении через любую среду будет на­блюдаться уменьшение амплитуды и интенсивно­сти ультразвукового сигнала, которое называется затуханием. Затухание ультразвукового сигнала вы­зывается поглощением, отражением и рассеивани­ем. Единицей затухания является децибел (дБ). Ко­эффициент затухания - это ослабление ультразву­кового сигнала на единицу длины пути этого сиг­нала (дБ/см). Коэффициент затухания возрастает с увеличением частоты.

Звуковые волны от датчика, состоящего из множества кристаллов, проникают через ткани, отражаются и возвращаются как эхо к датчику. Вернувшиеся эхосигналы в обратном порядке преобразуются кристаллами в электрические импульсы и используются затем компьюте­ром для построения сонографического изображения.

Преломление - это изменение направления распространения ультразвукового луча при пересечении им грани­цы сред с различными скоростями приведения ультразвука. Синус угла преломления равен про­изведению синуса угла падения на величину, по­лученную от деления скорости распространения ультразвука во второй среде на скорость в первой. Синус угла преломления, а, следовательно, и сам угол преломления тем больше, чем больше раз­ность скоростей распространения ультразвука в двух средах. Преломление не наблюдается, если скорости распространения ультразвука в двух сре­дах равны или угол падения равен 0. Говоря об от­ражении, следует иметь в виду, что в том случае, когда длина волны много больше размеров неров­ностей отражающей поверхности, имеет место зер­кальное отражение.

Еще одним важ­ным параметром среды является акустическое со­противление.

Акустическое сопротивление - это произведение значения плотности среды и ско­рости распространения ультразвука. Сопротивле­ние (Z) = плотность () х скорость распростране­ния (С).

При прохождении ультразвука через ткани на границе сред с различным акустическим сопро­тивлением и скоростью проведения ультразву­ка возникают явления отражения, преломления, рассеивания и поглощения. В зависимости от угла говорят о перпендикулярном и наклонном (под уг­лом) падения ультразвукового луча. При наклонном паде­нии ультразвукового луча определяют угол паде­ния, угол отражения и угол преломления. Угол падения равен углу отражения. При перпенди­кулярном падении ультразвукового луча он может быть полностью отражен или частично отражен, частично проведен через границу двух сред; при этом направление ультразвука, перешедшего из одной среды в другую среду, не изменяется. Интенсивность отраженного ультразвука и ультразвука, прошедшего границу сред, зави­сит от исходной интенсивности и разности аку­стических сопротивлений сред. Отношение ин­тенсивности отраженной волны к интенсивности падающей волны называется коэффициентом от­ражения. Отношение интенсивности ультразвуко­вой волны, прошедшей через границу сред, к ин­тенсивности падающей волны называется коэффи­циентом проведения ультразвука. Таким образом, если ткани имеют различные плотности, но одина­ковое акустическое сопротивление - отражения ультразвука не будет. С другой стороны, при боль­шой разнице акустических сопротивлении интен­сивность отражения стремится к 100%. Примером этого служит страница воздух/мягкие ткани. На гра­нице этих сред происходит практически полное от­ражение ультразвука. Чтобы улучшить проведение ультразвука в ткани тела человека, используют соединительные среды (гель). Звуковые волны отражаются от границы раздела между средами с различной акустической плотностью (т.е. различным распространением звука). Отражение зву­ковых волн пропорционально разнице акустической плот­ности: умеренная разница будет отражать, и возвращать часть звукового луча к датчику, ос­тавшиеся звуковые волны будут передаваться и проникать дальше в слои тканей, лежащие глубже. Если разница в акустической плотности больше, интенсивность отраженного звука также увеличивается, а интенсивность проникающего дальше зву­ка пропорционально уменьшается. Если акустическая плот­ность существенно различается, зву­ковой луч полностью отражается, и в результате образуется тотальная акустическая тень (полное отражение). Аку­стическая тень наблюдается позади костей (ребра), камней (в почках или желчном пузыре) и газа (газ в кишечнике).

Эхосигналы не появляются, если нет различий в акустической плотности граничащих сред: гомогенные жидкости (кровь, желчь, моча и содержимое кист, а также асцитическая жидкость и плев­ральный выпот) выглядят как эхонегативные (черные) структуры, например, желчный пузырь и печеночные сосуды.

Процессор УЗ аппарата рассчитывает глубину, на которой возникло эхо, путем регистрации разницы времени между момента­ми излучения акустической волны и получения эхосигнала. Эхосигналы от тканей, лежащих рядом с датчиком, возвращаются раньше, чем от тканей, лежащих на глу­бине.

В случае если длина волны сопоставима с неровностями от­ражающей поверхности или имеется неоднород­ность самой среды, происходит рассеивание ульт­развука. При обратном рассеивании ультразвук отражается в том направлении, откуда пришел исходный луч. Интенсивность рассеянных сигналов увеличивается с увеличением неоднород­ности среды и увеличением частоты (т.е. уменьше­нием длины волны) ультразвука. Рассеивание от­носительно мало зависит от направления падающе­го луча и, следовательно, позволяет лучше визуа­лизировать отражающие поверхности, не говоря уже о паренхиме органов. Для того, чтобы отражен­ный сигнал был правильно расположен на экране, необходимо знать не только направление излучен­ного сигнала, но и расстояние до отражателя. Это расстояние равно 1/2 произведения скорость и ультразвука в среде на время между излучением и прие­мом отраженного сигнала. Произведе­ние скорости на время делится пополам, так как ультразвук проходит двойной путь (от излучателя до отражателя и назад), а нас интересует только расстояние от излучателя до отражателя.

В то же время, перед тем как вернуться к датчику, эхо может отражаться не­сколько раз назад и вперед, что занимает время движения, не соответствующее расстоянию до места его возникновения. Процессор УЗ аппарата ошибочно располагает эти реверберационные сигналы в более глубоком слое.

Применение в общемедицинской практике

Известно, что прохождение ультразвука через биологические объекты вызывает два вида эффектов: механические и тепловые. Поглощение энергии звуковой волны приводит к её затуханию, а высвободившаяся энергия трансформируется в тепловую. Причём выраженность разогрева взаимосвязана с интенсивностью УЗ - излучения. Частным случаем биологических эффектов ультразвука является кавитация. При этом в озвученной жидкости формируется множество пульсирующих пузырьков, заполненных газом, паром или их смесью.

Рис. 1. Тест-объект Американского института ультразвука в медицине

Американ­ский институт ультразвука в медицине на основании анализа результатов исследований воздействия ультразвука, на клетки растений и животных в 1993 году сделал следую­щее заявления: “Никогда не сообщалось о подтвержденных био­логических эффектах у пациентов или лиц, рабо­тающих на приборе, вызванных облучением (ульт­развуком), интенсивность которого типична для со­временных ультразвуковых диагностических уста­новок. Хотя существует возможность, что такие биологические эффекты могут быть выявлены в будущем, современные данные указывают, что польза для больного при благоразумном использо­вании диагностического ультразвука перевешива­ет потенциальный риск, если таковой вообще су­ществует"’.

Происходит постоянное совершенствование ультра­звуковых диагностических приборов и бурное развитие ультразвуковой ди­агностики,.

Представляется перспективным дальнейшее совершенствование доп­плеровских методик, особенно таких, как энерге­тический допплер, допплеровская цветовая визуа­лизация тканей.

Вариант цветового допплеровского картирования получил название "энергетического допплера" (Power Doppler). При энергетическом допплере определяется не значение допплеровско­го сдвига в отраженном сигнале, а его энергия. Та­кой подход позволяет повысить чувствительность ме­тода к низким скоростям, сделать её почти угол независимой, правда, ценой потери возможности оп­ределения абсолютного значения скорости, и направ­ления потока.

В будущем может стать весьма важным направлением ультразвуковой ди­агностики трехмерная эхография. На сегодняшний день существуют не­сколько коммерчески доступных ультразвуковых диагностических установок, позволяющих прово­дить трехмерную реконструкцию изображений, од­нако, вопрос о клиническом значении этого направле­ние остается открытым.

В конце шестидесятых годов прошлого тысячелетия были впервые применены ультразвуковые контра­сты. Для визуализации правых отделов сердца в настоящее время существует ком­мерчески доступный контраст “Эховист" (Шеринг). Препарат следующего поколения, полученный путём умень­шения размеров частиц контраста, может рецир­кулировать в кровеносной системе человека (“Левовист”, Шеринг). Этот контраст существенно улуч­шает допплеровский сигнал, как спектральный, так и цветовой, что может оказаться существенным для оценки опухолевого кровотока.

Использование ультратонких датчиков при внутриполостной эхографии открывает новые возможно­сти для исследования полых органов и структур. В то же время, широкое применение этой методики ограничивается высокой стоимо­стью специализированных датчиков, которые к тому же могут применяться для исследования ог­раниченное число раз.

Весьма перспективным направлением объективизации получаемой информации при УЗИ является компьютерная обработка изображений. В этом случае появляется возможность улучшить точность диагностики незначи­тельных структурных изменений в паренхиматоз­ных органах. Однако, полученные к настояще­му времени результаты существенного клиническо­го значения не имеют.

Основные сведения об используемом оборудовании

В качестве типичного примера сонографического оборудования рассмотрим устройство аппарата среднего класса (рис. 2).

Рис. 2. Панель управления УЗ аппарата (Toshiba)

Прежде всего, необходимо правильно ввести имя пациента (А, В), чтобы в дальнейшем правильно идентифицировать изображение. Клавиши для изменения программы обработки изображе­ния (С) или Lsugopa датчика (D) находятся в верхней поло­вине панели управления. На большинстве панелей клавиша остановки изображе­ния (FREEZE) (Е) находится в правом нижнем углу. После ее нажатия ультразвуковое изображение в реальном масшта­бе времени застывает. Мы рекомендуем всегда держать палец левой руки наготове. Это сокращает какую-либо задержку при остановке желаемого изображения с целью измерения, изу­чения или вывода на принтер. Для общего усиления получа­емых эхосигналов используется регулятор GAIN (F). Для избирательно­го управления эхосигналами на разной глубине усиление можно выборочно изменять с помощью ползунковых ре­гуляторов (G), компенсируя потери сигнала, связанные с глубиной. С помощью «колобка» (I) изображение можно смещать вверх или вниз, увеличивать или уменьшать раз­мер поля зрения, а также размещать метки или маркеры для измерения в любом месте экрана. Режим работы «ко­лобка» (измерение или ввод комментариев) устанавлива­ется соответствующими клавишами. Чтобы облегчить пос­ледующее изучение сонограммы, рекомендуется до выведения изображения на принтер (М) выбрать соответ­ствующий маркер тела (L) и с помощью «колобка» (I) от­метить позицию датчика. Остальные функции не столь важ­ны и могут быть изучены позже в процессе работы с аппаратом.

Сердцем современных сонографических комплексов являет­ся главный генератор импульсов (в современных аппаратах - мощный процессор), который управ­ляет всеми системами ультразвукового прибора. Генератор импульсов посылает электри­ческие импульсы на трансдьюсер, который генери­рует ультразвуковой импульс и направляет его в ткани, принимает отраженные сигналы, преобразо­вывая их в электрические колебания. Эти электри­ческие колебания далее направляются на радио­частотный усилитель, к которому обычно подклю­чается временно-амплитудный peгулятop усиления (ВАРУ, регулятор компенсации тканевого поглоще­ния по глубине) Ввиду того, что затухание ультразвукового сигнала в тканях происходит по экспо­ненциальному закону, яркость объектов на экране с увеличением глубины прогрессивно падает. Использование линейного усилителя, т.е. усилителя, пропорционально усиливающего все сигналы, привело бы к переусилению сигналов в непосредственной близости от датчика при попытке улучшения визуализации глубоко расположенных объектов. Использование логарифмических усили­телей позволяет решить эту проблему. Ультразву­ковой сигнал усиливается пропорционально време­ни задержки его возвращения - чем позже вернул­ся, тем сильнее усиление. Таким образом, приме­нение ВАРУ позволяет получить на экране изобра­жение одинаковой яркости по глубине. Усиленный таким образом радиочастотный электрический сиг­нал подается затем на демодулятор, где он выпрям­ляется и фильтруется и еще раз усиленный на видеоусилителе подается на экран монитора.

Для сохранения изображения на экране мони­тора необходима видеопамять. Она может быть разделена на аналоговую и цифровую. Первые мо­ниторы позволяли представлять информацию в аналоговой бистабильной форме. Устройство, на­зываемое дискриминатором, позволяло изменять порог дискриминации - сигналы, интенсивность которых была ниже порога дискриминации, не про­ходили через него и соответствующие участки эк­рана оставались темными. Сигналы, интенсивность которых превышала порог дискриминации, пред­ставлялись на экране в виде белых точек. При этом яркость точек не зависела от абсолютного значе­ния интенсивности отраженного сигнала - все бе­лые точки имели одинаковую яркость. При таком способе представления изображения - он получил название "бистабильный" хорошо были видны границы органов и структуры с высокой отражаю­щей способностью (например, почечный синус), однако, оценить структуру паренхиматозных орга­нов не представлялось возможным. Появление в 70-х годах приборов, которые позволяли переда­вать на экране монитора оттенки серого цвета, зна­меновало начало эры серошкальных приборов. Эти приборы давали возможность получать информа­цию, которая была недостижима при использова­нии приборов с бистабильным изображением. Раз­витие компьютерной техники и микроэлектроники позволило вскоре перейти от аналоговых изобра­жений к цифровым. Цифровые изображения в ульт­развуковых установках формируются на больших матрицах (обычно 512x512 пикселей) с числом гра­даций серого 16-32-64-128-256 (4-5-6-7-8 бит). При визуализации на глубину 20 см на матрице 512x512 пикселей один пиксель будет соответствовать линейным размерам в 0.4 мм. На современ­ных приборах имеется тенденция к увеличению раз­меров дисплеев без потери качества изображения и на приборах среднего класса (12 дюймовый <30 см по диагонали) экран становится обычным явле­нием.

