Нарушение липидного обмена. Как восстановить липидный обмен в организме человека

Липиды являются обязательной составной частью сбалансированного пищевого рациона человека. В среднем в организм взрослого человека с пищей ежесуточно поступает 60–80 г жиров животного и растительного происхождения. В пожилом возрасте, а также при малой физической нагрузке потребность в жирах снижается, в условиях холодного климата и при тяжелой физической работе – увеличивается.

Значение жиров как пищевого продукта весьма многообразно. Жиры в питании человека, прежде всего, имеют важное энергетическое значение. Энергетическая ценность жиров выше, чем белков и углеводов. Известно, что при окислении 1 г жиров организм получает 38,9 кДж (9,3 ккал), тогда к а к при окислении 1 г белков или углеводов – 1 7 , 2 кДж (4 , 1 ккал). Кроме того, жиры являются растворителями витаминов A, D, Е и К, в связи с чем обеспеченность организма этими витаминами в значительной степени зависит от поступления жиров в составе пищи. С жирами в организм вводятся и некоторые полиненасыщенные жирные кислоты (линолевая, линоленовая, арахидоновая), которые относят к категории незаменимых (эссенциальных) жирных кислот, так как ткани человека и ряда животных потеряли способность синтезировать их. Эти кислоты условно объединены в группу под названием «витамин F».

Известно также, что жир обеспечивает вкусовые качества пищи; кроме того, он необходим для ее приготовления и хранения. Все это привело к тому, что потребление жира в высокоразвитых странах столь велико, что за его счет покрывается более 35%, а во многих странах более 40% энерготрат организма. Это в свою очередь очень часто ведет к тому, что прием обогащенной жирами пищи перекрывает физиологические потребности организма в энергии. Отсюда такие неблагоприятные явления, как ожирение значительной части населения. Поэтому знание метаболизма липидов нормального организма необходимо и для понимания причин многих болезней. Известно, что нарушения метаболизма липидов возникают, например, как при избыточном, так и при недостаточном приеме жиров, дефиците тех или иных ферментов, при дисбалансе гормонов и т.д.

ПЕРЕВАРИВАНИЕ И ВСАСЫВАНИЕ ЛИПИДОВ

Расщепление триглицеридов в пищеварительном тракте. Слюна не содержит расщепляющих жиры ферментов. Следовательно, в полости рта жиры не подвергаются никаким изменениям. У взрослых людей жиры

проходят через желудок также без особых изменений. В желудочном соке содержится липаза, получившая название желудочной, однако роль ее в гидролизе пищевых триглицеридов у взрослых людей невелика. Во-первых, в желудочном соке взрослого человеа и других млекопитающих содержание липазы крайне низкое. Во-вторых, рН желудочного сока далек от оптимума действия этого фермента (оптимальное значение рН для желудочной липазы 5,5–7,5). Напомним, что значение рН желудочного сока около 1,5. В-третьих, в желудке отсутствуют условия для эмульгирования тригли-церидов, а липаза может активно действовать только на триглицериды, находящиеся в форме эмульсии. Поэтому у взрослых неэмульгированные триглицериды, составляющие основную массу пищевого жира, проходят через желудок без особых изменений. Вместе с тем расщепление три-глицеридов в желудке играет важную роль в пищеварении у детей, особенно грудного возраста. Слизистая оболочка корня языка и примыкающей к нему области глотки ребенка грудного возраста секретирует собственную липазу в ответ на сосательные и глотательные движения (при кормлении грудью). Эта липаза получила название лингвальной. Активность линг-вальной липазы не успевает «проявиться» в полости рта, и основным местом ее воздействия является желудок. Оптимум рН лингвальной липазы в пределах 4,0–4,5; он близок к величине рН желудочного сока у таких детей. Лингвальная липаза наиболее активно действует на триглицериды, содержащие жирные кислоты с короткой и средней длиной цепи, что характерно для триглицеридов молока. Иными словами, жир молока – самый подходящий субстрат для этого энзима. У взрослых активность лингвальной липазы крайне низкая.

Расщепление триглицеридов в желудке взрослого человека невелико, но оно в определенной степени облегчает последующее переваривание их в кишечнике. Даже незначительное по объему расщепление триглицеридов в желудке приводит к появлению свободных жирных кислот, которые, не подвергаясь всасыванию в желудке, поступают в кишечник и способствуют там эмульгированию жиров, облегчая таким образом воздействие на них липазы панкреатического сока.

После того как химус попадает в двенадцатиперстную кишку, прежде всего происходит нейтрализация попавшей в кишечник с пищей соляной кислоты желудочного сока бикарбонатами, содержащимися в панкреатическом и кишечном соках. Выделяющиеся при разложении бикарбонатов пузырьки углекислого газа способствуют хорошему перемешиванию пищевой кашицы с пищеварительными соками. Одновременно начинается эмульгирование жира. Наиболее мощное эмульгирующее действие на жиры оказывают соли желчных кислот, попадающие в двенадцатиперстную кишку с желчью в виде натриевых солей. Большая часть желчных кислот конъюгирована с глицином или таурином. По химической природе желчные кислоты являются производными холановой кислоты:

Желчные кислоты представляют собой основной конечный продукт метаболизма холестерина.

В желчи человека в основном содержатся холевая (3,7,12-триоксихола- новая), дезоксихолевая (3,12-диоксихолановая) и хенодезоксихолевая (3,7- диоксихолановая) кислоты (все гидроксильные группы имеют α-конфи- гурацию и поэтому обозначены пунктирной линией):

Кроме того, в желчи человека в малых количествах содержатся литохолевая (3α-оксихолановая) кислота, а также аллохолевая и уреодезоксихолевая кислоты – стереоизомеры холевой и хенодезоксихолевой кислот.

Как отмечалось, желчные кислоты присутствуют в желчи в конъюгированной форме, т.е. в виде гликохолевой, гликодезоксихолевой, гликохенодезоксихолевой (около 2 /3 –4 /5 всех желчных кислот) или таурохо-

левой, тауродезоксихолевой и таурохенодезоксихолевой (около 1 /5 –1 /3 всех желчных кислот) кислот. Эти соединения иногда называют парными желчными кислотами, так как они состоят из двух компонентов – желчной кислоты и глицина или таурина. Соотношения между конъюгатами обоих видов могут меняться в зависимости от характера пищи: в случае преобладания в ней углеводов увеличивается относительное содержание глициновых конъюгатов, а при высокобелковой диете – тауриновых конъюгатов. Строение парных желчных кислот может быть представлено в следующем виде:

Считают, что только комбинация соль желчной кислоты + ненасыщенная жирная кислота + моноглицерид придает необходимую степень эмульгирования жира. Соли желчных кислот резко уменьшают поверхностное натяжение на поверхности раздела жир/вода, благодаря чему они не только облегчают эмульгирование, но и стабилизируют уже образовавшуюся эмульсию.

Известно, что основная масса пищевых глицеридов подвергается расщеплению в верхних отделах тонкой кишки при действии липазы панкреатического сока. Этот фермент был впервые обнаружен известным французским физиологом С. Bernard в середине прошлого века.

Панкреатическая липаза (КФ 3.1.1.3) является гликопротеидом, имеющим мол. массу 48000 (у человека) и оптимум рН 8–9. Данный фермент расщепляет триглицериды, находящиеся в эмульгированном состоянии (действие фермента на растворенные субстраты значительно слабее). Как и другие пищеварительные ферменты (пепсин, трипсин, химотрипсин), панкреатическая липаза поступает в верхний отдел тонкой кишки в виде неактивной пролипазы.

Превращение пролипазы в активную липазу происходит при участии желчных кислот и еще одного белка панкреатического сока – колипазы (мол. масса 10000). Последняя присоединяется к пролипазе в молекулярном соотношении 2:1. Это приводит к тому, что липаза становится активной и устойчивой к действию трипсина.

Установлено, что основными продуктами расщепления триглицеридов при действии панкреатической липазы являются β(2)-моноглицерид и жирные кислоты. Фермент катализирует гидролиз эфирных связей в α(1), α"(3)-положениях, в результате чего и образуются β(2)-моноглицерид и две

частицы (молекулы) жирной кислоты. На скорость катализируемого липазой гидролиза триглицеридов не оказывает существенного влияния ни степень ненасыщенности жирных кислот, ни длина ее цепи (от С12 до С18 ).