Электронно-лучевая трубка ультразвукового при­бора (дисплей, монитор) использует остро сфоку­сированный пучок электронов для получения ярко­го пятна на экране, покрытом специальным фосфо­ром. С помощью отклоняющих пластин это пятно можно перемещать по экрану. При А-типе разверт­ки (А - вместо английского слова “амплитуда” (Аmplitude)) по одной оси откладывается расстояние от датчика, по другой - интенсивность отраженного сигнала. В современных приборах А-тип развертки практически не используется. В-тип раз­вертки (В - вместо английского слова “яркость" (Brightness)) позволяет вдоль линии сканирования получить информацию об интенсивности отражен­ных сигналов в виде различия яркости отдельных точек, составляющих эту линию. М-тип (иногда ТМ) развертки (М - вместо английского слова ‘"движе­ние" (Motion)) позволяет регистрировать движение (перемещение) отражающих структур во времени. При этом по вертикали регистрируются перемеще­ния отражающих структур в виде точек различной яркости, а по горизонтали - смещение положения этих точек во времени. Для получения двумерного томографического изображения необ­ходимо тем или иным образом произвести переме­щение линии сканирования вдоль плоскости скани­рования. В приборах медленного сканирования это достигалось перемещением датчика вдоль поверх­ности тела пациента вручную.

Используемые в настоящее время сонографические аппа­раты могут работать с различными типами датчиков, что позволяет их использовать как в кабинете ультразвуковой диагностики, так и в отделениях интенсивной терапии и неотложной помощи. Датчики обычно хранятся на удерживающей стойке с правой стороны аппарата.

Ультразвуковые датчики представляют собой сложные устройства и, в зависимости от способа развертки изображения, делятся на датчики для приборов медленного сканирования (одноэлемент­ные) и быстрого сканирования (сканирования в ре­альном времени) - механические и электронные. Механические датчики могут быть одно- и много­элементными (анулярные). Развертка ультразвуково­го луча может достигаться за счет качания элемента, вращения элемента или качания акустического зеркала. Изображение на экране в этом случае имеет форму сектора (секторные датчики) или окружности (круговые датчики). Электронные датчики являются многоэлементными и в зависи­мости от формы получаемого изображения могут быть секторными, линейными, конвексными (вы­пуклыми). Развертка изображения в сек­торном датчике достигается за счет качания ульт­развукового луча с его одновременной фокусировкой. Секторальные датчики дают веерообразное изображе­ние, узкое вблизи датчика и расширяющееся по мере уве­личения глубины. Такое расходящееся распространение звука может быть получено за счет механического движения пьезоэлементов. Датчики, исполь­зующие такой принцип, дешевле, но имеют слабую изно­состойкость. Электронный вариант (фазовое управление) более дорогой и используются преимущественно в кар­диологии. Их рабочая частота 2.5-3.0 МГц. Помех, связан­ных с отражением звука ребрами, можно избежать, при­кладывая датчик в межреберные промежутки и выбирая оптимальное расхождение луча в диапазоне 60-90° для уве­личения глубины проникновения. Недостатками этих типов датчиков являются низкая разрешающая спо­собность в ближнем поле, уменьшение количества линий сканирования с увеличением глубины (пространственная разрешающая способность), сложность обращения.

В линейных и конвексных датчиках развертка изображения достигается путем возбуждения группы элементов с пошаговым их переме­щением вдоль антенной решетки с одновременной фокусировкой.

Одноэлементный трансдьюсер в форме диска в режиме непрерывного излучения образует ультра­звуковое поле, форма которого меняется в зави­симости от расстояния. В ряде случаев могут на­блюдаться дополнительные ультразвуковые "пото­ки", получившие названия боковых лепестков. Рас­стояние от диска на длину протяженности ближне­го поля (зоны) называется ближней зоной. Зона за границей ближней называется дальней. Прожженность ближней зоны равна отношению квадрата диаметра трансдьюсера к 4 длинам волны. В даль­ней зоне диаметр ультразвукового поля увеличи­вается. Место наибольшего сужения ультразвуко­вого луча называется зоной фокуса, а расстояние между трансдьюсером и зоной фокуса - фокусным расстоянием. Существуют различные способы фокусировки ультразвукового луча. Наиболее про­стым способом фокусировки является акустиче­ская линза. С ее помощью можно сфо­кусировать ультразвуковой луч на определенной глубине, которая зависит от кривизны линзы. Дан­ный способ фокусировки не позволяет оперативно изменять фокусные расстояние, что неудобно в практической работе.

Другим способом фокусировки является использование акустического зер­кала. В этом случае, изменяя расстоя­ние между зеркалом и трансдьюсером, мы будем менять фокусное расстояние. В современных при­борах с многоэлементными электронными датчи­ками основой фокусировки является электронная фокусировка. Имея систему электрон­ной фокусировки, мы можем с панели прибора изменять фокусное расстояние, однако, для каждого изображения мы будем иметь только одну зону фо­куса.

Так как для получения изображения исполь­зуются очень короткие ультразвуковые импульсы, излучаемые 1000 раз в секунду (частота повторе­ния импульсов 1 кГц), то 99,9% времени прибор работает как приемник отраженных сигналов. Имея такой запас времени, возможно, запрограммировать прибор таким образом, чтобы при первом по­лучении изображения была выбрана ближняя зона фокуса и информация, полученная с этой зоны, была сохранена. Далее - выбор следующей зоны фокуса, получение информации, сохранение. И так далее. В результате получается комбиниро­ванное изображение, сфокусированное по всей глубине. Следует, правда, отметить, что такой спо­соб фокусировки требует значительных временных затрат на получение одного изображения (кадра), что вызывает уменьшение частоты кадров и мер­цание изображения. Почему же столько усилий при­кладывается для фокусировки ультразвукового луча? Дело в том, что чем уже луч, тем лучше боко­вая (латеральная) разрешающая способность. Боковая разрешающая способность - это минимальное расстояние между двумя объек­тами, расположенными перпендикулярно направ­лению распространения энергии, которые пред­ставляются на экране монитора в виде раздельных структур. Боковая разрешающая спо­собность равна диаметру ультразвукового луча. Осевая разрешающая способность - это мини­мальное расстояние между двумя объектами, рас­положенными вдоль направления распространения энергии, которые представляются на экране мони­тора в виде раздельных структур. Осе­вая разрешающая способность зависит от пространственной протяженности ультразвукового им­пульса - чем короче импульс, тем лучше разреше­ние. Для укорочения импульса используется как ме­ханическое, так и электронное гашение ультразву­ковых колебаний. Как правило, осевая разрешаю­щая способность лучше боковой.

В настоящее время приборы медленного (руч­ного, сложного) сканирования представляют лишь исторический интерес. Морально они умерли с по­явлением приборов быстрого сканирования (при­боров, работающих в реальном времени). Однако их основные компоненты сохраняются и в совре­менных приборах (естественно, с использованием современной элементной базы).

Приборы быстрого сканирования, или как их чаще называют, приборы, работающие в реальном времени, в настоящее время полностью заменили приборы медленного, или ручного, сканирования. Это связано с целым рядом преимуществ, которы­ми обладают эти приборы: возможность оценивать движение органов и структур в реальном времени (т.е. практически в тот же момент времени); резкое уменьшение затрат времени на исследование; воз­можность проводить исследования через неболь­шие акустические окна. Если приборы медленного сканирования можно сравнить с фотоаппаратом (получение неподвижных изображений), то прибо­ры, работающие в реальном времени, с кино, где неподвижные изображения (кадры) с большой частотой сменяют друг друга, создавая впечатление движения. В приборах быстрого сканирования ис­пользуются, как уже говорилось выше, механиче­ские и электронные секторные датчики, электрон­ные линейные датчики, электронные конвексные (выпуклые) датчики, механические радиальные датчики. Некоторое время назад на ряде приборов появились трапециевидные датчики, поле зрения которых имело трапециевидную форму, однако, они не показали преимуществ относительно конвексных датчиков, но сами имели целый ряд недостат­ков.

В настоящее время наилучшим датчиком для исследования органов брюшной полости, забрюшинного пространства и малого таза является конвексный. Он обладает относительно небольшой контактной поверхностью и очень большим полем зрения в средней и дальней зонах, что упрощает и ускоряет проведение исследования.

Рабочие частоты таких датчиков от 2.5 МГц (у пациентов с ожирением) до 5 МГц (у худощавых пациентов), в среднем - 3.5-3.75 МГц. Такую конструкцию можно рассматривать как компромисс между линейными и секторальными датчиками. Конвексный датчик дает широкую ближнюю и дальнюю зоны изоб­ражения и легче в обращении, чем секторальный датчик. Однако плотность линий сканирования с увеличением рас­стояния от датчика уменьшается. При сканировании органов верхней части живота необходимо аккуратно управлять датчиком, чтобы избежать появления акустической тени от нижних ребер.

При сканировании ультразвуковым лучом ре­зультат каждого полного прохода луча называется кадром. Кадр формируется из большого количест­ва вертикальных линий. Каждая пиния - это как минимум один ультразвуковой импульс.

Частота повторения импульсов для получения се­рошкального изображения в современных прибо­рах составляет 1 кГц (1000 импульсов в секунду). Существует взаимосвязь между частотой повторе­ния импульсов (ЧПИ), числом линий, формирующих кадр, и количеством кадров в единицу времени: ЧПИ = число линий х частота кадров. На экране мо­нитора качество получаемого изображения будет определяться, в частности, плотностью линий. Для линейного датчика плотность линий (линий/см) яв­ляется отношением числа линий, формирующих кадр, к ширине части монитора, на котором фор­мируется изображение. Линейные датчики испускают звуковые волны парал­лельно друг другу и создают прямоугольное изображение. Ширина изображения и количество линий сканирования постоянны по всей глубине. Достоинством линейных датчиков является хорошая разрешающая спо­собность в ближнем поле. Эти датчики используются преимущественно с высокой частотой (5.0-7.5 МГц и выше) для исследования мягких тканей и щитовидной железы. Недостатком их является большая площадь рабочей по­верхности, что ведет к появлению артефактов при прикла­дывании к искривленной поверхности тела из-за попадаю­щих между датчиком и кожей пузырьков газа. Кроме того, акустическая тень, которая образуется от ребер, мо­жет портить изображение. Как правило, линей­ные датчики не годятся для визуализации органов грудной клетки или верхней части живота. Для датчика секторного типа плотность линий (линий/градус) - отношение числа линий, формирующих кадр, к углу сектора. Чем выше частота кадров, установленная в прибо­ре, тем (при заданной частоте повторения импуль­сов) меньше число линий, формирующих кадр, тем меньше плотность линий на экране монитора, тем ниже качество получаемою изображения. Правда, при высокой частоте кадров мы имеем хорошее временное разрешение, что очень важно при эхокардиографических исследованиях.

Ультразвуковой метод исследования позволяет получать не только информацию о структурном со­стоянии органов и тканей, но и характеризовать потоки в сосудах. В основе этой способности ле­жит эффект Допплера - изменение частоты при­нимаемого звука при движении относительно сре­ды источника или приемника звука или тела, рас­сеивающего звук. Он наблюдается из-за того, что скорость распространения ультразвука в любой однородной среде является постоянной. Следова­тельно, если источник звука движется с постоян­ной скоростью, звуковые волны, излучаемые, в на­правлении движения как бы сжимаются, увеличи­вая частоту звука Волны, излучаемые в обратном направлении, как бы растягиваются, вызывая сни­жение частоты звука. Путем сопостав­ления исходной частоты ультразвука с измененной возможно определить допплеровский сдвиги рас­считать скорость. Не имеет значения, излучается ли звук движущимся объектом или этот объект отражает звуковые волны. Во втором случае источ­ник ультразвука может быть неподвижным (ультра­звуковой датчик), а в качестве отражателя ультра­звуковых волн могут выступать движущиеся эрит­роциты. Допплеровский сдвиг может быть как по­ложительным (если отражатель движется к источ­нику звука), так и отрицательным (если отражатель движется от источника звука) в том случае, если направление падения ультразвукового луча не па­раллельно направлению движения отражателя, необходимо скорректировать допплеровский сдвиг на косинус угла и между падающим лучом и направлением движения отражателя. Для получения допплеровской информации применяются два типа устройств - постоянноволновые и импульсные. В постоянноволновом доп­плеровском приборе датчик состоит из двух трансдьюсеров: один из них постоянно излучает ультразвук, другой постоянно принимает отражен­ные сигналы. Приемник определяет допплеров­ский сдвиг, который обычно составляет -1/1000 частоты источника ультразвука (слышимый диапа­зон) и передает сигнал на громкоговорители и. параллельно на монитор для качественной и количественной оценки кривой. Постоянноволновые приборы детектируют кровоток почти по всему ходу ультразвукового луча или. другими словами, имеют большой контрольный объем. Это может вызвать получение неадекватной информации при попадании в контрольный объем нескольких сосудов. Однако большой контрольный объем бывает, полезен при расчете падения давления при cтeнозе клапанов сердца. Для того чтобы оценить кровоток в какой-либо конкретной области, необходимо разместить кон­трольный объем в исследуемой области (например, внутри определенного сосуда) под визуальным кон­тролем на экране монитора. Это может быть дос­тигнуто при использовании импульсного прибора. Существует верхний предел допплеровского сдви­га, который может быть детектирован импульсны­ми приборами (иногда его называют пределом Найквиста). Он составляет примерно 1/2 частоты повто­рения импульсов. При его превышении происходит искажение допплеровского спектра (aliasing) Чем выше частота повторения импульсов, тем больший допплеровский сдвиг может быть определен без искажений, однако, тем ниже чувствительность прибора к низкоскоростным потокам.

Ввиду того, что ультразвуковые импульсы, на­правляемые в ткани, содержат большое количест­во частот помимо основной, а также из-за того, что скорости отдельных участков потока неодинаковы, отраженный импульс состоит из большого количе­ства различных частот. С помощью бы­строго преобразования Фурье частотный состав импульса может быть представлен в виде спектра, который может быть изображен на экране монито­ра в виде кривой, где по горизонтали откладыва­ются частоты допплеровскою сдвига, а по вертикали - амплитуда каждой составляющей. По доп­плеровскому спектру, возможно, определять боль­шое количество скоростных параметров кровото­ка (максимальная скорость, скорость в конце диа­столы, средняя скорость и т.д.), однако, эти показатели являются углозависимыми и их точность крайне зависит от точности коррекции угла. И если в крупных неизвитых сосудах коррекция угла не вы­зывает проблем, то в мелких извитых сосудах (со­суды опухоли) определить направление потока дос­таточно сложно. Для решения этой проблемы был предложен ряд почти уголнезависимым индексом наиболее распространенными из которых являют­ся индекс резистентности и пульсаторный индекс. Индекс резистентности является отношением раз­ности максимальной и минимальной скоростей к максимальной скорости потока. Пульсаторный индекс является отношением разности максимальной и минимальной скоростей к средней скорости потока.

Получение допплеровского спектра с одною кон­трольного объема позволяет оценивать кровоток в очень небольшом участке. Цветовая визуализация потоков (цветовое допплеровское картирование) по­зволяет получать двумерную информацию о крово­токах в реальном времени в дополнение к обычной серошкальной двумерной визуализации. Цветовая допплеровская визуализация расширяет возможно­сти импульсного принципа получения изображения Сигналы, отраженные от неподвижных структур, рас­познаются и представляются е серошкальном виде. Если отраженный сигнал имеет частоту, отличную от излученного, то это означает, что он отразился от дви­жущегося объекта. В этом случае производится оп­ределение допплеровского сдвига, его знак и вели­чина средней скорости. Эти параметры используют­ся для определения цвета, его насыщенности и яр­кости. Обычно направление потока к датчику кодиру­ется красным, а отдатчика - синим цветом. Яркость цвета определяется скоростью потока.

Для правильной интерпретации ультразвукового изображе­ния обязательно знание физических свойств звука, лежа­щих в основе образования артефактов.

Артефакт в ультразвуковой диагностике - это появ­ление на изображении несуществующих структур, отсут­ствие существующих структур, неправильное располо­жение структур неправильная яркость структур, непра­вильные очертания структур, неправильные размеры структур.

Реверберацию, один из наиболее часто встре­чающихся артефактов, наблюдается в том случае, если ультразвуковой импульс попадает между двумя или бо­лее отражающими поверхностями. При этом часть энергии ультразвукового импульса многократно отражается от этих поверхностей, каждый раз, частично возвраща­ясь к датчику через равные промежутки времени. Результатом этого будет появление на экране мо­нитора несуществующих отражающих поверхностей, ко­торые будут располагаться за вторым отражателем на расстоянии равном расстоянию между первым и вторым отражателями. Уменьшить реверберации иногда удает­ся изменением положения датчика.

Не менее важный артефакт - это так называемая дистальная акустическая тень. Артефакт акустической тени возникает за сильно отражающими или сильно поглощающими ультразвук структурами. Меха­низм образования акустической тени аналогичен фор­мированию оптической.

Акустическая тень проявляется как зона сниже­ния эхогенности (гипоэхогенная или анэхогеная = черная) и обнаруживается позади сильно отражающих структур, таких как содержащая кальций кость. Так, исследованию органов верхней части живота препятствуют нижние реб­ра, а нижней части таза - лонное сочленение. Этот эф­фект, однако, может быть использован для выявления кальцифицированных камней желчного пузыря, камней почек и атеросклеротических бляшек. Похожая тень может вызываться газом в легких или в кишечнике.

Артефакт эхогенного «хвоста кометы», ряд авторов рассматривают как проявление акустической тени. В свою очередь другие источники указывают, что данный артефакт наблюдается в том случае, когда ультразвук вызывает собственные колебания объекта и является вариантом реверберации. Он часто наблюдается позади мелких пузырьков газа или мелких металлических предметов. Артефакт эхогенного «хвоста кометы» может препят­ствовать выявлению структур, расположенных позади пе­тель кишечника, содержащих газ. Воздушный артефакт служит препятствием преимуще­ственно при выявлении органов, расположенных ретроперитонеально (поджелудочная железа, почки, лимфатичес­кие узлы), позади желудка или петель кишечника, содержащих газ.

Ввиду того, что далеко не всегда весь отраженный сигнал возвращает­ся к датчику, возникает артефакт эффектив­ной отражательной поверхности, которая меньше реаль­ной отражательной поверхности. Из-за этого артефакта определяемые с помощью ультразвука размеры конкрементов обычно немного меньше, чем истинные. Прелом­ление может вызывать неправильное положение объек­та на полученном изображении. В том случае, если путь ультразвука отдатчика к отражающей структу­ре и назад не является одним и тем же, возникает неправильное положение объекта на полученном изображе­нии.

Следующим характерным проявлением является так называемая краевая тень позади кист. Наблюда­ется, главным образом, позади всех округлых полостей, скрывающих звуковые волны по ходу касательной. Краевая тень вызывается рассеянием и преломлением зву­ковой волны, может наблюдаться позади желчного пузыря. Это требует тщательного анализа, чтобы объяс­нить происхождение акустической тени эффектом краевой тени, вызванной желчным пузырем, а не очагом жировой инфильтрации печени.

Артефакт боковых теней свя­зан с преломлением и, иногда, интерференцией ультра­звуковых волн при падении ультразвукового луча по ка­сательной на выпуклую поверхность (киста, шеечный отдел желчного пузыря) структуры, скорость прохожде­ния ультразвука в которой существенно отличается от ок­ружающих тканей.

Артефакты, связанные с неправильным определением скорости ультразвука возникают из-за того, что реальная скорость распростра­нения ультразвука в той или иной ткани больше или мень­ше усредненной (1,54 м/с) скорости, на которую запро­граммирован прибор.

Артефакты толщины ультразвукового луча - это появление, главным обра­зом в жидкость содержащих органах, пристеночных от­ражений, обусловленных тем, что ультразвуковой луч имеет конкретную толщину и часть этого луча может од­новременно формировать изображение органа и изо­бражение рядом расположенных структур.

Артефакт дистального псевдоусиления сигнала возникает позади слабо по­глощающих ультразвук структур (жидкостные, жидкость содержащие образования). Относительное дистальное акустическое усиление обнаруживается, когда часть звуковых волн проходит ка­кое-то расстояние через гомогенную жидкость. Из-за сни­женного уровня отражения в жидкости звуковые волны ос­лабляются меньше, по сравнению с проходящими через соседние ткани, и имеют большую амплитуду. Это дает в дистальных отделах повышенную эхогенность, которая проявляется как полоска повышенной яркости поза­ди желчного пузыря, мочевого пузыря или даже позади крупных сосудов, таких как аорта. Такое повышение эхогенности является физическим феноменом, не связанным с истин­ными свойствами нижележащих тканей. Акустическое усиление, тем не менее, может быть использовано для того, чтобы отличить почечные или печеночные кисты от гипоэхогенных опухолей.

Контроль качества ультразвукового оборудова­ния включает в себя определение относительной чувствительности системы, осевой и боковой раз­решающей способностей, мертвой зоны, правиль­ности работы измерителя расстояния, точности ре­гистрации, правильности работы ВАРУ, определе­ние динамическою диапазона серой шкалы и т.д. Для контроля качества работы ультразвуковых при­боров используются специальные тест-объекты или тканево-эквивалентные фантомы. Они являются коммерчески доступными, однако в нашей стране пока мало распространены, что делает практически невозможным провести поверку ультразвукового диагностического оборудовании на местах.

Трудно поверить, что столь широкое применение ультразвука в медицине началось с обнаружения его травмирующего действия на живые организмы. Впоследствии было определено, что физическое воздействие ультразвука на биологические ткани, полностью зависит от его интенсивности, и может быть стимулирующим или разрушающим. Особенности же распространения ультразвука в тканях, легли в основу ультразвуковой диагностики.

Сегодня, благодаря развитию компьютерных технологий, стали доступны принципиально новые методики обработки информации, получаемой с помощью лучевых диагностических методов. Медицинские изображения, являющиеся результатом компьютерной обработки искажений различных видов излучения (рентгеновского, магнитно-резонансного или ультразвукового), возникающих в результате взаимодействия с тканями организма, позволили поднять диагностику на новый уровень. Ультразвуковое исследование (УЗИ), обладая массой преимуществ, таких как небольшая стоимость, отсутствие вредного воздействия ионизации и распространенность, выгодно выделяющих его среди других диагностических методик, однако, очень незначительно уступает им в информативности.

Физические основы

Стоит отметить, что очень маленький процент пациентов, прибегающих к ультразвуковой диагностике, задается вопросом, что такое УЗИ, на каких принципах основано получение диагностической информации и какова ее достоверность. Отсутствие такого рода сведений, нередко приводит к недооценке опасности поставленного диагноза или, напротив, к отказу от обследования, в связи с ошибочно бытующим мнением о вредности ультразвука.

По сути, ультразвук представляет собой звуковую волну, частота которой находится выше порога, который способен воспринять человеческий слух. В основе УЗИ лежат следующие свойства ультразвука – способность распространяться в одном направлении и одновременно переносить определенный объем энергии. Воздействие упругих колебаний ультразвуковой волны на структурные элементы тканей, приводит к их возбуждению и дальнейшей передаче колебаний.

Таким образом, происходит формирование и распространение ультразвуковой волны, скорость распространения которой, полностью зависит от плотности и структуры исследуемой среды. Каждый вид ткани человеческого организма обладает акустическим сопротивлением различной интенсивности. Жидкость, оказывая наименьшее сопротивление, является оптимальной средой, обеспечивающей распространение ультразвуковых волн. Например, при частоте ультразвуковой волны, равной 1 MГц, ее распространение в костной ткани составит всего 2 мм, а в жидкой среде – 35 см.

При формировании УЗ-изображения используют еще одно свойство ультразвука – отражаться от сред, обладающих различным акустическим сопротивлением. То есть, если в однородной среде волны ультразвука распространяются исключительно прямолинейно, то при появлении на пути объекта с другим порогом сопротивления происходит частичное их отражение. Например, при переходе границы, разделяющей мягкую ткань от кости, происходит отражение 30% ультразвуковой энергии, а при переходе от мягких тканей к газовой среде, отражается практически 90%. Именно этот эффект обусловливает невозможность исследования полых органов.

Важно! Эффект полного отражения ультразвуковой волны от воздушных сред обусловливает необходимость применения при УЗИ-исследовании, контактного геля, устраняющего воздушную прослойку между сканером и поверхностью тела пациента.

В основе УЗИ лежит эффект эхолокации. Желтым цветом изображен генерируемый ультразвук, а голубым отраженный

Виды УЗИ-датчиков

Существуют различные виды УЗИ, суть которых заключаются в использовании УЗ-датчиков (преобразователей или трансдюссеров), имеющих различные конструктивные особенности, обусловливающие некоторые различия в форме получаемого среза. Ультразвуковой датчик представляет собой прибор, осуществляющий излучение и прием УЗ-волн. Форма луча, испускаемого преобразователем, а также его разрешающая способность, является определяющими при последующем получении качественного компьютерного изображения. Какие бывают УЗ-датчики?

Различают следующие их виды:

  • линейные . Форма среза, получаемая в результате применения такого датчика, выглядит в виде прямоугольника. В связи с высокой разрешающей способностью, но недостаточной глубиной сканирования, предпочтение таким датчикам отдают при проведении акушерских исследований, изучении состояния сосудов, молочной и щитовидной желез;
  • секторные . Картинка на мониторе имеет форму треугольника. Такие датчики имеют преимущества при необходимости исследования большого пространства из небольшой доступной площади, например, при исследовании через межреберное пространство. Применяются, преимущественно, в кардиологии;
  • конвексные . Срез, получаемый при применении такого датчика, имеет форму сходную с первым и вторым типом. Глубина сканирования, составляющая около 25 см, позволяет применять его для исследования глубоко расположенных органов, например, органов малого таза, брюшной полости, тазобедренных суставов.

В зависимости от целей и области исследования могут применяться следующие УЗ-датчики:

  • трансабдоминальный. Датчик, осуществляющий сканирование, непосредственно с поверхности тела;
  • трансвагинальный. Предназначен для исследования женских репродуктивных органов, непосредственно, через влагалище;
  • трансвезикальные. Применяется для исследования полости мочевого пузыря через мочевыводящий канал;
  • транректальный. Используется для исследования предстательной железы, путем введения преобразователя в прямую кишку.

Важно! Как правило, ультразвуковое исследование с помощью трансвагинального, трансректального или трансвезикального датчика, осуществляется с целью уточнения данных, полученных с помощью трансабдоминального сканирования.


Виды УЗ-датчиков, используемых для диагностики

Режимы сканирования

Способ отображения, полученной в результате сканирования информации, зависит от используемого режима сканирования. Различают следующие режимы работы ультразвуковых сканеров.

A-режим

Самый простой режим, позволяющий получить одномерное изображение эхо-сигналов, в виде обычной амплитуды колебаний. Каждое повышение пика амплитуды соответствует повышению степени отражения УЗ-сигнала. В связи ограниченной информативностью, УЗИ обследование в A-режиме, используется только в офтальмологии, для получения биометрических показателей глазных структур, а также для выполнения эхоэнцефалограмм в неврологии.

M-режим

В определенной степени, M-режим, представляет собой модифицированный A-режим. Где глубина исследуемой области отражена на вертикальной оси, а изменения импульсов, произошедшие в определенном временном промежутке – на горизонтальной оси. Метод применяется в кардиологии, для оценки изменений в сосудах и сердце.

B-режим

Наиболее используемый на сегодняшний день режим. Компьютерная обработка эхо-сигнала, позволяет получить серошкальное изображение анатомических структур внутренних органов, строение и структура которых позволяет судить о наличии или отсутствии патологических состояний или образований.

D-режим

Спектральная доплерография. Основывается на оценке сдвига частоты отражения УЗ-сигнала от движущихся объектов. Поскольку допплерография применяется для исследования сосудов, сущность эффекта Доплера заключается в изменении частоты отражения ультразвука от эритроцитов, движущихся от или к датчику. При этом движение крови в направлении датчика усиливает эхо-сигнал, а в противоположном направлении – уменьшает. Результатом такого исследования является спекрограмма, на которой по горизонтальной оси отражается время, а по вертикальной – скорость движения крови. Графическое изображение, расположенное выше оси, отражает поток, движущийся к датчику, а ниже оси –в направлении от датчика.