Гидролиз триглицеридов при участии панкреатической липазы можно изобразить в виде следующей схемы:

В панкреатическом соке наряду с липазой содержится моноглицеридная изомераза – фермент, катализирующий внутримолекулярный перенос ацила из β(2)-положения моноглицерида в α(1)-положение. В процессе переваривания пищевых жиров при участии этого фермента примерно треть β-моноглицерида превращается в α- моноглицерид. Поскольку эфирная связь в α-положении чувствительна к действию панкреатической липазы, последняя расщепляет большую часть α- моноглицеридов до конечных продуктов – глицерина и жирной кислоты. Меньшая часть α-моноглице-ридов успевает всосаться в стенку тонкой кишки, минуя воздействие липазы.

Всасывание триглицеридов и продуктов их расщепления.

Всасывание происходит в проксимальной части тонкой кишки. Тонкоэмульгированные жиры (величина жировых капель эмульсии не

должна превышать 0,5 мкм) частично могут всасываться через стенки кишечника без предварительного гидролиза. Основная часть жира всасывается лишь после расщепления его панкреатической липазой на жирные кислоты, моноглицериды и глицерин. Жирные кислоты с короткой углеродной цепью (менее 10 атомов углерода) и глицерин, будучи хорошо растворимыми в воде, свободно всасываются в кишечнике и поступают в кровь воротной вены, оттуда в печень, минуя какие-либо превращения в кишечной стенке.

Более сложно происходит всасывание жирных кислот с длинной углеродной цепью и моноглицеридов. Этот процесс осуществляется при участии желчи и главным образом желчных кислот, входящих в ее состав. В желчи соли желчных кислот, фосфолипиды и холестерин содержатся в соотношении 12,5:2,5:1,0. Жирные кислоты с длинной цепью и моноглицериды в просвете кишечника образуют с этими соединениями устойчивые в водной среде мицеллы. Структура мицелл такова, что их гидрофобное ядро (жирные кислоты, моноглицериды и др.) оказывается окруженным снаружи гидрофильной оболочкой из желчных кислот и фосфолипидов. Мицеллы примерно в 100 раз меньше самых мелких эмульгированных жировых капель. В составе мицелл высшие жирные кислоты и моноглицериды переносятся от места гидролиза жиров к всасывающей поверхности кишечного эпителия. Относительно механизма всасывания жировых мицелл единого мнения нет. Одни исследователи считают, что в результате так называемой мицеллярной диффузии, а возможно, и пиноцитоза мицеллы целиком проникают в эпителиальные клетки ворсинок, где происходит распад жировых мицелл. При этом желчные кислоты сразу поступают в ток крови и через систему воротной вены попадают сначала в печень, а оттуда вновь в желчь. Другие исследователи допускают возможность перехода в клетки ворсинок только липидного компонента жировых мицелл. Соли желчных кислот, выполнив свою физиологическую роль, остаются в просвете кишечника; позже основная масса их всасывается в кровь (в подвздошной кишке), попадает в печень и затем выделяется с желчью. Таким образом, все исследователи признают, что происходит постоянная циркуляция желчных кислот между печенью и кишечником. Этот процесс получил название печеночно-кишечной (гепатоэнтеральной) циркуляции.

С помощью метода меченых атомов было показано, что в желчи содержится лишь небольшая часть желчных кислот (10–15% от общего количества), вновь синтезированных печенью. Таким образом, основная масса желчных кислот (85–90%) – это желчные кислоты, реабсорбированные в кишечнике и повторно секретируемые в составе желчи. Установлено, что у человека общий пул желчных кислот составляет примерно 2,8–3,5 г, при этом они совершают 6–8 оборотов в сутки.

Расщепление и всасывание фосфолипидов и холестерина.

Подавляющая часть фосфолипидов содержимого тонкой кишки приходится на фосфати-дилхолин (лецитин), основная масса которого поступает в кишечник с желчью (11–12 г/сут) и меньшая часть (1–2 г/сут) – с пищей.

Существует две точки зрения относительно судьбы поступивших в тонкую кишку экзогенных и эндогенных фосфолипидов. Согласно одной из них, и те, и другие фосфолипиды подвергаются в кишечнике атаке со стороны фосфолипазы А2 , катализирующей гидролиз сложноэфирной связи в β-положении. В результате катализируемой фосфолипазой А2 реакции глицерофосфолипиды расщепляются с образованием лизофосфолипида и жирной кислоты. Лизофосфолипид может подвергаться расщеплению при действии другого фермента панкреатического сока – лизофосфолипазы. В результате из лизолецитина освобождается последняя частица жирной кислоты и образуется глицерофосфохолин, который хорошо растворяется в водной среде и всасывается из кишечника в кровь.

Сторонники другой точки зрения считают, что фосфолипиды «желчного» (более точно печеночного) происхождения в отличие от пищевых фосфолипидов не подвергаются воздействию фосфолипазы А2 . Следовательно, функция «желчных» фосфолипидов исключительно связана с гепатоэнтеральной циркуляцией желчи: с желчью они поступают в кишечник, с желчными кислотами участвуют в мицеллярной солюбилизации липидов и вместе с ними возвращаются в печень. Таким образом, существует как бы два пула фосфолипидов в кишечнике: «желчный», защищенный от действия фосфолипазы А2 , и «пищевой», подверженный ее действию. Пока трудно объяснить причину существования двух пулов фосфолипидов и их различное отношение к действию фосфоли-пазы А2 .

В зависимости от пищи организм взрослого человека получает ежедневно 300–500 мг холестерина, содержащегося в пищевых продуктах частично в свободном (неэстерицифицированном) виде, частично в виде эфиров с жирными кислотами. Эфиры холестерина расщепляются на холестерин и жирные кислоты особым ферментом панкреатического и кишечного соков – гидролазой эфиров холестерина, или холестеролэстеразой (КФ 3.1.1.13). В тонкой кишке происходит всасывание холестерина, источником которого являются:

– холестерин пищи (0,3–0,5 г/сут; у вегетарианцев значительно меньше); – холестерин желчи (ежедневно с желчью выделяется 1–2 г эндогенного неэстерифицированного холестерина);

– холестерин, содержащийся в слущенном эпителии пищеварительного тракта и в кишечных соках (до 0,5 г/сут).

В общей сложности в кишечник поступает 1,8–2,5 г эндогенного и экзогенного холестерина. Из этого количества около 0,5 г холестерина выделяется с фекалиями в виде восстановленного продукта – копростерина и очень небольшая часть в виде окисленных продуктов – холестенона и др. И восстановление, и окисление холестерина происходят в толстой кишке под воздействием ферментов микробной флоры. Основная часть холестерина в неэстерифицированной форме подвергается всасыванию в тонкой кишке в составе смешанных жировых мицелл, состоящих из желчных кислот, жирных кислот, моноглицеридов, фосфолипидов и лизофосфо-липидов.

Ресинтез липидов в кишечной стенке. Триглицериды. По современным представлениям, ресинтез триглицеридов происходит в эпителиальных

клетках (энтероцитах слизистой оболочки ворсинок тонкой кишки) двумя путями. Первый путь – β-моноглицеридный. Долгое время этот путь считался единственным. Суть его состоит в том, что β-моноглицериды и жирные кислоты, проникающие в процессе всасывания в эпителиальные клетки кишечной стенки, задерживаются в гладком эндоплазматическом рети-кулуме клеток. Здесь из жирных кислот образуется их активная форма – ацил-КоА и затем происходит ацилирование β-моноглицеридов с образованием сначала диглицеридов, а затем триглицеридов:

β-Моноглицерид + R-СО-S-KoA –> Диглицерид + HS-KoA ;

Диглицерид + R1 -СО-S-KoA –> Триглицерид + HS-KoA.

Все реакции катализируются ферментным комплексом – триглицеридсинтетазой, включающим в себя ацил-КоА-синтетазу, моноглицеридацилтрансферазу и диглицеридацилтрансферазу.