СDК-режим

Цветовое доплеровское картирование. Отражает зарегистрированный частотный сдвиг в виде цветного изображения, где красным цветом отображается поток, направленный в сторону датчика, а синим – в противоположную сторону. Сегодня изучение состояния сосудов выполняют в дуплексном режиме, сочетающим B- и СDК-режим.

3D-режим

Режим получения объемного изображения. Для осуществления сканирования в этом режиме, применяют возможность фиксирования в памяти сразу нескольких кадров, полученных во время исследования. Основываясь на данные серии снимков, выполненных с небольшим шагом, система воспроизводит трехмерное изображение. УЗИ 3D широко применяется в кардиологии, особенно в сочетании с доплеровским режимом, а также в акушерской практике.

4D-режим

4D УЗИ представляет собой 3D-изображение, выполненное в режиме реального времени. То есть, в отличие от 3D-режима, получают нестатическое изображение, которое можно повернуть и осмотреть со всех сторон, а двигающийся объемный объект. Применяется 4D-режим, преимущественно в кардиологии и акушерстве для осуществления скрининга.

Важно! К сожалению, в последнее время наблюдается тенденция использования возможностей четырехмерного ультразвукового исследования в акушерстве без медицинских показаний, что, несмотря на относительную безопасность процедуры, категорически не рекомендуется.

Области применения

Области применения ультразвуковой диагностики практически безграничны. Постоянное совершенствование оборудование позволяет исследовать ранее недоступные для ультразвука структуры.

Акушерство

Акушерство является той областью, где ультразвуковые методы исследования применяются наиболее широко. Основной целью, для чего делают УЗИ, при беременности являются:

  • определение наличия плодного яйца на начальных сроках беременности;
  • выявление патологических состояний, связанных с неправильным развитием беременности (пузырный занос, мертвый плод, внематочная беременность);
  • определение надлежащего развития и положения плаценты;
  • фитометрия плода – оценка его развития путем измерения его анатомических частей (головки, трубчатых костей, окружности живота);
  • общая оценка состояния плода;
  • выявление аномалий развития плода (гидроцефалия, анэнцифалия, синдром Дауна и т. д.).


УЗ-снимок глаза, при помощи которого диагностируется состояние всех элементов анализатора

Офтальмология

Офтальмология, является одной из областей, где ультразвуковая диагностика занимает несколько обособленные позиции. В определенной степени это связано с небольшим размером исследуемой области и довольно большим количеством альтернативных методов исследования. Применение ультразвука целесообразно при выявлении патологий структур глаза, особенно при потере прозрачности, когда обычное оптическое исследование абсолютно неинформативно. Хорошо доступна для исследования орбита глаза, однако, процедура требует применения высокочастотного оборудования с высоким разрешением.

Внутренние органы

Исследование состояния внутренних органов. При исследовании внутренних органов УЗИ делают с двумя целями:

  • профилактическое обследование, с целью выявления скрытых патологических процессов;
  • целенаправленное исследование при подозрении на наличие заболеваний воспалительного или иного характера.

Что показывает УЗИ при исследовании внутренних органов? В первую очередь, показателем, позволяющим оценить состояние внутренних органов, является соответствие внешнего контура исследуемого объекта его нормальным анатомическим характеристикам. Увеличение, уменьшение или утрата четкости контуров свидетельствует о различных стадиях патологических процессов. Например, увеличение размеров поджелудочной железы, свидетельствует об остром воспалительном процессе, а уменьшение размеров с одновременной потерей четкости контуров – о хроническом.

Оценка состояния каждого органа производится исходя из его функционального назначения и анатомических особенностей. Так, при исследовании почек, анализируют не только их размер, расположение, внутреннюю структуру паренхимы, но и размер чашечно-лоханочной системы, а также наличие конкрементов в полости. При исследовании паренхиматозных органов, смотрят на однородность паренхимы и ее соответствие плотности здорового органа. Любые изменения эхо-сигнала, не соответствующие структуре, расцениваются как посторонние образования (кисты, новообразования, конкременты).

Кардиология

Широкое применение, УЗИ диагностика, нашла в области кардиологии. Исследование сердечно-сосудистой системы позволяет определить ряд параметров, характеризующих наличие или отсутствие аномалий:

  • размер сердца;
  • толщина стенок сердечных камер;
  • размер полостей сердца;
  • строение и движение сердечных клапанов;
  • сократительная активность сердечной мышцы;
  • интенсивность движения крови в сосудах;
  • кровоснабжение миокарда.

Неврология

Исследование головного мозга взрослого человека, с помощью ультразвука достаточно затруднительно, вследствие физических свойств черепной коробки, имеющей многослойную структуру, разнообразной толщины. Однако, у новорожденных детей таких ограничений можно избежать, выполняя сканирование через незакрытый родничок. Благодаря отсутствию вредного воздействия и неинвазивности, УЗИ является методом выбора в детской пренатальной диагностике.


Исследование проводится как детям, так и взрослым

Подготовка

Ультразвуковое исследование (УЗИ), как правило, не требует длительной подготовки. Одним из требований при исследовании органов брюшной полости и малого таза, является максимальное снижение количества газов в кишечнике. Для этого, за сутки до процедуры, следует исключить из рациона продукты, вызывающие газообразование. При хроническом нарушении пищеварения, рекомендуется принять ферментативные препараты (Фестал, Мезим) или препараты, устраняющие вздутие живота (Эспумизан).

Исследование органов малого таза (матки, придатков, мочевого пузыря, предстательной железы) требуется максимальное наполнение мочевого пузыря, который, увеличиваясь не только отодвигает кишечник, но и служит своеобразным акустическим окном, позволяя четко визуализировать, расположенные позади него анатомические структуры. Органы пищеварения (печень, поджелудочную железу, желчный пузырь) исследуют на голодный желудок.

Отдельной подготовки требует трансректальное обследование предстательной железы у мужчин. Так как введение УЗ-датчика осуществляется через анус, непосредственно перед диагностикой, необходимо сделать очистительную клизму. Проведение трансвагинального обследования у женщин не требует наполнения мочевого пузыря.

Техника выполнения

Как делают УЗИ? Вопреки первому впечатлению, создающемуся у пациента, лежащего на кушетке, движения датчика по поверхности живота далеко не хаотичны. Все перемещения датчика направлены на получение изображения исследуемого органа в двух плоскостях (сагиттальной и аксиальной). Положение датчика в сагиттальной плоскости, позволяет получить продольное сечение, а в аксиальной – поперечное.

В зависимости от анатомической формы органа, его изображение на мониторе может существенно меняться. Так, форма матки при поперечном сечении имеет форму овала, а при продольном – грушевидную форму. Для обеспечения полного контакта датчика с поверхностью тела, на кожу периодически наносят гель.

Исследование органов брюшной полости и малого таза надо делать в положении лежа на спине. Исключением являются почки, которые исследуют сначала лежа, попросив пациента повернуться сначала на один бок, а затем на другой, после чего сканирование продолжают при вертикальном положении пациента. Таким образом, можно оценить их подвижность и степень смещения.


Трансректальное исследование простаты может проводиться в любых удобных для пациента и врача положениях (на спине или на боку)

Зачем делать УЗИ? Совокупность положительных сторон ультразвуковой диагностики, позволяет выполнять исследование не только при подозрении на наличие какого-либо патологического состояния, но и с целью осуществления планового профилактического обследования. Не вызовет затруднений и вопрос где сделать обследование, так как таким оборудованием сегодня располагает любая клиника. Однако, при выборе медицинского учреждения следует опираться в первую очередь не техническую оснащенность, а на наличие профессиональных врачей, так как качество результатов УЗИ в большей мере, нежели других диагностических методов, зависят от врачебного опыта.

Ультразвуковое исследование (УЗИ, сонография) является наиболее широко используемым методом визуализации в медицинской практике, что обусловлено его значительными преимуществами: отсутствием лучевой нагрузки, неинвазивностью, мобильностью и доступностью. Метод не требует применения контрастных веществ, и его результативность не зависит от функционального состояния почек, что имеет особое значение в урологической практике.

В настоящее время в практической медицине используются ультразвуковые сканеры, работающие в режиме реального времени, с построением изображения в серой шкале. В действии приборов реализуется физический феномен эхолокации. Отраженная ультразвуковая энергия улавливается сканирующим датчиком и преобразуется в электрическую, которая опосредованно формирует визуальный образ на экране ультразвукового прибора в палитре серых оттенков как в двух-, так и в трехмерном изображении.

При прохождении ультразвуковой волны через гомогенную жидкостную среду отраженная энергия минимальна, поэтому на экране формируется изображение в черном цвете, что носит название анэхогенной структуры. В том случае, когда жидкость содержится в замкнутой полости (киста), дальняя от источника ультразвука стенка визуализируется лучше, а непосредственно за ней формируется эффект дорсального усиления, являющийся важным признаком жидкостного характера исследуемого образования. Высокая гидрофильность тканей (зоны воспалительного отека, опухолевая ткань) также приводит к формированию изображения в оттенках черного или темно-серого цвета, что связано с малой энергией отраженного ультразвука. Такая структура носит название гипоэхогенной. В отличие от жидкостных структур гипоэхогенные образования не имеют эффекта дорсального усиления. С увеличением импеданса исследуемой структуры мощность отраженной ультразвуковой волны возрастает, что сопровождается формированием на экране структуры все более светлых оттенков серого цвета, называемых гиперэхогенными. Чем более значительной эхоплотностью (импедансом) обладает исследуемый объем, тем более светлыми оттенками характеризуется сформированное на экране изображение. Наибольшая отраженная энергия формируется при взаимодействии ультразвуковой волны и структур, содержащих кальций (камень, кость) или воздух (газовые пузыри в кишечнике).

Наилучшая визуализация внутренних органов возможна при минимальном содержании газов в кишечнике, для чего УЗИ выполняют натощак или с использованием специальных методик, приводящих к уменьшению метеоризма. Локация органов малого таза трансабдоминальным доступом возможна только при тугом заполнении мочевого пузыря, который в данном случае играет роль акустического окна, проводящего ультразвуковую волну от поверхности тела пациента до исследуемого объекта.


В настоящее время в работе ультразвуковых сканеров используют датчики трех модификаций с различной формой лоцирующей поверхности: линейные, конвексные и секторные - с частотой локации от 2 до 14 МГц. Чем выше частота локации, тем большей разрешающей способностью обладает датчик и тем крупнее масштаб полученного изображения. При этом датчики с высокой разрешающей способностью пригодны для исследования поверхностно расположенных структур. В урологической практике это наружные половые органы, поскольку мощность ультразвуковой волны по мере увеличения частоты существенно падает.

Задача врача при проведении УЗИ-диагностики - получить четкое изображение объекта исследования. С этой целью используют различные сонографические доступы и специальные модифицированные датчики. Сканирование, проводимое через кожные покровы, носит название транскутанное. Транскутанное ультразвуковое сканирование органов живота, малого таза традиционно называется трансадбоминальной сонографией.

Кроме транскутанного исследования часто используются эндокорпоральные способы сканирования, при которых датчик помещается в тело человека через физиологические отверстия. Наиболее широкое применение имеют трансвагинальные и трансректальные датчики, служащие для исследования органов малого таза. При проведении трансвагинального УЗИ визуализации доступны мочевой пузырь, внутренние половые органы, средне- и нижнеампулярные отделы толстой кишки, Дугласово пространство, частично уретра и дистальные отделы мочеточников. При трансректальном УЗИ визуализируются внутренние половые органы вне зависимости от пола обследуемого пациента, мочевой пузырь, уретра на всем ее протяжении, пузырно-мочеточниковые сегменты и тазовые отделы мочеточников.

Трансуретральный доступ не получил широкого распространения ввиду значительного перечня противопоказаний.

В настоящее время все чаще используются ультразвуковые сканеры, оснащенные миниатюрными датчиками высокого разрешения и вмонтированные в проксимальный конец гибкого уретероскопа. Данный метод, носящий название эндолюминальная сонография, позволяет провести исследование всех отделов мочевыводящих путей, что привносит ценную диагностическую информацию при заболеваниях мочеточника, чашечно-лоханочной системы почки.

УЗИ сосудов различных органов возможно благодаря эффекту Доплера, который основан на регистрации мелких перемещающихся частиц. В клинической практике данный метод был использован в 1956 году Satomuru при УЗИ сердца. В настоящее время применяются несколько ультразвуковых методик для исследования сосудистой системы, в основе которых лежит использование эффекта Доплера,- цветное доплеровское картирование, энергетический доплер. Данные методики дают представление о сосудистой архитектонике обследуемого объекта. Спектральный анализ позволяет оценивать распределение сдвига доплеровских частот, определять количественные скоростные характеристики сосудистого кровотока. Сочетание серошкального ультразвукового изображения, цветного доплеровского картирования и спектрального анализа носит название триплексное сканирование.

Доплеровские методики в практической урологии применяются для решения широкого круга диагностических вопросов. Наиболее распространена методика цветного доплеровского картирования. Определение хаотичных сосудистых структур в тканевом объемном образовании почки в большинстве случаев свидетельствует о его злокачественном характере. При выявлении асимметричного увеличения кровоснабжения патологических гипоэхогенных участков в простате значительно возрастает вероятность ее злокачественного поражения.

Спектральный анализ кровотока используется в дифференциальной диагностике вазоренальной гипертензии. Изучение скоростных показателей на различных уровнях сосудов почек: от основной почечной артерии до аркуатных артерий - позволяет определить причину артериальной гипертензии. Спектральный доплеровский анализ применяется в дифференциальной диагностике эректильной дисфункции. Данная методика проводится с использованием фармакологической пробы. Методическая последовательность включает определение скоростных показателей кровотока по кавернозным артериям и тыльной вене полового члена в состоянии покоя. В дальнейшем, после интракавернозного введения препарата (папаверин, кавердэскт и др.), проводится повторное измерение пенильного кровотока с определением индексов. Сопоставление полученных результатов позволяет не только установить диагноз вазогенной эректильной дисфункции, но и дифференцировать наиболее заинтересованное сосудистое звено - артериальное, венозное. Описано также применение таблетированных препаратов, вызывающих состояние тумесценции.

В соответствии с диагностическими задачами виды УЗИ подразделяются на скрининговые, инициальные и экспертные. Скрининговые исследования, направленные на выявление доклинических стадий заболеваний, относятся к превентивной медицине и проводятся здоровым людям, составляющим группу риска по каким-либо заболеваниям. Инициальное (первичное) УЗИ проводится пациентам, обратившимся за медицинской помощью в связи с возникновением определенных жалоб. Цель его - установить причину, анатомический субстрат имеющейся клинической картины. Диагностической задачей экспертного УЗИ является не только подтверждение диагноза, но в большей степени установление степени распространенности и стадии процесса, вовлечение других органов и систем в патологический процесс.

УЗИ почек. Основным доступом при локации почек является кособоковое расположение датчика по средней подмышечной линии. Данная проекция дает изображение почки, сопоставимое с изображением при рентгенологическом исследовании. При сканировании по длинной оси органа почка имеет вид овального образования с четкими, ровными контурами (рис. 4.10).

Полипозиционное сканирование с последовательным перемещением плоскости сканирования позволяет получить информацию обо всех отделах органа, в котором дифференцируются паренхима и центрально расположенный эхокомплекс. Кортикальньгй слой имеет равномерную, несколько повышенную по сравнению с мозговым веществом эхогенность. Мозговое вещество, или пирамиды, на анатомическом препарате почки имеют вид треугольных структур, обращенных основанием к контуру почки и вершиной к полостной системе. В норме видимая при УЗИ часть пирамиды составляет около трети от толщины паренхимы.

Рис. 4.10. Сонограмма. Нормальное строение почки


Рис. 4.11. Сонограмма. Солитарная киста почки:

1 - нормальная почечная ткань; 2 – киста

Центрально расположенный эхокомлекс характеризуется значительной эхоплотностью по сравнению с другими отделами почки. В формировании изображения центрального синуса принимают участие такие анатомические структуры, как элементы полостной системы, сосудистые образования, лимфатическая дренажная система, жировая ткань. У здоровых людей в отсутствие водной нагрузки элементы полостной системы, как правило, не дифференцируются, возможна визуализация отдельных чашек до 5 мм. В условиях водной нагрузки иногда визуализируется лоханка, как правило, она имеет форму треугольника размером не более 15 мм.

Представление о состоянии сосудистой архитектоники почки дает цветное доплеровское картирование (рис. 35, см. цв. вклейку).

Характер очаговой патологии почки определяется сонографической картиной выявленных изменений - от анэхогенного образования с дорсальным усилением до гиперэхогеннего образования, дающего акустическую тень. Анэхогенное жидкостное образование в проекции почки по своему происхождению может быть кистой (рис. 4.11) или расширением чашечек и лоханки – гидронефрозом (рис. 4.12).


Рис. 4.12. Сонограмма. Гидронефроз: 1 - выраженное расширение лоханки и чашечек со сглаживанием их контуров; 2 - резкое истончение паренхимы почки


Рис. 4.13. Сонограмма. Опухоль почки: 1 - опухолевый узел; 2 - нормальная почечная ткань

Очаговое образование низкой плотности без дорсального усиления в проекции почки может свидетельствовать о локальном повышении гидрофильности ткани. Такие изменения могут быть обусловлены либо воспалительными изменениями (формирование карбункула почки), либо наличием опухолевой ткани (рис. 4.13).

Картина эхоплотного образования без дорсального усиления характерна для наличия тканевой структуры с высокой отражающей способностью, такой как жир (липома), фиброзная ткань (фиброма) или смешанная структура (ангиомиолипома). Эхоплотная структура с формированием акустической тени свидетельствует о наличии кальция в выявленном образовании. Локализация такого образования в полостной системе почки или мочевыводящих путях говорит о имеющемся камне (рис. 4.14).


Рис. 4.14. Сонограмма. Камень почки: 1 - почка; 2 - камень; 3 - акустическая

тень от камня

УЗИ мочеточника. Инспекция мочеточника проводится при продвижении датчика по месту его анатомической проекции. При трансабдоминальном доступе наилучшими для визуализации местами являются пиелоуретеральный сегмент и место пересечения мочеточника с подвздошными сосудами. В норме мочеточник, как правило, не визуализируется. Тазовый отдел его оценивается при трансректальном УЗИ, когда возможна визуализация пузырно-мочеточникового сегмента.

УЗИ мочевого пузыря возможно только при его адекватном наполнении мочой, когда складчатость слизистого слоя уменьшается. Визуализация мочевого пузыря возможна трансабдоминальным (рис. 4.15), трансректальным (рис. 4.16) и трансвагинальным доступом.

В урологической практике предпочтительной является комбинация трансабдоминального и трансректального доступов. Первый позволяет судить о состоянии мочевого пузыря в целом. Трансректальный доступ дает ценную информацию о нижних отделах мочеточников, уретре, половых органах.

При УЗИ стенка мочевого пузыря имеет трехслойное строение. Средний гипоэхогенный слой представлен срединным слоем детрузора, внутренний гиперэхогенный слой является единым изображением внутреннего слоя детрузора и уротелиальной выстилки, наружный гиперэхогенный слой - изображением наружного слоя детрузора и адвентиции.


Рис. 4.15. Трансабдоминальная сонограмма мочевого пузыря в норме


Рис. 4.16. Трансректальная сонограмма мочевого пузыря в норме

При адекватном наполнении мочевого пузыря различают его анатомические отделы - дно, верхушку и боковые стенки. Шейка мочевого пузыря имеет вид неглубокой воронки. Моча, находящаяся в мочевом пузыре, является полностью анэхогенной средой, без взвеси. Иногда можно наблюдать поступление болюса мочи из устья мочеточников, что связано с возникновением турбулентного потока (рис. 4.17).

При трансректальном сканировании лучше визуализируется нижний сегмент мочевого пузыря. Пузырно-мочеточниковый сегмент представляет собой структуру, состоящую из юкставезикального, интрамурального отделов мочеточника и зоны мочевого пузыря рядом с устьем (рис. 4.18). Устье мочеточника определятся в виде щелевидного образования, несколько возвышающегося над внутренней поверхностью мочевого пузыря. При прохождении болюса мочи устье приподнимается, открывается, и струя мочи поступает в полость мочевого пузыря. По данным трансректального УЗИ можно оценивать моторную функцию пузырно-мочеточникового сегмента. Частота сокращений мочеточника в норме составляет 4-6 в минуту. При сокращении мочеточника его стенки полностью смыкаются, при этом диаметр юкставезикального отдела не превышает 3,5 мм. Сама стенка мочеточника лоцируется в виде эхоплотной однородной структуры шириной около 1,0 мм. В момент прохождения болюса мочи мочеточник расширяется и достигает 3-4 мм.

Рис. 4.17. Трансректальная сонограмма. Выброс мочи (1) из устья мочеточника (2) в мочевой пузырь (3)


Рис. 4.18. Трансректальная сонограмма пузырно-мочеточникового сегмента в норме: 1 - мочевой пузырь; 2 - устье мочеточника; 3 - интрамуральный отдел мочеточника; 4 - юкставезикальный отдел мочеточника

УЗИ предстательной железы. Визуализация предстательной железы возможна при использовании как трансабдоминального (рис. 4.19), так и трансректального (рис. 4.20) доступа. Предстательная железа в поперечном скане представляет собой образование овальной формы, при сканировании в сагиттальном скане имеет форму треугольника с широким основанием и заостренным апикальным концом.


Рис. 4.19. Трансабдоминальная сонограмма. Предстательная железа в норме


Рис. 4.20. Трансректальная сонограмма. Предстательная железа в норме

Периферическая зона является преобладающей в объеме простаты и лоцируется в виде однородной эхоплотной ткани в заднелатеральной части простаты от основания до верхушки. Центральная и периферическая зоны обладают меньшей эхоплотностью, что позволяет дифференцировать эти отделы простаты. Переходная зона располагается кзади от уретры и охватывает простатическую часть семявыбрасывающих протоков. Суммарное изображение этих отделов простаты в норме составляет около 30 % объема железы.

Визуализация сосудистой архитектоники предстательной железы осуществляется с помощью ультразвукового доплеровского исследования (рис. 4.21).


Рис. 4.21. Сонодоплерограмма предстательной железы в норме

Асимметричное увеличение кровоснабжения гипоэхогенных участков в простате значительно повышает вероятность ее злокачественного поражения.

УЗИ семенных пузырьков и семявыносящих протоков. Семенные пузырьки и семявыносящие протоки лоцируются кзади от простаты. Семенные пузырьки в зависимости от плоскости сканирования имеют вид конусообразных или овальных образований, прилежащих непосредственно к задней поверхности простаты (рис. 4.22). В норме их размер составляет около 40 мм по длиннику и 20 мм в поперечнике. Семенные пузырьки характеризуются однородной структурой низкой плотности.

Рис. 4.22. Трансректальная сонограмма: семенные пузырьки (1) и мочевой пузырь (2) в норме

Семявыносящие протоки лоцируются в виде эхоплотных трубчатых структур диаметром 3-5 мм от места впадения в простату вверх до физиологического изгиба на уровне тела мочевого пузыря, когда проток меняет направление от внутреннего отверстия пахового канала к простате.

УЗИ мочеиспускательного канала. Мужская уретра представлена протяженной структурой от шейки мочевого пузыря в направлении верхушки и имеет неоднородную структуру низкой эхоплотности. Место впадения семявыбрасывающего протока в простатическую уретру соответствует проекции семенного бугорка. За пределами простаты уретра продолжается в направлении мочеполовой диафрагмы в виде вогнутой по большому радиусу дуги. В проксимальных отделах, в непосредственной близости от верхушки простаты, уретра имеет утолщение, соответствующее рабдосфинктеру. Ближе к мочеполовой диафрагме кзади от уретры определяются парные периуретральные (куперовы) железы, имеющие вид симметричных округлых гипоэхогенных образований диаметром до 5 мм.

УЗИ органов мошонки. При УЗИ органов мошонки используют датчики высокой разрешающей способности, от 5 до 12 мГц, что позволяет хорошо видеть мелкие структуры и образования. В норме яичко определяется в виде гиперэхогенного образования овальной формы с четкими, ровными контурами (рис. 4.23).


Рис. 4.23. Сонограмма мошонки. Яичко в норме

Структура яичка характеризуется как однородная гиперэхогенная ткань. В центральных отделах его определяется линейная структура высокой плотности, ориентированная по длиннику органа, что соответствует изображению средостения яичка. В краниальных отделах яичка хорошо визуализируется головка придатка, имеющая форму, близкую к треугольной. К каудальному отделу яичка прилежит хвост придатка, повторяющий форму яичка. Тело придатка визуализируется неотчетливо. По своей эхогенности придаток яичка близок к эхогенности самого яичка, однороден, имеет четкие контуры. Межоболочечная жидкость анэхогенная, прозрачная, в норме определяется в виде минимальной прослойки от 0,3 до 0,7 см преимущественно в проекции головки и хвоста придатка.

Малоинвазивные диагностические и оперативные вмешательства под сонографическим контролем. Внедрение ультразвуковых сканеров позволило значительно расширить арсенал малоинвазивных методов в диагностике и лечении урологических заболеваний. К ним относятся:

диагностические:

■пункционная биопсия почки, предстательной железы, органов мошонки;

■ пункционная антеградная пиелоуретерография; лечебные:

■ пункция кист почки;

■ пункционная нефростомия;

■ пункционное дренирование гнойно-воспалительных очагов в почке, забрюшинной клетчатке, предстательной железе и семенных пузырьках;

■ пункционная (троакарная) эпицистостомия.

Диагностические пункции по способу получения материала подразделяются на цитологические и гистологические.

Цитологический материал получают при проведении тонкоигольной аспирационной биопсии. Более широкое применение имеет гистологическая биопсия, при которой забираются участки (столбики) ткани органа. Таким образом взятый полноценный гистологический материал может быть использован для постановки морфологического диагноза, проведения иммуногистохимического исследования и определения чувствительности к химиопрепаратам.

Способ получения диагностического материала определяется расположением интересующего органа и возможностями ультразвукового прибора. Пункции образований почек, забрюшинных объемных образований выполняются с использованием трансабдоминальных датчиков, которые позволяют визуализировать всю зону пункционного вмешательства. Пункция может проводиться по методике «свободная рука», когда врач совмещает траекторию иглы и зоны интереса, работая пункционной иглой без фиксирующей направляющей насадки. В настоящее время преимущественно используют методику с фиксацией биопсийной иглы в специальном пункционном канале. Направляющий канал для пункционной иглы предусмотрен либо в специальной модели ультразвукового датчика, либо в специальной пункционной насадке, которая может крепиться к обычному датчику. Пункция органов и патологических образований малого таза осуществляется в настоящее время только с использованием трансректальных датчиков со специальной пункционной насадкой. Специальные функции ультразвукового прибора позволяют наилучшим образом совмещать зону интереса с траекторией пункционной иглы.

Объем пункционного материала зависит от конкретной диагностической задачи. При диагностической пункции простаты в настоящее время используют веерную технологию с забором не менее 12 трепан-биоптатов. Данная методика позволяет распределить зоны забора гистологического материала равномерно по всем отделам простаты и получить адекватный объем исследуемого материала. При необходимости объем диагностической биопсии расширяют - увеличивают число трепан-биоптатов, биопсируют близлежащие органы, в частности семенные пузырьки. При повторных биопсиях простаты число трепан-биоптатов, как правило, удваивают. Такая биопсия носит название сатурационной. При подготовке биопсии простаты осуществляют профилактику воспалительных осложнений, кровотечений, подготавливают ампулу прямой кишки. Анестезию выполняют с помощью ректальных инстиллятов, применяют проводниковую анестезию.