Второй путь ресинтеза триглицеридов протекает в шероховатом эндоплазматическом ретикулуме эпителиальных клеток и включает следующие реакции:

1) образование активной формы жирной кислоты – ацил-КоА при участии ацил-КоА-синтетазы;

2) образование α-глицерофосфата при участии глицеролкиназы;

3) превращение α-глицерофосфата в фосфатидную кислоту при участии глицерофосфат-ацилтрансферазы;

4) превращение фосфатидной кислоты в диглицерид при участии фос- фатидат-фосфогидролазы;

5) ацилирование диглицерида с образованием триглицерида при участии диглицеридацилтрансферазы.

Как видно, первая и последняя реакции повторяют аналогичные реакции β-моноглицеридного пути. Установлено, что α-глицерофосфатный путь ресинтеза жиров (триглицеридов) приобретает значение, если в эпителиальные клетки слизистой оболочки тонкой кишки поступили преимущественно жирные кислоты. В случае, если в стенку кишки поступили жирные кислоты вместе с β-моноглицеридами, запускается β- моногли-церидный путь. Как правило, наличие в эпителиальных клетках избытка β-моноглицеридов тормозит протекание α-глицерофосфатного пути.

Ресинтез фосфолипидов в кишечной стенке. В энтероцитах наряду с ре-синтезом триглицеридов происходит также и ресинтез фосфолипидов. В образовании фосфатидилхолинов и фосфатидилэтаноламинов участвует ресинтезированный диглицерид, а в образовании фосфатидилинозитолов – ресинтезированная фосфатидная кислота. Участие этих субстратов в образовании фосфолипидов в стенке кишечника происходит по тем же закономерностям, что и в других тканях (см. с. 396, 397).

Необходимо подчеркнуть, что в стенке кишечника синтезируются жиры, в значительной степени специфичные для данного вида животного и отличающиеся по своему строению от пищевого жира. В известной мере это обеспечивается тем, что в синтезе триглицеридов (а также фосфолипидов) в кишечной стенке принимают участие наряду с экзогенными и эндогенные жирные кислоты. Однако способность к осуществлению в стенке кишечника синтеза жира, специфичного для данного вида животного, все же ограничена. Показано, что при скармливании животному (например, собаке), особенно предварительно голодавшему, больших количеств чужеродного жира (например, льняного масла или верблюжьего жира) часть его обнаруживается в жировых тканях животного в неизмененном виде. Жировая ткань скорее всего является единственной тканью, где могут откладываться чужеродные жиры. Липиды, входящие в состав протоплазмы клеток других органов и тканей, отличаются высокой специфичностью, их состав и свойства мало зависят от пищевых жиров.

Образование хиломикронов и транспорт липидов.

Ресинтезированные в эпителиальных клетках кишечника триглицериды и фосфолипиды, а также поступивший в эти клетки из полости кишечника холестерин (здесь он может частично эстерифицироваться) соединяются с небольшим количеством белка и образуют относительно стабильные комплексные частицы – хиломикроны (ХМ). Последние содержат около 2% белка, 7% фосфолипидов, 8% холестерина и его эфиров и более 80% триглицеридов. Диаметр ХМ колеблется от 0,1 до 5 мкм. Благодаря большим размерам частиц ХМ не способны проникать из эндотелиальных клеток

Липидный обмен - это метаболизм липидов, он представляет собой сложный физиологический и биохимический процесс, который происходит в клетках живых организмов. Нейтральные липиды, такие как холестерин и триглицериды (ТГ), нерастворимы в плазме. В результате циркулирующие в крови липиды привязаны к протеинам, транспортирующим их в различные ткани для энергетической утилизации, отложения в виде жировой ткани, продукции стероидных гормонов и формирования желчных кислот.

Липопротеин состоит из липида (этерифицированной или неэтерифицированной формы холестерина, триглицеридов и фосфолипидов) и белка. Протеиновые компоненты липопротеина известны, как аполипопротеины и апопротеины.

Особенности жирового обмена

Липидный обмен разделяется на два основных метаболических пути: эндогенный и экзогенный. Это подразделение основано на происхождении рассматриваемых липидов. Если источником происхождения липидов является пища, то речь идет об экзогенном метаболическом пути, а если печень - об эндогенном.

Выделяют различные классы липидов, каждый из которых характеризуется отдельной функцией. Различают хиломикроны (ХМ), (ЛПОНП), липопротеины средней плотности (ЛПСП), и плотности (ЛПВП). Метаболизм отдельных классов липопротеинов не является независимым, все они тесно взаимосвязаны. Понимание липидного обмена важно для адекватного восприятия вопросов патофизиологии сердечно-сосудистых заболеваний (ССЗ) и механизмов действия лекарств.

Холестерин и триглицериды необходимы периферическим тканям для разнообразных аспектов гомеостаза, включая поддержания клеточных мембран, синтез стероидных гормонов и желчных кислот, а также утилизацию энергии. Учитывая то, что липиды не могут растворяться в плазме, их переносчиками являются различные липопротеины, циркулирующие в кровеносной системе.

Базовая структура липопротеина обычно включает ядро, состоящее из этерифицированного холестерина и триглицерида, окруженных двойным слоем фосфолипидов, а также не этерифицированным холестерином и различными протеинами, называющимися аполипопротеинами. Эти липопротеины отличаются по своим размерам, плотности и составу липидов, аполипопротеинов и другим признакам. Показательно, что липопротеины обладают различными функциональными качествами (таблица 1).

Таблица 1. Показатели липидного обмена и физические характеристики липопротеидов в плазме.

Липопротеин Содержание липидов Аполипопротеины Плотность (г/мл) Диаметр
Хиломикрон (ХМ) ТГ A-l, A-ll, A-IV, B48, C-l, C-ll, C-IIL E <0,95 800-5000
Остаточный хиломикрон ТГ, холестериновый эфир B48,E <1,006 >500
ЛПОНП ТГ B100, C-l, C-ll, C-IIL E < 1,006 300-800
ЛПСП Холестериновый эфир, ТГ B100, C-l, C-ll, C-l II, E 1,006-1,019 250-350
ЛПНП Холестериновый эфир, ТГ B100 1,019-1,063 180-280
ЛПВП Холестериновый эфир, ТГ A-l, A-ll, A-IV, C-l, C-ll, C-lll, D 1,063-1,21 50-120

Основные классы липопротеинов, упорядоченные по убыванию размера частиц:

  • ЛПОНП,
  • ЛПСП,
  • ЛПНП,
  • ЛПВП.

Пищевые липиды поступают в кровеносную систему, прикрепившись аполипопротеину (apo) B48, содержащему хиломикроны, синтезируемые в кишечнике. Печень синтезирует ЛПОНП1 и ЛПОНП2 вокруг apoB100, привлекая липиды, присутствующие в кровеносной системе (свободные жирные кислоты) или в пище (остаточный хиломикрон). Затем ЛПОНП1 и ЛПОНП2 делипидизируются липопротеинлипазой, высвобождающей жирные кислоты для потребления скелетными мышцами и жировой тканью. ЛПОНП1, высвобождая липиды, превращается в ЛПОНП2, ЛПОНП2 далее трансформируется в ЛПСП. Остаточный хиломикрон, ЛПСП и ЛПНП могут захватываться печенью посредством рецептора.

Липопротеины высокой плотности формируется в межклеточном пространстве, где apoAI контактирует с фосфолипидами, свободным холестерином и формирует дисковидную частицу ЛПВП. Далее эта частица взаимодействуют с лецитином, и образуются эфиры холестерина, формирующие ядро ЛПВП. В конечном итоге холестерин потребляется печенью, а кишечник и печень секретируют apoAI.

Метаболические пути липидов и липопротеинов тесно взаимосвязаны. Несмотря на то, что существуют ряд эффективных лекарств, снижающих липиды в организме, их механизм действия по-прежнему остаются мало изученным. Требуется дальнейшее уточнение молекулярных механизмов действия этих препаратов для улучшения качества лечения дислипидемии.