Лечебные пункции под сонографическим контролем используются для эвакуации содержимого из патологических полостных образований - кист, абсцессов. В зависимости от конкретной задачи в освобожденную от патологического содержимого полость вводят лекарственные препараты. При кистах почек применяют склерозанты (этиловый спирт), что приводит к уменьшению объема кистозного образования вследствие повреждения его внутренней выстилки. Использование данного метода возможно только после проведения кистографии, позволяющей убедиться в отсутствии связи кисты с чашечно-лоханочной системой почки. Применение склеротерапии не исключает рецидива заболевания. После пункции абсцесса любой локализации пункционный канал расширяют, гнойную полость опорожняют, промывают растворами антисептиков и дренируют.

Сонографический контроль при выполнении чрескожной нефростомии позволяет с максимальной точностью пунктировать чашечно-лоханочную систему почки и установить нефростомический дренаж.

Об ультразвуковой диагностике на сегодняшний день известно немало. Росту популяризации данной методики исследования человеческого организма на протяжении полувека способствовала ее доказанная безопасность и информативность.

Несмотря на то что общим представлением об УЗ скрининге обладает большая часть современных пациентов, остается немало вопросов, недостаточная освещенность которых вызывает множество дискуссий.

Начать, пожалуй, следует с того, что представляет собой как таковое. Современная научная медицина постоянно развивается, не стоит на месте, что позволяет ученым достигать различных способов изучения состояния организма.

В любом случае поиски приводят специалистов к совершенствованию диагностического института. Одним из таких открытий по праву считают УЗИ. Пытаясь дать определение понятию «УЗ исследование», в первую очередь стоит отметить его неинвазивность.

Проведение ультразвукового обследования внутренних органов человека позволяет дать максимально объективную оценку их состояния, функционирования, подтвердить или опровергнуть подозрения на развитие патологических процессов, а также отслеживать, происходит ли восстановление пораженных в прошлом органов в ходе назначенного лечения.

Между тем стоит отметить, что отрасль ультразвуковой диагностики не перестает идти вперед уверенными шагами, открывая новые возможности для доступного выявления заболеваний.

Как ультразвук применяется при обследовании: принцип действия

Процесс выявления патологий происходит за счет восприятия сигналов высокой частоты. Ультразвуковые волны, или, если их можно так назвать, сигналы, подаются через датчик оборудования на обследуемый объект, результатом чего и становится отображение на экране аппарата.

Для идеально плотного соприкосновения с исследуемой поверхностью на кожу человека наносят специальный гель, обеспечивающий скольжение датчика и предотвращающий попадание воздуха между ним и исследуемым участком.

Четкость изображения во многом зависит от величины коэффициента отражения внутреннего органа, который разнится за счет его неоднородной плотности и структуры. Именно поэтому УЗ исследование не проводят при диагностике легких: полное отражение сверхзвуковых сигналов воздухом, присутствующим в легких, препятствует получению какой-либо достоверной информации о легочной ткани.

При этом чем выше уровень плотности обследуемого участка органа, тем выше сопротивление к отражению. В результате чего на мониторе возникают затемненные или более светлые картинки изображения. Первый вариант изображения встречается чаще, во втором случае говорят о наличии конкрементов. Более светлое изображение можно наблюдать в ходе диагностики костной ткани.

Различные ткани обладают разной степенью проходимости по отношению к эхосигналу. Это и обеспечивает работу такого устройства

Какие органы можно исследовать?

Востребованность данной диагностической процедуры несложно объяснить ее универсальностью.

УЗ скрининг позволяет получить объективные данные о состоянии самых главных органов и систем человека:

  • головной мозг;
  • лимфоузлы, внутренние пазухи;
  • глаза;
  • щитовидная железа;
  • сердечно-сосудистая система;
  • органы брюшной полости;
  • органы малого таза;
  • печень;
  • мочевыделительная система.

Несмотря на то что исследовать головной мозг с помощью ультразвука можно только в детском возрасте, данный метод обследования применим и к сосудам шеи и головы.

Такая диагностическая процедура позволяет получить детальное представление о кровотоке, нарушениях работы сосудов, обеспечивающих питание мозга. Скрининг проводят также при подозрении на заболевания эндокринной системы, а также гайморита, воспалительных процессов в гайморовых и лобных пазухах с целью обнаружения гноя в них.

С помощью специального датчика диагност способен оценить состояние сосудов глазного дна, стекловидного тела, глазного нерва, получить информацию о кровоснабжении артерий. Один из органов, имеющих максимально удобное поверхностное расположение для проведения УЗ диагностики — щитовидная железа. Все, что интересует специалиста в ходе обследования, – размер долей железы, наличие доброкачественных узловых образований, состояние лимфооттока.

При процедуре скрининга сердца и сосудов важно изучить состояние сосудов, клапанов и артерий, выявить аневризмы и стенозы, а также обнаружить тромбоз глубоких сосудов, функциональность миокарда, объем желудочка.

На данный момент в медицине широко используется такой метод обследования организма, позволяющий исследовать любые структуры организма абсолютно безболезненно

Другие органы для исследования ультразвуком

С помощью ультразвука обследуют и органы брюшной полости, малого таза, печень. Благодаря диагностике стало возможным своевременное выявление воспалительных процессов, образований камней и их габаритов, наличия новообразований (их злокачественность или доброкачественность определить с помощью ультразвука невозможно).

Отдельного внимания заслуживает УЗ диагностика женского организма. Важность ультразвукового метода исследования сложно переоценить, поскольку его используют в качестве альтернативной процедуры маммографии и рентгенографии. Однако в некоторых случаях ультразвук не способен увидеть отложения солей (кальцинатов) в молочных железах, которые нередко говорят о наличии опухоли.

Определить, нет ли в пределах матки или яичников новообразований (кисты, фибромы, миомы, раковой опухоли), способен ультразвук.

Чтобы объективно оценить состояние данных органов, исследование чаще всего проводят с наполненным мочевым пузырем (трансабдоминальным путем), но иногда прибегают и к трансвагинальной диагностике, как правило, в определенный день менструального цикла.

Как проходит процедура?

Наверное, большинству современных пациентов, периодически обращающихся за медицинской помощью, известно, как проходить исследование. Для того чтобы получить необходимую информацию о состоянии обследуемых объектов, важно обеспечить проникновение сверхчастотных волновых импульсов.

Перед началом ультразвуковой процедуры врач настраивает оборудование, в соответствии с настройками, применяемыми для процедуры скрининга различных органов, поскольку ткани человеческого организма в разных степенях поглощают или отражают ультразвук.

Таким образом, в ходе процедуры происходит несущественное нагревание тканей. Никакого вреда это не несет человеческому организму, поскольку процесс нагревания происходит за ограниченный период, не успевая повлиять на общее состояние пациента и его ощущения. Скрининг осуществляется с помощью специального сканера и датчика волн высокой частотности.

Последний испускает волны, после чего происходит отражение или поглощение ультразвука от исследуемых участков, а приемник принимает поступающие волны и отправляет их в компьютер, в результате они преображаются с помощью специальной программы и отображаются на экране в режиме реального времени.

Сам процесс проведения такой процедуры достаточно простой и абсолютно безболезненный,а со стороны пациента не требуется каких-либо специфических подготовительных мер

Как вести себя пациенту во время исследования?

Ультразвуковая диагностика – это процедура, прохождение которой происходит следующим образом:

  • Пациент обеспечивает доступ аппарата к исследуемому участку тканей.
  • В ходе исследования больной неподвижно лежит, однако по требованию врача может сменить позу.
  • Начинается скрининг с момента соприкосновения специального датчика с поверхностью исследуемого участка. Врач несильно должен прижимать его к кожным покровам, предварительно смазав исследуемую поверхность гелеобразным веществом.
  • Продолжительность процедуры в редких случаях превышает 15–20 минут.
  • Завершающим этапом скрининга является составление врачом итогового заключения, расшифровать результаты которого следует лечащему врачу.

В отличие от обычных процедур, некоторые гинекологические исследования выполняются с помощью специального датчика, имеющего вытянутую форму, поскольку вводят его через влагалище. Какие-либо болезненные ощущения во время процедуры исключены.

Эхогенность, гипоэхогенность и гиперэхогенность: что означает?

Как правило, УЗ скрининг представляет собой процедуру, принципом которой является эхолокация.

Как уже говорилось, это свойство тканей органов отражать поступающий к ним ультразвук, что в ходе диагностики заметно специалисту в качестве черно-белого изображения на экране. Поскольку каждый орган отражается по-разному (из-за структуры, жидкости в нем и т.д.), он виден на мониторе в определенном цвете. Например, плотные ткани отображаются белым цветом, а жидкости – черным.

Врач, специализирующийся на УЗ исследованиях, знает, какая эхогенность в норме должна быть у каждого органа. При отклонениях показателей в большую или меньшую сторону доктор и ставит диагноз. Здоровые ткани видны в сером цвете, и в этом случае говорят об изоэхогенности.

При гипоэхогенности, т.е. понижении нормы, цвет картинки становится темнее. Повышенная эхогенность называется гиперэхогенностью. К примеру, конкременты в почках гиперэхогенны, и волна ультразвука не может пройти сквозь них.

Гипоэхогенность — это не заболевание, а участок высокой плотности, чаще всего оказывающийся кальцинированным уплотнением, образованным жиром, костным образованием или отложением камней

В таком случае врачу на экране видна лишь верхняя часть камня или его тень. Гипоэхогенность свидетельствует о развитии отечности в тканях. При этом черным цветом отражается на экране наполненный мочевой пузырь, и это является нормальным показателем.

Немаловажным моментом является то, что заметка специалиста о повышенной эхогенности должна служить поводом для серьезного беспокойства. В некоторых случаях данный признак говорит о развитии воспалительного процесса, возникновении опухоли.

Причины погрешностей

Абсолютно все специалисты, задействованные в сфере скрининг-диагностик, имеют представление о внушительном числе так называемых артефактов, которые нередко встречаются в ходе выполнения процедуры.

Распознать те или иные признаки УЗ исследования далеко не всегда удается безошибочно, чему виной можно назвать:

  • физическую ограниченность возможностей методики;
  • возникновение акустических эффектов в ходе воздействия ультразвука на ткани исследуемого органа;
  • погрешности в методическом плане проведения обследования;

некорректную интерпретацию результатов скрининга.

Артефакты, встречающиеся во время процедуры

Самыми распространенными артефактами, способными повлиять на заключение и ход исследования, являются:

Акустическая тень

Формируется от камнеобразований, костей, пузырьков воздуха, соединительнотканных и плотных образований.

Значительное отражение звука от камня приводит к тому, что звук за ним не распространяется, и на снимках такой эффект выглядит как тень

Артефакт широкого луча

При попадании в срез отображения на экране желчного пузыря или кистозного образования визуально заметным становится своеобразный плотный осадок, возникает двойной контур. Причиной такого неточного отображения данных считают погрешности в технической исправности датчиков. Избежать его можно, проводя исследование в двух проекциях.

«Хвост кометы»

Визуализировать феномен можно в случае прохождения ультразвуком новообразований, имеющих сильно отражающую поверхность. Чаще всего данный артефакт имеет четкое значение и влечет постановку конкретного диагноза, говоря об образовании кальцинатов, желчных камней, газа, а также при попадании воздуха между аппаратом и эпидермисом (из-за неустойчивого прилегания).

Чаще всего этот феномен наблюдается при сканировании небольших кальцинатов, мелких желчных камней, пузырьков газа, металлических тел и т.д.

Скоростной артефакт

Учитывать его стоит при обработке полученного изображения, поскольку скорость звука неизменна, что позволяет высчитать по времени возвращения сигнала и определить расстояние до исследуемого объекта.

Зеркальное отражение

Возникновение ложных структур или новообразований можно объяснить многократным отражением ультразвука при прохождении сквозь плотные объекты (печень, сосуды, диафрагма). Особенно часто данный артефакт имеет место при сканировании органа, имеющего среду с энергией, которая предназначена для незначительного поглощения волн.

Данный артефакт является может быть маркером возможных патологий, при которых повышается плотность мягких тканей

Сравнение ультразвука с другими видами обследования

Помимо УЗ исследования, существуют и другие, не менее информативные способы диагностики.

Среди аппаратных методов обследования организма пациента, ничем не уступающих по частоте применения УЗИ, являются:

  • рентгенография;
  • магнитно-резонансная томография;
  • компьютерная томография.

При этом выделить из них самый эффективный невозможно. Каждый из них имеет свои плюсы и минусы, но нередко один метод диагностики дополняет другой, позволяя подвести итоги подозрениям врачей при недостаточно выраженной клинической картине.

Сравнивая УЗ скрининг с МРТ, стоит обратить внимание, что аппарат последнего вида диагностики представляет собой мощнейший магнит, который оказывает непосредственное влияние на организм пациента благодаря электромагнитным волнам. При этом УЗ исследование представляет собой процедуру, в ходе которой ультразвуковые волны минимальной мощности проникают через внутренние органы с различной степенью плотности.

Этот вид диагностики намного чаще применяют при заболеваниях органов брюшной полости, в т. ч. печени, желчного пузыря, поджелудочной железы, системы мочевыводящих путей и почек, желез эндокринной системы, сосудов шеи и головы.

Различия между УЗ скринингом, рентгеном и КТ

Однако ультразвук бессилен при обследовании легких и костного аппарата. Здесь на помощь придет рентгенография. Несмотря на доступность прохождения УЗ скрининга, процедура не несет в себе никакой опасности пациенту.

В отличие от рентгенографии, которая применяется при необходимости исследования костей, ультразвук способен отобразить лишь мягкие и хрящевые ткани. К тому же УЗ скрининг не обладает столь негативными побочными эффектами в виде ионизирующего излучения. Выбирая между применением ультразвука и КТ при подозрениях на заболевания головного мозга, легких и костных тканей, специалисты, при отсутствии противопоказаний, отдают приоритет последнему.

Вместе с контрастирующим веществом врачам нередко удается добиться качественного отображения, несущего в себе больше информативных деталей. При этом КТ дает облучение и в ряде случаев может быть противопоказано. При необходимости проведения повторных диагностических процедур с целью минимизировать риск облучения выбор останавливают на УЗ исследовании.

Все из вышеперечисленных методов диагностики обладают высокой информативностью. Обследование выбирается в индивидуальном порядке, в зависимости от алгоритма скрининга и клинической картины пациента. УЗ диагностика, так же как и другие способы исследований, имеет свои преимущества и недостатки, поэтому прохождение процедуры строго определено показаниями.

Глава 3. Основы и клиническое применение ультразвукового метода диагностики

Глава 3. Основы и клиническое применение ультразвукового метода диагностики

Ультразвуковой метод диагностики - это способ получения медицинского изображения на основе регистрации и компьютерного анализа отраженных от биологических структур ультразвуковых волн, т. е. на основе эффекта эха. Метод нередко называют эхографией. Современные аппараты для ультразвукового исследования (УЗИ) представляют собой универсальные цифровые системы высокого разрешения с возможностью сканирования во всех режимах (рис. 3.1).

Рис. 3.1. Ультразвуковое исследование щитовидной железы

Ультразвук диагностических мощностей практически безвреден. УЗИ не имеет противопоказаний, безопасно, безболезненно, атравматично и необременительно. При необходимости его можно проводить без какой-либо

подготовки больных. Ультразвуковую аппаратуру можно доставить в любое функциональное подразделение для обследования нетранспортабельных больных. Большим достоинством, особенно при неясной клинической картине, является возможность одномоментного исследования многих органов. Немаловажна также большая экономичность эхографии: стоимость УЗИ в несколько раз меньше, чем рентгенологических исследований, а тем более компьютерно-томографических и магнитно-резонансных.

Вместе с тем ультразвуковому методу присущи и некоторые недостатки:

Высокая аппарато- и операторозависимость;

Большая субъективность в интерпретации эхографических изображений;

Малая информативность и плохая демонстративность застывших изображений.

УЗИ в настоящее время стало одним из методов, наиболее часто используемых в клинической практике. В распознавании заболеваний многих органов УЗИ может рассматриваться как предпочтительный, первый и основной метод диагностики. В диагностически сложных случаях данные УЗИ позволяет наметить план дальнейшего обследования больных с использованием наиболее эффективных лучевых методов.

ФИЗИЧЕСКИЕ И БИОФИЗИЧЕСКИЕ ОСНОВЫ УЛЬТРАЗВУКОВОГО МЕТОДА ДИАГНОСТИКИ

Ультразвуком называются звуковые колебания, лежащие выше порога восприятия органом слуха человека, т. е. имеющие частоту более 20 кГц. Физической основой УЗИ является открытый в 1881 г. братьями Кюри пьезоэлектрический эффект. Его практическое применение связано с разработкой российским ученым С. Я. Соколовым ультразвуковой промышленной дефектоскопии (конец 20-х - начало 30-х гг. ХХ века). Первые попытки использования ультразвукового метода для диагностических целей в медицине относятся к концу 30-х гг. ХХ века. Широкое применение УЗИ в клинической практике началось в 1960-х гг.

Сущность пьезоэлектрического эффекта заключается в том, что при деформации монокристаллов некоторых химических соединений (кварца, титана-та бария, сернистого кадмия и др.), в частности, под воздействием ультразвуковых волн, на поверхностях этих кристаллов возникают противоположные по знаку электрические заряды. Это так называемый прямой пьезоэлектрический эффект (пьезо по-гречески означает давить). Наоборот, при подаче на эти монокристаллы переменного электрического заряда в них возникают механические колебания с излучением ультразвуковых волн. Таким образом, один и тот же пьезоэлемент может быть попеременно то приемником, то источником ультразвуковых волн. Эта часть в ультразвуковых аппаратах называется акустическим преобразователем, трансдюсером или датчиком.

Ультразвук распространяется в средах в виде чередующихся зон сжатия и разрежения молекул вещества, которые совершают колебательные движения. Звуковые волны, в том числе и ультразвуковые, характеризуются периодом колебания - временем, за которое молекула (частица) совершает

одно полное колебание; частотой - числом колебаний в единицу времени; длиной - расстоянием между точками одной фазы и скоростью распространения, которая зависит главным образом от упругости и плотности среды. Длина волны обратно пропорциональна ее частоте. Чем меньше длина волн, тем выше разрешающая способность ультразвукового аппарата. В системах медицинской ультразвуковой диагностики обычно используют частоты от 2 до 10 МГц. Разрешающая способность современных ультразвуковых аппаратов достигает 1-3 мм.

Любая среда, в том числе и различные ткани организма, препятствует распространению ультразвука, т. е. обладает различным акустическим сопротивлением, величина которого зависит от их плотности и скорости ультразвука. Чем выше эти параметры, тем больше акустическое сопротивление. Такая общая характеристика любой эластической среды обозначается термином «импеданс».

Достигнув границы двух сред с различным акустическим сопротивлением, пучок ультразвуковых волн претерпевает существенные изменения: одна его часть продолжает распространяться в новой среде, в той или иной степени поглощаясь ею, другая - отражается. Коэффициент отражения зависит от разности величин акустического сопротивления граничащих друг с другом тканей: чем это различие больше, тем больше отражение и, естественно, больше амплитуда зарегистрированного сигнала, а значит, тем светлее и ярче он будет выглядеть на экране аппарата. Полным отражателем является граница между тканями и воздухом.

МЕТОДИКИ УЛЬТРАЗВУКОВОГО ИССЛЕДОВАНИЯ

В настоящее время в клинической практике используются УЗИ в В- и М-ре-жиме и допплерография.

В-режим - это методика, дающая информацию в виде двухмерных се-рошкальных томографических изображений анатомических структур в масштабе реального времени, что позволяет оценивать их морфологическое состояние. Этот режим является основным, во всех случаях с его использования начинается УЗИ.

В современной ультразвуковой аппаратуре улавливаются самые незначительные различия уровней отраженных эхо-сигналов, которые отображаются множеством оттенков серого цвета. Это дает возможность разграничивать анатомические структуры, даже незначительно отличающиеся друг от друга по акустическому сопротивлению. Чем меньше интенсивность эха, тем темнее изображение, и, наоборот, - чем больше энергия отраженного сигнала, тем изображение светлее.

Биологические структуры могут быть анэхогенными, гипоэхогенныйми, средней эхогенности, гиперэхогенными (рис. 3.2). Анэхогенное изображение (черного цвета) свойственно образованиям, заполненным жидкостью, которая практически не отражает ультразвуковые волны; гипоэхогенное (темно-серого цвета) - тканям со значительной гидрофильностью. Эхопозитивное изображение (серого цвета) дают большинство тканевых структур. Повышенной

эхогенностью (светло-серого цвета) обладают плотные биологические ткани. Если ультразвуковые волны полностью отражаются, то объекты выглядят гиперэхогенными (ярко-белыми), а за ними есть так называемая акустическая тень, имеющая вид темной дорожки (см. рис. 3.3).

абвгд Рис. 3.2. Шкала уровней эхогенности биологических структур: а - анэхогенный; б - гипоэхогенный; в - средней эхогенности (эхопозитивный); г - повышенной эхогенности; д - гиперэхогенный

Рис. 3.3. Эхограммы почек в продольном сечении с обозначением структур различной

эхогенности: а - анэхогенный дилатированный чашечно-лоханочный комплекс; б - гипоэхогенная паренхима почки; в - паренхима печени средней эхогенности (эхопозитивная); г - почечный синус повышенной эхогенности; д - гиперэхогенный конкремент в лоханочно-мочеточниковом сегменте

Режим реального времени обеспечивает получение на экране монитора «живого» изображения органов и анатомических структур, находящихся в своем естественном функциональном состоянии. Это достигается тем, что современные ультразвуковые аппараты дают множество изображений, следующих друг за другом с интервалом в сотые доли секунды, что в сумме создает постоянно меняющуюся картину, фиксирующую малейшие изменения. Строго говоря, эту методику и в целом ультразвуковой метод следовало бы называть не «эхография», а «эхоскопия».

М-режим - одномерный. В нем одна из двух пространственных координат заменена временной так что по вертикальной оси откладывается расстояние от датчика до лоцируемой структуры, а по горизонтальной - время. Этот режим используется в основном для исследования сердца. Он дает информацию в виде кривых, отражающих амплитуду и скорость движения кардиальных структур (см. рис. 3.4).

Допплерография - это методика, основанная на использовании физического эффекта Допплера (по имени австрийского физика). Сущность этого эффекта состоит в том, что от движущихся объектов ультразвуковые волны отражаются с измененной частотой. Этот сдвиг частоты пропорционален

скорости движения лоцируемых структур, причем если их движение направлено в сторону датчика, частота отраженного сигнала увеличивается, и, наоборот, - частота волн, отраженных от удаляющегося объекта, уменьшается. С этим эффектом мы встречаемся постоянно, наблюдая, например, изменение частоты звука от проносящихся мимо машин, поездов, самолетов.

В настоящее время в клинической практике в той или иной степени используются потоковая спектральная допплерография, цветовое допплеровское картирование, энергетический допплер, конвергентный цветовой допплер, трехмерное цветовое допплеровское картирование, трехмерная энергетическая доппле-рография.

Потоковая спектральная доппле-рография предназначена для оценки кровотока в относительно крупных

Рис. 3.4. М - модальная кривая движения передней створки митрального клапана

сосудах и в камерах сердца. Основным видом диагностической информации является спектрографическая запись, представляющая собой развертку скорости кровотока во времени. На таком графике по вертикальной оси откладывается скорость, а по горизонтальной - время. Сигналы, отображающиеся выше горизонтальной оси, идут от потока крови, направленного к датчику, ниже этой оси - от датчика. Помимо скорости и направления кровотока по виду допплеровской спектрограммы, можно определить и характер потока крови: ламинарный поток отображается в виде узкой кривой с четкими контурами, турбулентный - широкой неоднородной кривой (рис. 3.5).

Существует два варианта потоковой допплерографии: непрерывная (пос-тоянноволновая) и импульсная.

Непрерывная допплерография основана на постоянном излучении и постоянном приеме отраженных ультразвуковых волн. При этом величина сдвига частоты отраженного сигнала определяется движением всех структур на всем пути ультразвукового луча в пределах глубины его проникновения. Получаемая информация оказывается, таким образом, суммарной. Невозможность изолированного анализа потоков в строго опре-

деленном месте является недостатком непрерывной допплерографии. В то же время она обладает и важным достоинством: допускает измерение больших скоростей потоков крови.

Импульсная допплерография основана на периодическом излучении серий импульсов ультразвуковых волн, которые, отразившись от эритроцитов, последовательно воспринимают-

Рис. 3.5. Допплеровская спектрограмма трансмитрального потока крови

ся тем же датчиком. В этом режиме фиксируются сигналы, отраженные только с определенного расстояния от датчика, которое устанавливается по усмотрению врача. Место исследования кровотока называют контрольным объемом (КО). Возможность оценки кровотока в любой заданной точке является главным достоинством импульсной допплерографии.

Цветовое допплеровское картирование основано на кодировании в цвете значения допплеровского сдвига излучаемой частоты. Методика обеспечивает прямую визуализацию потоков крови в сердце и в относительно крупных сосудах (см. рис. 3.6 на цв. вклейке). Красный цвет соответствует потоку, идущему в сторону датчика, синий - от датчика. Темные оттенки этих цветов соответствуют низким скоростям, светлые оттенки - высоким. Эта методика позволяет оценивать как морфологическое состояние сосудов, так и состояние кровотока. Ограничение методики - невозможность получения изображения мелких кровеносных сосудов с малой скоростью кровотока.

Энергетическая допплерография основана на анализе не частотных допплеровских сдвигов, отражающих скорость движения эритроцитов, как при обычном допплеровском картировании, а амплитуд всех эхосигна-лов допплеровского спектра, отражающих плотность эритроцитов в заданном объеме. Результирующее изображение аналогично обычному цветовому допплеровскому картированию, но отличается тем, что отображение получают все сосуды независимо от их хода относительно ультразвукового луча, в том числе кровеносные сосуды очень небольшого диаметра и с незначительной скоростью потока крови. Однако по энергетическим допплерограммам невозможно судить ни о направлении, ни о характере, ни о скорости кровотока. Информация ограничивается только самим фактом кровотока и числом сосудов. Оттенки цвета (как правило, с переходом от темно-оранжевого к светло-оранжевому и желтому) несут сведения не о скорости кровотока, а об интенсивности эхосигналов, отраженных движущимися элементами крови (см. рис. 3.7 на цв. вклейке). Диагностическое значение энергетической допплерографии заключается в возможности оценки васкуляризации органов и патологических участков.

Возможности цветового допплеровского картирования и энергетического допплера объединены в методике конвергентной цветовой допплеро-графии.

Сочетание В-режима с потоковым или энергетическим цветовым картированием обозначается как дуплексное исследование, дающее наибольший объем информации.

Трехмерное допплеровское картирование и трехмерная энергетическая допплерография - это методики, дающие возможность наблюдать объемную картину пространственного расположения кровеносных сосудов в режиме реального времени в любом ракурсе, что позволяет с высокой точностью оценивать их соотношение с различными анатомическими структурами и патологическими процессами, в том числе со злокачественными опухолями.

Эхоконтрастирование. Эта методика основана на внутривенном введении особых контрастирующих веществ, содержащих свободные микропузырьки

газа. Для достижения клинически эффективного контрастирования необходимы следующие обязательные условия. При внутривенном введении таких эхоконтрастных средств в артериальное русло могут попасть только те вещества, которые свободно проходят через капилляры малого круга кровообращения, т. е. газовые пузырьки должны быть менее 5 мкм. Вторым обязательным условием является стабильность микропузырьков газа при их циркуляции в общей сосудистой системе не менее 5 мин.