Влияние лекарств на липидный обмен

  • Статины увеличивают скорость выведения ЛПОНП, ЛПСП и ЛПНП, а также уменьшают интенсивность синтеза ЛПОНП. В конечном итоге это улучшает липопротеиновый профиль.
  • Фибраты ускоряют выведение частиц apoB и интенсифицируют продукцию apoAI.
  • Никотиновая кислота снижает ЛПНП и ТГ, а также повышает содержание ЛПВП.
  • Снижение веса тела способствуют уменьшению секреции ЛПОНП, что улучшает липопротеиновый метаболизм.
  • Регулирование липидного обмена оптимизируется за счет омега-3 жирных кислот.

Генетические нарушения

Науке известен целый набор наследственных дислипидемических заболеваний, при которых основным дефектом является регуляция липидного обмена. Наследственная природа этих заболеваний в ряде случаев подтверждается генетическими исследованиями. Эти заболевания зачастую идентифицируются посредством раннего липидного скрининга.

Краткий перечень генетических форм дислипидемии.

  • Гиперхолестеринемия: семейная гиперхолестеринемия, наследственный дефективный apoB100, полигенная гиперхолестеринемия.
  • Гипертриглицеридемия: семейная гипертриглицеридемия, семейная гиперхиломикронемия, недостаток липопротеинлипазы.
  • Сбои в метаболизме ЛПВП: семейная гипоальфалипопротеинемия, недостаток LCAT, точечные мутации apoA-l, недостаток ABCA1.
  • Комбинированные формы гиперлипидемии: семейная комбинированная гиперлипидемия, гиперапобеталипопротеинемия, семейная дисбеталипопротеинемия.

Гиперхолестеринемия

Семейная гиперхолестеринемия является монозиготным, аутосомным, доминантным заболеванием, включающим cбойную экспрессию и функциональную активность рецептора ЛПНП. Гетерозиготная экспрессия этого заболевания среди населения отмечается в одном случае из пятисот. Различные фенотипы были идентифицированы на основании дефектов в синтезе, транспортировке и связывании рецептора. Этот тип семейной гиперхолестеринемии ассоциируется со значительным поднятием ЛПНП, присутствием ксантом и преждевременным развитием диффузного атеросклероза.

Клинические проявления более выражены у пациентов с гомозиготными мутациями. Диагностика нарушений липидного обмена зачастую делается на основании выраженной гиперхолестеринемии при нормальных ТГ и присутствии сухожильных ксантом, а также при наличии в семейном анамнезе ранних ССЗ. Для подтверждения диагноза используются генетические методы. В ходе лечения используются высокие дозы статинов в дополнение к препаратам. В некоторых случаях требуется аферез ЛПНП. Дополнительные сведения, полученные в ходе последних исследований, подтверждают необходимость использования интенсивной терапии применительно к детям и подросткам, находящихся в зоне повышенного риска. Дополнительные терапевтические возможности для сложных случаев включают трансплантацию печени и генную заместительную терапию.

Наследственный дефективный apoB100

Наследственный дефект гена apoB100 являются аутосомным заболеванием, приводящим к липидным аномалиям, напоминающим таковые при семейной гиперхолестеринемии. Клиническая выраженность и подход в лечении этого заболевания сходны с таковыми для гетерозиготной семейной гиперхолестеринемии. Полигенная холестеринемия характеризуется умеренно выраженным повышением ЛПНП, нормальным ТГ, ранним атеросклерозом и отсутствием ксантом. Дефекты, включающие увеличенный синтез apoB и уменьшенную экспрессию рецептора, могут привести к поднятию ЛПНП.

Гипертриглицеридемия

Семейная гипертриглицеридемия является аутосомным заболеванием доминантного характера, характеризующимся повышенным триглицеридов в сочетании с инсулинорезистентностью и сбоем в регуляции кровяного давления и уровня мочевой кислоты. Мутации в гене липопротеинлипазы, лежащие в основе этого заболевания, отвечают за степень подъема уровня триглицеридов.

Семейная гиперхиломикронемия представляет экстенсивную форму мутации липопротеинлипазы, приводящую к более сложной форме гипертриглицеридемии. Недостаток липопротеинлипазы ассоциируется с гипертриглицеридемией и ранним атеросклерозом. При этом заболевании требуется сокращение потребления жиров и применение медикаментозной терапии в целях снижения ТГ. Также необходимо прекращение употребления алкоголя, борьба с ожирение и интенсивное лечение диабета.

Сбои в метаболизме липопротеинов высокой плотности

Семейная гипоальфалипопротеинемия является малораспространенным аутосомным заболеванием, включающим мутации в гене apoA-I и приводящим к уменьшению липопротеинов высокой плотности и раннему атеросклерозу. Дефицит лецитин-холестерин-ацилтрансферазы характеризуется сбойной этерификацией холестерина на поверхности частиц ЛПВП. В результате наблюдается низкий уровень ЛПВП. В ряде случаев были описаны различные генетические мутации apoA-I, включающие замену одной аминокислоты.

Анальфалипопротеинемия характеризуется накоплением клеточных липидов и присутствием пенистых клеток в периферических тканях, а также гепатоспленомегалией, периферической нейропатией, низким уровнем ЛПВП и ранним атеросклерозом. Причиной этого заболевания являются мутации в гене ABCA1, приводящие к клеточному накоплению холестерина. Усиленный почечный клиренс apoA-I способствуют снижению липопротеинов высокой плотности.

Комбинированные формы гиперлипидемии

Частота присутствия семейной комбинированной гиперлипидемии может достигать 2% среди населения. Она характеризуется повышенным уровнем apoB, ЛПНП и триглицеридов. Это заболевание вызывается избыточным синтезом apoB100 в печени. Выраженность заболевания у конкретного индивидуума определяется относительным недостатком активности липопротеинлипазы. Гиперапобеталипопротеинемия является разновидностью семейной гиперлипидемии. Для лечения этого заболевания обычно применяются статины в комбинации с другими препаратами, включая ниацин, секвестранты желчных кислот, эзетимиб и фибраты.

Семейная дисбеталипопротеинемия является аутосомным рецессивным заболеванием, характеризующимся присутствием двух аллелей apoE2, а также повышенным ЛПНП, наличием ксантом и ранним развитием ССЗ. Сбой в выведении ЛПОНП и остаточных хиломикронов приводит к образованию частиц ЛПОНП (бета-ЛПОНП). Так как это заболевание опасно развитием ССЗ и острого панкреатита, требуется интенсивная терапия для снижения триглицеридов.

Нарушения липидного обмена - общие характеристики

  • Наследственные заболевания липопротеинового гомеостаза приводят к гиперхолестеринемии, гипертриглицеридемии и низкому уровню ЛПВП.
  • В большинстве этих случаев отмечается повышенный риск ранних ССЗ.
  • Диагностика нарушений обмена включает ранний скрининг при помощи липидограмм, являющихся адекватной мерой для раннего выявления проблем и начала терапии.
  • Для близких родственников больных рекомендуется проведение скрининга при помощи липидограмм, начиная с раннего детства.

Второстепенные причины, способствующие нарушению липидного обмена

Небольшое количество случаев аномального уровня ЛПНП, ТГ и ЛПВП вызвано сопутствующими медицинскими проблемами и препаратами. Лечение этих причин обычно приводит к нормализации липидного обмена. Соответственно для больных дислипидемией требуется проведение обследования на наличие второстепенных причин нарушения липидного обмена.

Оценка второстепенных причин нарушений липидного обмена должна производиться при первичном обследовании. Анализ исходного состояния больных дислипидемией должен включать оценку состояния щитовидной железы, а также ферментов печени, сахара в крови и показателей биохимии мочи.

Нарушения липидного обмена при сахарном диабете

Диабет сопровождается гипертриглицеридемией, низким ЛПВП и наличием мелких и плотных частиц ЛПНП. При этом отмечается инсулинорезистентность, ожирение, повышенный уровень глюкозы и свободных жирных кислот и сниженная активность липопротеинлипазы. Интенсивный гликемический контроль и снижение центрального типа ожирения могут положительно сказываться на общем уровне липидов, особенно при наличии гипертриглицеридемии.