В клинической практике методика эхоконтрастирования используется в двух направлениях. Первое - динамическая эхоконтрастная ангиография. При этом существенно улучшается визуализация кровотока, особенно в мелких глубоко расположенных сосудах с низкой скоростью потока крови; значительно повышается чувствительность цветового допплеровского картирования и энергетической допплерографии; обеспечивается возможность наблюдения всех фаз контрастирования сосудов в режиме реального времени; возрастает точность оценки стенотических поражений кровеносных сосудов. Второе направление - тканевое эхоконтрастирование. Оно обеспечивается тем, что некоторые эхоконтрастные вещества избирательно включаются в структуру определенных органов. При этом степень, скорость и время их накопления в неизмененных и в патологических тканях различны. Таким образом, в целом появляется возможность оценки перфузии органов, улучшается контрастное разрешение между нормальной и пораженной тканью, что способствует повышению точности диагностики различных заболеваний, особенно злокачественных опухолей.

Диагностические возможности ультразвукового метода расширились также благодаря появлению новых технологий получения и постпроцессорной обработки эхографических изображений. К ним, в частности, относятся мультичастотные датчики, технологии формирования широкоформатного, панорамного, трехмерного изображения. Перспективными направлениями дальнейшего развития ультразвукового метода диагностики являются использование матричной технологии сбора и анализа информации о строении биологических структур; создание ультразвуковых аппаратов, дающих изображения полных сечений анатомических областей; спектральный и фазовый анализ отраженных ультразвуковых волн.

КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ УЛЬТРАЗВУКОВОГО МЕТОДА ДИАГНОСТИКИ

УЗИ в настоящее время используется во многих направлениях:

Плановые исследования;

Неотложная диагностика;

Мониторинг;

Интраоперационная диагностика;

Послеоперационные исследования;

Контроль за выполнением диагностических и лечебных инструментальных манипуляций (пункции, биопсии, дренирование и др.);

Скрининг.

Неотложное УЗИ следует считать первым и обязательным методом инструментального обследования больных с острыми хирургическими заболеваниями органов живота и таза. При этом точность диагностики достигает 80%, точность распознавания повреждений паренхиматозных органов - 92%, а выявления жидкости в полости живота (в том числе гемоперитонеу-ма) - 97%.

Мониторинговые УЗИ выполняются многократно с различной периодичностью в течение острого патологического процесса для оценки его динамики, эффективности проводимой терапии, ранней диагностики осложнений.

Целями интраоперационных исследований являются уточнение характера и распространенности патологического процесса, а также контроль за адекватностью и радикальностью оперативного вмешательства.

УЗИ в ранние сроки после операции направлены главным образом на установление причины неблагополучного течения послеоперационного периода.

Ультразвуковой контроль за выполнением инструментальных диагностических и лечебных манипуляций обеспечивает высокую точность проникновения к тем или иным анатомическим структурам или патологическим участкам, что значительно повышает эффективность этих процедур.

Скрининговые УЗИ, т. е. исследования без медицинских показаний, проводятся для раннего выявления заболеваний, которые еще не проявляются клинически. О целесообразности этих исследований свидетельствует, в частности, то, что частота впервые выявленных заболеваний органов живота при скринин-говом УЗИ «здоровых» людей достигает 10%. Отличные результаты ранней диагностики злокачественных опухолей дают скрининговые УЗИ молочных желез у женщин старше 40 лет и простаты у мужчин старше 50 лет.

УЗИ могут выполняться путем как наружного, так и интракорпорально-го сканирования.

Наружное сканирование (с поверхности тела человека) наиболее доступно и совершенно необременительно. Противопоказаний к его проведению нет, имеется только одно общее ограничение - наличие в зоне сканирования раневой поверхности. Для улучшения контакта датчика с кожей, его свободного перемещения по коже и для обеспечения наилучшего проникновения ультразвуковых волн внутрь организма кожу в месте исследования следует обильно смазать специальным гелем. Сканирование объектов, находящихся на различной глубине, следует проводить с определенной частотой излучения. Так, при исследовании поверхностно расположенных органов (щитовидная железа, молочные железы, мягкотканные структуры суставов, яички и пр.) предпочтительна частота 7,5 МГц и выше. Для исследования глубоко расположенных органов используются датчики частотой 3,5 МГц.

Интракорпоральные УЗИ осуществляются путем введения специальных датчиков в организм человека через естественные отверстия (трансректально, трансвагинально, трансэзофагеально, трансуретрально), пункционно в сосуды, через операционные раны, а также эндоскопически. Датчик подводят максимально близко к тому или иному органу. В связи с этим оказывается

возможным использование высокочастотных трансдюсеров, благодаря чему резко повышается разрешающая способность метода, появляется возможность высококачественной визуализации мельчайших структур, недоступных при наружном сканировании. Так, например, трансректальное УЗИ по сравнению с наружным сканированием дает важную дополнительную диагностическую информацию в 75% случаев. Выявляемость внутрисердечных тромбов при чреспищеводной эхокардиографии в 2 раза выше, чем при наружном исследовании.

Общие закономерности формирования эхографического серошкального изображения проявляются конкретными картинами, свойственными тому или иному органу, анатомической структуре, патологическому процессу. При этом подлежат оценке их форма, размеры и положение, характер контуров (ровные/неровные, четкие/нечеткие), внутренняя эхоструктура, сме-щаемость, а для полых органов (желчный и мочевой пузыри), кроме того, состояние стенки (толщина, эхоплотность, эластичность), присутствие в полости патологических включений, прежде всего камней; степень физиологического сокращения.

Кисты, заполненные серозной жидкостью, отображаются в виде округлых однородно анэхогенных (черных) зон, окруженных эхопозитивным (серого цвета) ободком капсулы с ровными четкими контурами. Специфическим эхографическим признаком кист служит эффект дорсального усиления: задняя стенка кисты и находящиеся за ней ткани выглядят более светлыми, чем на остальном протяжении (рис. 3.8).

Полостные образования с патологическим содержимым (абсцессы, туберкулезные каверны) отличаются от кист неровностью контуров и, самое

главное, неоднородностью эхонегативной внутренней эхоструктуры.

Воспалительным инфильтратам свойственны неправильная округлая форма, нечеткие контуры, равномерно и умеренно сниженная эхогенность зоны патологического процесса.

Эхографическая картина гематомы паренхиматозных органов зависит от времени, прошедшего с момента травмы. В первые несколько суток она гомогенно эхонегативна. Затем в ней появляются эхопозитивные включения, являющиеся отображением кровяных сгустков, число которых постоянно нарастает. Через 7-8 сут начинается обратный процесс - лизис сгустков крови. Содержимое гематомы вновь становится однородно эхоне-гативным.

Эхоструктура злокачественных опухолей гетерогенная, с зонами всего спектра

Рис. 3.8. Эхографическое изображение солитарной кисты почки

эхогенности: анэхогенные (кровоизлияния), гипоэхогенные (некроз), эхопо-зитивные (опухолевая ткань), гиперэхогенные (обызвествления).

Эхографическая картина камней весьма демонстративна: гиперэхогенная (ярко-белая) структура с акустической эхонегативной темной тенью за ней (рис. 3.9).

Рис. 3.9. Эхографическое изображение камней желчного пузыря

В настоящее время УЗИ доступны практически все анатомические области, органы и анатомические структуры человека, правда, в различной мере. Этот метод является приоритетным в оценке как морфологического, так и функционального состояния сердца. Также высока его информативность в диагностике очаговых заболеваний и повреждений паренхиматозных органов живота, заболеваний желчного пузыря, органов малого таза, наружных мужских половых органов, щитовидной и молочных желез, глаз.

ПОКАЗАНИЯ К ПРОВЕДЕНИЮ УЗИ

Голова

1. Исследование головного мозга у детей раннего возраста, главным образом при подозрении на врожденное нарушение его развития.

2. Исследование сосудов головного мозга с целью установления причин нарушения мозгового кровообращения и для оценки эффективности выполненных операций на сосудах.

3. Исследование глаз для диагностики различных заболеваний и повреждений (опухоли, отслойка сетчатки, внутриглазные кровоизлияния, инородные тела).

4. Исследование слюнных желез для оценки их морфологического состояния.

5. Интраоперационный контроль тотальности удаления опухолей головного мозга.

Шея

1. Исследование сонных и позвоночных артерий:

Длительные, часто повторяющиеся сильные головные боли;

Часто повторяющиеся обмороки;

Клинические признаки нарушений мозгового кровообращения;

Клинический синдром подключичного обкрадывания (стеноз или окклюзия плечеголовного ствола и подключичной артерии);

Механическая травма (повреждения сосудов, гематомы).

2. Исследование щитовидной железы:

Любые подозрения на ее заболевания;

3. Исследование лимфатических узлов:

Подозрение на их метастатическое поражение при выявленной злокачественной опухоли любого органа;

Лимфомы любой локализации.

4. Неорганные новообразования шеи (опухоли, кисты).

Грудь

1. Исследование сердца:

Диагностика врожденных пороков сердца;

Диагностика приобретенных пороков сердца;

Количественная оценка функционального состояния сердца (глобальной и региональной систолической сократимости, диастолического наполнения);

Оценка морфологического состояния и функции интракардиальных структур;

Выявление и установление степени нарушений внутрисердечной гемодинамики (патологического шунтирования крови, регургитирующих потоков при недостаточности сердечных клапанов);

Диагностика гипертрофической миокардиопатии;

Диагностика внутрисердечных тромбов и опухолей;

Выявление ишемической болезни миокарда;

Определение жидкости в полости перикарда;

Количественная оценка легочной артериальной гипертензии;

Диагностика повреждений сердца при механической травме груди (ушибы, разрывы стенок, перегородок, хорд, створок);

Оценка радикальности и эффективности операций на сердце.

2. Исследование органов дыхания и средостения:

Определение жидкости в плевральных полостях;

Уточнение характера поражений грудной стенки и плевры;

Дифференциация тканевых и кистозных новообразований средостения;

Оценка состояния медиастинальных лимфатических узлов;

Диагностика тромбоэмболии ствола и главных ветвей легочной артерии.

3. Исследование молочных желез:

Уточнение неопределенных рентгенологических данных;

Дифференциация кист и тканевых образований, выявленных при пальпации или рентгеновской маммографии;

Оценка уплотнений в молочной железе неясной этиологии;

Оценка состояния молочных желез при увеличении подмышечных, под- и надключичных лимфатических узлов;

Оценка состояния силиконовых протезов молочных желез;

Пункционная биопсия образований под контролем УЗИ.

Живот

1. Исследование паренхиматозных органов пищеварительной системы (печень, поджелудочная железа):

Диагностика очаговых и диффузных заболеваний (опухоли, кисты, воспалительные процессы);

Диагностика повреждений при механической травме живота;

Выявление метастатического поражения печени при злокачественных опухолях любой локализации;

Диагностика портальной гипертензии.

2. Исследование желчных путей и желчного пузыря:

Диагностика желчнокаменной болезни с оценкой состояния желчных путей и определением в них конкрементов;

Уточнение характера и выраженности морфологических изменений при остром и хроническом холецистите;

Установление природы постхолецистэктомического синдрома.

3. Исследование желудка:

Дифференциальная диагностика злокачественных и доброкачественных поражений;

Оценка местной распространенности рака желудка.

4. Исследование кишечника:

Диагностика кишечной непроходимости;

Оценка местной распространенности рака прямой кишки;

Диагностика острого аппендицита.

5. Исследование полости живота:

Диагностика разлитого перитонита;

Диагностика внутрибрюшинных неорганных абсцессов;

Дифференциация внутрибрюшинных абсцессов с воспалительными инфильтратами.

6. Исследование почек и верхних мочевых путей:

Диагностика различных заболеваний и оценка характера и выраженности имеющихся морфологических изменений;

Оценка местной распространенности злокачественных опухолей почек;

Изменения в анализах мочи, сохраняющиеся более 2 мес;

Установление причин гематурии, анурии;

Дифференциальная диагностика почечной колики и других острых заболеваний живота (острый холецистит, острый аппендицит, кишечная непроходимость);

Клинические признаки симптоматической артериальной гипертензии;

Диагностика повреждений при механической травме живота и поясничной области.

7. Исследование лимфатических узлов:

Выявление их метастатического поражения при злокачественных опухолях органов живота и таза;

Лимфомы любой локализации.

8. Исследование брюшной аорты и нижней полой вены:

Диагностика аневризм брюшной аорты;

Выявление стенозов и окклюзий;

Выявление флеботромбоза нижней полой вены.

Таз

1. Исследование нижних мочевых путей (дистальная часть мочеточников, мочевой пузырь):

Определение остаточной мочи в мочевом пузыре при инфравезикаль-ной обструкции.

2. Исследование внутренних половых органов у мужчин (простата, семенные пузырьки):

Диагностика различных заболеваний;

Оценка местной распространенности злокачественных опухолей;

Определение стадии доброкачественной гиперплазии предстательной железы.

3. Исследование внутренних половых органов у женщин:

Диагностика различных заболеваний;

Установление причин бесплодия;

Определение срока беременности;

Контроль за течением беременности;

Определение пола плода;

Определение предполагаемой массы тела и длины плода;

Определение функционального состояния («биофизического профиля») плода;

Диагностика внематочной беременности;

Диагностика внутриутробной гибели плода;

Диагностика врожденных пороков развития и заболеваний плода.

Позвоночник

1. Диагностика дегенеративно-дистрофических поражений.

2. Диагностика повреждений мягкотканных структур позвоночника при механической травме.

3. Диагностика родовых повреждений и их последствий у новорожденных и детей 1-го года жизни.

Конечности

1. Диагностика повреждений мышц, сухожилий, связок.

2. Диагностика заболеваний и повреждений вне- и внутрисуставных структур.

3. Диагностика воспалительных и опухолевых заболеваний костей и мягких тканей.

4. Диагностика врожденных нарушений развития конечностей (врожденный вывих бедра, деформации стопы, некомплектность мышц).

Периферические кровеносные сосуды

1. Диагностика артериальных аневризм.

2. Диагностика артериовенозных соустий.

3. Диагностика тромбозов и эмболии.

4. Диагностика стенозов и окклюзий.

5. Диагностика хронической венозной недостаточности.

6. Диагностика повреждений сосудов при механической травме.

В целом ультразвуковой метод стал неотъемлемой частью клинического обследования больных, и его диагностические возможности продолжают расширяться.