Нарушение гомеостаза глюкозы, наблюдаемое при диабете, сопровождаются повышенным давлением и дислипидемией, что приводит к атеросклеротическим явлениям в организме. Ишемические заболевания сердца являются наиболее важным фактором смертности у пациентов с сахарным диабетом. Частота этого заболевания в 3–4 раза выше у пациентов с инсулиннезависимым диабетом, чем в норме. Медикаментозная терапия по снижению ЛПНП, особенно при помощи статинов, эффективна в уменьшении тяжести ССЗ у диабетиков.

Непроходимость желчных путей

Хронический холелитиаз и первичный билиарный цирроз взаимосвязаны с гиперхолестеринемией посредством развития ксантом и повышенной вязкости крови. Лечение непроходимости желчных путей может способствовать нормализации липидного обмена. Несмотря на то, что при непроходимости желчных путей обычно можно использовать стандартные медикаментозные средства для снижения липидов, статины обычно противопоказаны для пациентов с хроническими заболеваниями печени или холелитиазом. Плазмофорез также можно использовать для лечения симптоматических ксантом и повышенной вязкости.

Заболевания почек

Гипертриглицеридемия часто встречается у пациентов, страдающих хронической почечной недостаточностью. По большей части это связано со сниженной активностью липопротеинлипазы и печеночной липазы. Аномальные уровни триглицеридов обычно отмечаются у лиц, проходящих лечение от перитонеального диализа.

Было выдвинуто предположение, что сниженная скорость вывода из организма потенциальных ингибиторов липазы играет ключевую роль в развитии этого процесса. Также при этом отмечается повышенный уровень липопротеина (a) и низкий уровень ЛПВП, что приводить к ускоренному развитию ССЗ. К второстепенным причинам, способствующим развитию гипертриглицеридемии относятся:

  • Сахарный диабет
  • Хроническая почечная недостаточность
  • Ожирение
  • Нефротический синдром
  • Синдром Кушинга
  • Липодистрофия
  • Табакокурение
  • Избыточное употребление углеводов

Была сделана попытка при помощи клинических испытаний выяснить воздействие гиполипидемической терапии на пациентов с конечными стадиями почечной недостаточности. Эти исследования показали, что аторвастатин не способствовал снижению комбинированной конечной точки ССЗ, инфарктов миокарда и инсульта. Также было отмечено, что розувастатин не снижал встречаемость ССЗ у пациентов, находящихся на регулярном гемодиализе.

Нефротический синдром взаимосвязан с повышением ТГ и липопротеин (а), что вызвано усиленным синтезом apoB печенью. Лечение нефротического синдрома основано на устранении исходных проблем, а также на нормализации уровня липидов. Использование стандартной гиполипидемической терапии может быть эффективным, однако требуется постоянный мониторинг возможного развития побочных эффектов.

Заболевания щитовидной железы

Гипотиреоз сопровождается повышенным уровнем ЛПНП и триглицеридов, а степень их отклонения от нормы зависит от масштаба проблем с щитовидной железой. Причиной этого является снижение экспрессии и активности рецептора ЛПНП, а также уменьшение активности липопротеинлипазы. Гипертиреоз обычно проявляется низким ЛПНП и ТГ.

Ожирение

Центральное ожирение сопровождается повышенным уровнем ЛПОНП и триглицеридов, а также низким ЛПВП. Снижение массы тела, а также корректировка рациона приводят к положительному воздействию на уровень триглицеридов и ЛПВП.

Лекарственные препараты

Многие сопутствующие лекарственные препараты вызывают развитие дислипидемии. По этой причине начальная оценка пациентов с аномалиями в липидном обмене должна сопровождаться внимательным анализом принимаемых препаратов.
Таблица 2. Препараты, оказывающие влияние на уровень липидов.

Препарат Повышение ЛПНП Повышение триглицеридов Снижение ЛПВП
Тиазидные диуретики +
Циклоспорин +
Амиодарон +
Росиглитазон +
Секвестранты желчных кислот +
Ингибиторы протеиназы +
Ретиноиды +
Глюкокортикоиды +
Анаболические стероиды +
Сиролимус +
Бета-блокаторы + +
Прогестины +
Андрогены +

Тиазидные диуретики и бета-блокаторы при приеме часто вызывают гипертриглицеридемию и пониженный ЛПВП. Экзогенный эстроген и прогестерон, входящие в состав компонентов заместительной гормональной терапии и оральных контрацептивов, вызывают гипертриглицеридемию и снижение ЛПВП. Антиретровирусные препараты для ВИЧ-пациентов сопровождаются гипертриглицеридемией, повышением ЛПНП, инсулинорезистентностью и липодистрофией. Анаболические стероиды, кортикостероиды, циклоспорин, тамоксифен и ретиноиды при употреблении также приводят к аномалиям липидного обмена.

Лечение нарушений липидного обмена

Корректировка липидного обмена

Хорошо исследована и обоснована роль липидов в патогенезе атеросклеротических ССЗ. Это привело к активным поискам способов снижения уровня атерогенных липидов и усиления защитных свойств ЛПВП. Последние пять десятилетий характеризовались развитием широкого спектра диетических и фармакологических подходов для корректировки липидного обмена. Ряд этих подходов способствовал снижению риска ССЗ, что привело к широкому внедрению данных препаратов на практике (таблица 3).
Таблица 3. Основные классы препаратов, используемые для лечения нарушений липидного обмена.

Фармацевтическая группа ЛПНП Триглицериды ЛПВП

Печень, являясь центральным органом метаболизма, участвует в поддержании метаболического гомеостаза и способна осуществлять взаимодействие реакций обмена белков, жиров и углеводов.

Местами "соединения" обмена углеводов и белков является пировиноградная кислота, щавелевоуксусная и α-кетоглутаровая кислоты из ЦТК, способных в реакциях трансаминирования превращаться, соответственно, в аланин, аспартат и глутамат. Аналогично протекает процесс превращения аминокислот в кетокислоты.

С обменом липидов углеводы связаны еще более тесно:

  • образуемые в пентозофосфатном пути молекулы НАДФН используются для синтеза жирных кислот и холестерола,
  • глицеральдегидфосфат , также образуемый в пентозофосфатном пути, включается в гликолиз и превращается в диоксиацетонфосфат,
  • глицерол-3-фосфат , образуемый из диоксиацетонфосфата гликолиза, направляется для синтеза триацилглицеролов. Также для этой цели может быть использован глицеральдегид-3-фосфат, синтезированный в этапе структурных перестроек пентозофосфатного пути,
  • "глюкозный" и "аминокислотный" ацетил-SКоА способен участвовать в синтезе жирных кислот и холестерола.

Углеводный обмен

В гепатоцитах активно протекают процессы углеводного обмена. Благодаря синтезу и распаду гликогена печень поддерживает концентрацию глюкозы в крови. Активный синтез гликогена происходит после приема пищи, когда концентрация глюкозы в крови воротной вены достигает 20 ммоль/л. Запасы гликогена в печени составляют от 30 до 100 г. При кратковременном голодании происходит гликогенолиз , в случае длительного голодания основным источником глюкозы крови является глюконеогенез из аминокислот и глицерина.

Печень осуществляет взаимопревращение сахаров , т.е. превращение гексоз (фруктозы, галактозы) в глюкозу.

Активные реакции пентозофосфатного пути обеспечивают наработку НАДФН , необходимого для микросомального окисления и синтеза жирных кислот и холестерола из глюкозы.

Липидный обмен

Если во время приема пищи в печень поступает избыток глюкозы, который не используется для синтеза гликогена и других синтезов, то она превращается в липиды – холестерол и триацилглицеролы . Поскольку запасать ТАГ печень не может, то их удаление происходит при помощи липопротеинов очень низкой плотности (ЛПОНП ). Холестерол используется, в первую очередь, для синтеза желчных кислот , также он включается в состав липопротеинов низкой плотности (ЛПНП ) и ЛПОНП .

При определенных условиях – голодание, длительная мышечная нагрузка, сахарный диабет I типа, богатая жирами диета – в печени активируется синтез кетоновых тел , используемых большинством тканей как альтернативный источник энергии.

Белковый обмен

Больше половины синтезируемого за сутки в организме белка приходится на печень. Скорость обновления всех белков печени составляет 7 суток, тогда как в других органах эта величина соответствует 17 суткам и более. К ним относятся не только белки собственно гепатоцитов, но и идущие на "экспорт" – альбумины , многие глобулины , ферменты крови , а также фибриноген и факторы свертывания крови.

Аминокислоты подвергаются катаболическим реакциям с трансаминированием и дезаминированием, декарбоксилированию с образованием биогенных аминов. Происходят реакции синтеза холина и креатина благодаря переносу метильной группы от аденозилметионина. В печени идет утилизация избыточного азота и включение его в состав мочевины .

Реакции синтеза мочевины теснейшим образом связаны с циклом трикарбоновых кислот.

Тесное взаимодействие синтеза мочевины и ЦТК

Пигментный обмен

Участие печени в пигментном обмене заключается в превращении гидрофобного билирубина в гидрофильную форму и секреция его в желчь.

Пигментный обмен, в свою очередь, играет важную роль в обмене железа в организме – в гепатоцитах находится железосодержащий белок ферритин.

Оценка метаболической функции

В клинической практике существуют приемы оценки той или иной функции:

Участие в углеводном обмене оценивается:

  • по концентрации глюкозы крови,
  • по крутизне кривой теста толерантности к глюкозе ,
  • по "сахарной" кривой после нагрузки галактозой ,
  • по величине гипергликемии после введения гормонов (например, адреналина).

Роль в липидном обмене рассматривается:

  • по уровню в крови триацилглицеролов , холестерола , ЛПОНП, ЛПНП, ЛПВП,
  • по коэффициенту атерогенности .

Белковый обмен оценивается:

  • по концентрации общего белка и его фракций в сыворотке крови,
  • по показателям коагулограммы ,
  • по уровню мочевины в крови и моче,
  • по активности ферментов АСТ и АЛТ, ЛДГ-4,5, щелочной фосфатазы, глутаматдегидрогеназы.

Пигментный обмен оценивается:

  • по концентрации общего и прямого билирубина в сыворотке крови.

Причины сбоя

Для нормального функционирования организма необходима слаженная работа всех этапов метаболизма. Важной составной частью является липидный обмен веществ. Его роль неоценима. Без этого компонента метаболизма невозможно существование живых существ. Что же такое липидный обмен в организме человека? К его основным функциям относят:

  • Защиту внутренних систем от механических повреждений;
  • Энергообмен, который позволяет расщепить 1 грамм жира до 9 килокалорий;
  • Теплоизоляцию, обеспечивающую защиту от переохлаждения;
  • Усвоение жирорастворимых витаминов;
  • Эндокринную, способствующую выработке стероидных и женских гормонов. Дефицит жировой ткани может нарушать менструальный цикл или репродуктивную функцию;
  • Структурную – составную часть мембраны клеток;
  • Антиатерогенную – наличие липопротеинов высокой плотности создает препятствие для развития атеросклероза.

Сбой в работе жиров приводит к патологическому состоянию, которое носит название дислипидемии. МКБ – 10 причисляет это нарушение в класс E75 и Е78. При этом липиды перестают справляться с возложенными на них функциями. Почему это происходит? Множество факторов запускает процесс обменных расстройств. Среди них выделяют:

  • Наследственную отягощенность;
  • Гиподинамию;
  • Несбалансированное питание, богатое жирной пищей;
  • Чрезмерное употребление алкоголя;
  • Курение;
  • Патологии печени;
  • Лекарственную интоксикацию;
  • Избыточную массу тела.

Типы нарушений

В зависимости от провоцирующего фактора и патофизиологического механизма развития дислипидоза, выделяют несколько его видов:

  • Первичный или врождённый основан на генетическом дефекте, который возник спонтанно ввиду мутации или наследственной передачи от одного из родителей;
  • Вторичный, являющийся следствием других заболеваний;
  • Алиментарный, связанный с несбалансированным питанием и употреблением большого количества жиров.

В зависимости от вида фракций, задействованных в липидном дисбалансе, нарушения могут быть:

  • Чистая или изолированная гиперхолестеринемия, для которой характерно повышение уровня холестерина в кровяном русле;
  • Смешанная гиперлипидемия, сочетающая увеличение числа разных видов липидов;
  • Гипохолестеринемия, связанная с пониженными цифрами жиров.

По течению патологического процесса можно выделить следующие типы:

  • Наследственную гиперхиломикронемию;
  • Врождённую гиперхолестеринемию;
  • Дис-бета-липопротеидемию;
  • Комбинированную гиперлипидемию;
  • Эндогенную гиперлипидемию;
  • Наследственную гипертриглицеридемию.

Признаки

Нарушения липидного обмена характеризуются общими проявлениями. В то же время каждому заболеванию этой группы свойственны особенные признаки. К числу универсальных, встречающихся чаще всего, относятся:

  • Ксантомы – очаговые образования на поверхности кожи, состоящие из жировых включений;
  • Увеличение печени и селезенки – гепатоспленомегалия;
  • Ожирение;
  • Повышенные цифры холестерина и триглицеридов в анализах крови;
  • Эндокринные патологии;
  • Нарушение менструального цикла у женщин;
  • Ломкость волос, появление экземы в связи с дефицитом незаменимых ненасыщенных жирных кислот.

Факторы риска и влияния

Развитие дисбаланса связано с большим числом триггеров. К основным относятся:

  • Измененная структура липопротеинов, в результате чего они утрачивают способность к нормальному функционированию;
  • Возраст – пожилые люди сильнее подвержены процессу;
  • Несбалансированное питание, насыщенное жирами;
  • Чрезмерное употребление алкоголя и курение;
  • Отсутствие физических нагрузок;
  • Наличие патологий в семье.

Образ жизни больного оказывает большое влияние на возникновение дислипидемий. Пагубные пристрастия к алкоголю или курению чреваты не только нарушением в обмене липидов. В сочетании с гиподинамией, бесконтрольным потреблением пищи, богатой жирами, образуются все предпосылки для формирования дисбаланса.

Дислипидемия «диабетическая»

Выразительной симптоматикой обладает нарушение липидного обмена при сахарном диабете. Хотя это заболевание запускается под действием сбоя углеводной цепи, проявления связаны с жировыми расстройствами. Наблюдают:

  • Увеличенное разрушение липидов;
  • Растущие показатели кетоновых тел;
  • Снижение синтеза жирных кислот.

Сахарный диабет – это заболевание, при котором может нарушиться обмен глюкозы. В нормальных условиях из этого соединения образуется вода и углекислый газ. При данной патологии процесс разложения нарушен. И глюкоза откладывается в избыточных количествах. Отсутствие лечения приводит к расстройству липидного обмена. В сыворотке крови растет число триацилглицеролов и хиломикронов. Нарушаются процессы метаболизма. И на этом фоне возникает вторичная, то есть обусловленная другой болезнью, дислипидемия.

Симптомы

Клиническая картина каждого типа нарушения имеет свои специфичные черты. Связаны они преимущественно с чрезмерно увеличенным или уменьшенным числом липидов. Однако имеются общие признаки, присущие дислипидемиям. В нарушении липидного обмена симптомы характеризуются внешними и внутренними проявлениями. К числу первых относятся:

  • Ксантомы на кожных покровах;
  • Выраженная избыточная масса тела;
  • Гепатоспленомегалия;
  • Нарушение работы почек;
  • Эндокринопатии;
  • Высокое содержание холестерина и триглицеридов в кровяном русле.

К внутренним признакам можно отнести:

  • Функциональные изменения в структуре липидов;
  • Отклонение от нормы по результатам диагностики;
  • Нарушения в усвоении жирорастворимых витаминов и жирных кислот;
  • Расстройство почек и эндокринные патологии.

Если дислипидемия носит характер чрезмерного увеличения числа жиров, проявления будут связаны с:

  • Изменением в лабораторных анализах крови, которые покажут рост цифр холестерина и других липопротеинов;
  • Симптомами атеросклероза;
  • Высоким артериальным давлением;
  • Ожирением.

При дефиците липидов будет наблюдаться:

  • Общее истощение больного;
  • Снижение массы тела;
  • Нехватка жирорастворимых витаминов и незаменимых ненасыщенных жирных кислот;
  • Сбой в менструальном цикле у женщин и ряд репродуктивных патологий;
  • Ломкость и выпадение волос;
  • Возникновение воспалительных процессов на кожных покровах;
  • Нефрогенные нарушения.

Диагностика и терапия

Лечение, а значит и исход патологического процесса, полностью зависит от правильности и своевременности проведенного обследования. Если липидный обмен нарушен, его лечение основывают на выявлении аномалий с помощью следующих диагностических методов:

  • Определяют уровень общего холестерина в биохимическом анализе крови;
  • Проводят липопротеидограмму, в которой выявляют число ЛПВП, ЛПНП, ДПОНП, ТТГ;
  • Осуществляют развернутую липидограмму, которая помогает в отражении уровня всех классов липидов.

Каждый больной дислипидозом задается вопросом «Липидный обмен что это такое и как лечить его?» Доктор поможет кратко разъяснить пациенту причину его состояния. На основании анамнеза, объективного осмотра, клинических проявлений и диагностических данных, врач ставит диагноз и назначает лечение. Воздействие направлено на:

  • Изменение образа жизни больного;
  • Диетотерапию;
  • Медикаментозную коррекцию.

Первый пункт лечебных мероприятий помогает восстанавливать обмен липидов посредством следующих рекомендаций:

  • Физические нагрузки 3-4 раза в неделю. Больным необходимо подобрать для себя приемлемый вид спортивных мероприятий, который не будет перенапрягать неподготовленный организм, но сможет нормализовать мышечную мускулатуру и способствовать восстановлению интенсивного газообмена. Что в совокупности препятствует развитию осложнений;
  • Отказ от вредных привычек в виде курения и алкоголя;
  • Снижение веса;
  • Стабилизация питания, с употреблением пищи дробно и в одно и то же время.

Диетотерапия является важным этапом, в стремлении вылечить дислипидоз. Питание во многом определяет здоровье человека. Слова Гиппократа «Скажи мне, что ты ешь, и я скажу, чем ты болеешь» очень точно отражают эту простую истину. От состава потребляемой пищи зависит метаболизм человека. Чтобы наладить липидный обмен необходимо придерживаться диеты, назначенной врачом. Она направлена на снижение калорий.

Жиры животного происхождения сокращают, а также число легких углеводов. Потребление мучного, сладкого, копченого, острого, жареного, маринадов следует исключить из меню. Основной упор в питании необходимо делать на свежие овощи и фрукты, зелень, соки. Следует употреблять больше воды – это основная среда, в которой протекают все внутренние процессы. Ее достаточное количество будет благотворно влиять на метаболизм. Взрослый человек должен потреблять около 2 литров чистой воды в сутки.

Медикаментозная терапия жирового дисбаланса требует назначения следующих групп препаратов в виде таблеток или инъекций:

  • Статины;
  • Никотиновая кислота и ее производные;
  • Фибраты;
  • Антиоксиданты;
  • Секвестранты желчных кислот;
  • БАВ – биологически активные добавки.

При нарушении липидного обмена лечебные мероприятия должны основываться не только на лекарственных средствах и диете. Хорошие отзывы, которые могут улучшить состояние человека, получили физиотерапевтические и ЛФК воздействия, такие как:

  • Душ Шарко-Лейдена;
  • Подводный массаж;
  • Плазмаферез.

Народная медицина может использоваться в качестве дополнительного источника терапии. Нормализация жирового дисбаланса должна осуществляться на базе врачебных рекомендаций. При нарушении липидного обмена причины определяют лечение.

Основные заболевания, вызванные нарушением липидного обмена

Дислипидозы приводят к большому спектру проблем. Провоцируется множество патологических процессов. Ввиду многообразия нарушений различных этапов жирового обмена – расщепления, всасывания и транспорта липидов, выделяют большое количество заболеваний, связанных с этим. Наследственные расстройства подразделяют на:

  • Сфинголипидозы, при которых происходит внутриклеточное накопление сфинголипидов;
  • в крови – семейные формы гипер- и гипохолестеринемии.

Немалая часть заболеваний связана с недостатком лизосомальных ферментов. В норме эти вещества способствуют распаду жиров. При их малом количестве утилизация не происходит должным образом и липиды накапливаются в клетках. Такой механизм развития имеет множество патологических процессов, в том числе Ниманна-Пика, Гоше и Тея-Сакса.

Заболевание Ниманна-Пика обусловлено чрезмерным скоплением сфинголипидов в мозговой ткани, печени, а также РЭС – ретикуло-эндотелиальной системе. Расстройство носит наследственный характер и является аутосомно-рецессивным. Выделяется несколько форм этой болезни – A, B, C, D. Для типа «А» свойственны тяжёлые поражения нервной системы, заканчивающиеся летальным исходом в течение первых 2-3 лет жизни.

Мишенью форм B, C и D в основном являются гепатоциты – клетки печени. Нервная система затрагивается в меньшей степени или вовсе не вовлекается в процесс. Это более благоприятная форма поражения, чем при типе «А». Ввиду этого пациенты большую продолжительность жизни.

При болезни Гоше происходит накопление цереброзидов, они же гликосфинголипиды – сложные жиры. Эти соединения откладываются в больших количествах в головном и костном мозге, печени, а также селезенке. Чрезмерное отложение липидов связано с недостаточностью р-глюкозидазы, фермента, расщепляющего эти жиры.

Болезнь Тея-Сакса основана на повышенном накоплении ганглиозидов мозговой ткани и печеночной, а также селезёнке. Связано это с дефицитом фермента гексоаминидазы. Течение патологического процесса длительное. Ввиду этого заметить отклонение сложно. Как правило, первые 3 – 4 месяца жизни больных нельзя отличить от здоровых.

С развитием патологии ребенок ставится менее активным, у него возникают нарушения зрения и слуха. Прогрессируют психические нарушения и умственная отсталость вплоть до идиотии. Болезнь Тея-Сакса заканчивается летальным исходом. Предотвращение наследственных форм возможно лишь с помощью тщательного планирования беременности с медико-генетическим консультированием.

Важно избегать триггеров – предрасполагающих факторов, чтобы не провоцировать развитие приобретенных форм дислипидозов. При возникновении тревожных симптомов не следует откладывать поход к врачу. Чем раньше сдать анализы, тем выше шанс восстановить свое здоровье.

Липидный обмен — это метаболизм жиров в человеческом организме, который является сложным физиологическим процессом, а также цепочкой биохимических реакций, что происходят в клетках всего организма.

Для того чтобы молекулы холестерина и триглицеридов передвигались по кровеносному руслу, они приклеиваются к молекулам протеинов, которые и являются транспортировщиками в системе кровотока.

При помощи нейтральных липидов происходит синтезирование жёлчных кислот и стероидного типа гормонов, а также молекулы нейтральных липидов наполняют энергией каждую клетку мембраны.

Связываясь с протеинами низкой молекулярной плотности липиды откладываются на сосудистых оболочках в виде липидного пятна с последующим формированием из него атеросклеротической бляшкой.

Состав липопротеинов

Липопротеин (липопротеид) состоит из молекулы:

  • Этерифицированной формы ХС;
  • Неэтерифицированной формы ХС;
  • Молекулы триглицерида;
  • Молекул белка и фосфолипида.

Компоненты протеинов (протеидов) в составе молекул липопротеидов:

  • Аполипротеин (аполипротеид);
  • Апопротеин (апопротеид).

Весь процесс жирового обмена подразделяется на два вида метаболических процессов:

  • Эндогенный жировой метаболизм;
  • Экзогенный обмен липидов.

Если липидный обмен происходит с молекулами холестерина, которые попадают в организм с пищей, тогда это экзогенный путь метаболизма. Если же источником липидов является их синтезирование клетками печени, тогда это эндогенный путь метаболизма.

Существуют несколько фракций липопротеидов, из которых каждая фракция выполняет определённые функции:

  • Молекулы хиломикронов (ХМ);
  • Липопротеиды очень низкой молекулярной плотности (ЛПОНП);
  • Липопротеиды низкой молекулярной плотности (ЛПНП);
  • Липопротеиды средней молекулярной плотности (ЛПСП);
  • Липопротеиды высокой молекулярной плотности (ЛПВП);
  • Молекулы триглицеридов (ТГ).

Метаболический процесс между фракциями липопротеидов взаимосвязанный.

Холестерин и молекулы триглицеридов необходимы:

  • Для функционирования системы гемостаза;
  • Для формирования мембран всех клеток в организме;
  • Для выработки гормонов эндокринными органами;
  • Для продуцирования жёлчных кислот.

Функции молекул липопротеидов

Структура молекулы липопротеида состоит из ядра, в которое входят:

  • Этерифицированных молекул ХС;
  • Молекул триглицеридов;
  • Фосфолипидов, что в 2 слоя обтягивают ядро;
  • Молекул аполипротеинов.

Молекула липопротеида отличается друг от друга по процентному соотношению всех составляющих.

От наличия компонентов в молекуле липопротеиды различаются:

  • По размеру;
  • По плотности;
  • По своим свойствам.

Показатели жирового обмена и фракции липидов в составе плазмы крови:

липопротеид содержание холестерина молекулы аполипротеинов плотность молекулы
единица измерения грамм на миллилитр
диаметр молекулы
хиломикрон (ХМ) ТГ · A-l; меньше, чем 1,950 800,0 - 5000,0
· A-l1;
· A-IV;
· B48;
· C-l;
· C-l1;
· C-IIL.
остаточная молекула хиломикрона(ХМ) ТГ + эфир ХС · B48; меньше, чем 1,0060 больше, чем 500,0
· Е.
ЛПОНП ТГ · C-l; меньше, чем 1,0060 300,0 - 800,0
· C-l1;
· C-IIL;
· В-100;
· Е.
ЛПСП эфир холестерина + ТГ · C-l; от 1,0060 до 1,0190 250,0 - 3500,0
· C-l1;
· C-IIL;
· В-100;
· Е
ЛПНП ТГ и эфир ХС В-100 от 1,0190 до 1,0630 180,0 - 280,0
ЛПВП ТГ + эфир холестерина · A-l; от 1,0630 до 1,210 50,0 - 120,0
· A-l1;
· A-IV;
· C-l;
· C-l1;
· С-111.

Нарушение липидного обмена

Нарушения в обмене липопротеидов — это нарушение процесса синтезирования и расщепления жиров в организме человека. Данные отклонения в липидном обмене могут произойти у любого человека.

Чаще всего причиной может быть генетическая предрасположенность организма к накоплению липидов, а также неправильное питание с большим потреблением холестеринсодержащих жирных продуктов.


Немаловажную роль играют патологии эндокринной системы и патологии пищеварительного тракта и отделов кишечника.

Причины нарушения в липидном обмене

Данная патология довольно часто развивается, как последствие патологических нарушений в системах организма, но существует наследственная этиология холестеринового накопления организмом:

  • Наследственная генетическая хиломикронемия;
  • Врождённая генетическая гиперхолестеринемия;
  • Наследственная генетическая дис-бета-липопротеинемия;
  • Комбинированного типа гиперлипидемия;
  • Гиперлипидемия эндогенного характера;
  • Наследственная генетическая гипертриглицеринемия.

Также нарушения в липидном обмене могут быть:

  • Первичная этиология, которая представлена наследственно врождённой гиперхолестеринемией, по причине дефективного гена у ребёнка. Ребёнок может получить аномальный ген от одного родителя (гомозиготная патология), или же от обоих родителей (гетерозиготная гиперлипидемия);
  • Вторичная этиология нарушения в жировом обмене , вызвана нарушениями в работе эндокринной системы, неправильным функционированием клеток печени и почек;
  • Алиментарные причины несоответствия баланса между холестериновыми фракциями , происходит от неправильного питания пациентам, когда в меню преобладают холестеринсодержащие продукты животного происхождения.

Неправильное питание

Вторичные причины нарушения в липидном обмене

Вторичная гиперхолестеринемия развивается на почве существующих патологий в организме пациента:

  • Системный атеросклероз. Данная патология может развиваться на основании первичной гиперхолестеринемии, а также от неправильного питания, с преобладанием животных жиров;
  • Пагубные привычки — никотиновая и алкогольная зависимость. Хроническое употребление влияет на функциональность клеток печени, что синтезируют 50,0% всего холестерина, содержащего в организме, а хроническая никотиновая зависимость приводит к ослаблениям артериальных оболочек, на которых могут откладываться холестериновые бляшки;
  • Нарушен липидный обмен и при сахарном диабете;
  • При хронической стадии недостаточности клеток печени;
  • При патологии поджелудочной железы — панкреатите;
  • При гипертиреоидизме;
  • Заболевания связанные с нарушением функциональности эндокринных органов;
  • При развитии в организме синдрома Уиппла;
  • При лучевой болезни, и злокачественных онкологических новообразованиях в органах;
  • Развитие билиарного вида цирроза клеток печени в 1 стадии;
  • Отклонения в функциональности щитовидной железы;
  • Патология гипотиреоз, или же гипертиреоз;
  • Применение многих медикаментозных препаратов в качестве самолечения, что приводит не только к нарушению липидного обмена, но и может запустить в организме непоправимые процессы.

Факторы-провокаторы нарушения в липидном обмене

К факторам риска нарушения в жировом обмене относятся:

  • Половая принадлежность человека. Мужчины более восприимчивы к нарушению жирового обмена. Женский организм защищен от накопления липидов половыми гормонами в репродуктивном возрасте. С наступлением менопаузы, женщины также склонны к гиперлипидемии и развитию системного атеросклероза и патологий сердечного органа;
  • Возраст пациента. Мужчины — после 40 — 45 лет, женщины после 50-летия в момент развития климактерического синдрома и менопаузы;
  • Беременность у женщины, повышение индекса холестерина обусловлено естественными биологическими процессами в женском организме;
  • Гиподинамия;
  • Неправильное питание, в котором максимальное количество в меню холестеринсодержащих продуктов;
  • Высокий индекс АД — гипертензия;
  • Избыточная масса тела — ожирение;
  • Патология Кушинга;
  • Наследственность.

Медикаментозные препараты, которые приводят к патологическим изменениям в липидном обмене

Многие медикаментозные препараты провоцируют возникновение патологии дислипидемия. Усугубить развитие данной патологии может методика самолечения, когда пациент не знает точного воздействия медикаментов на организм и взаимодействия препаратов друг с другом.

Неправильное применение и дозировка приводят к повышению в крови молекул холестерина.

Таблица медикаментозных препаратов, которые влияют на концентрацию липопротеидов в составе плазмы крови:

наименование препарата или фармакологическая группа препаратов повышение индекса ЛПНП повышение индекса триглицеридов снижение индекса ЛПВП
диуретики тиазидного типа +
препарат Циклоспорин +
медикамент Амиодарон +
Препарат Росиглитазон +
секвестранты жёлчи +
группа препаратов ингибирующих протеиназу +
медикаменты ретиноиды +
группа глюкокортикоидов +
группа анаболических стероидных медикаментов +
препарат Сиролимус +
бета-блокаторы + +
группа прогестинов +
группа андрогенов +

При применении гормональной замещающей терапии, гормон эстроген и гормон прогестерон, которые в составе медикаментов снижают в составе крови молекулы ЛПВП.

А также снижают высокомолекулярный холестерин в крови, препараты оральных контрацептивов.


Остальные препараты при длительной терапии поводят к изменениям в липидном обмене, а также могут нарушить функциональность клеток печени.

Признаки изменения в липидном обмене

Симптомы развития гиперхолестеринемии первичной этиологии (генетической) и вторичной этиологии (приобретённой), вызывают большое количество изменений в организме пациента.

Многие симптомы можно выявить только посредством диагностического исследования инструментальными и лабораторными методиками, но существуют и такие симптомы проявления, которые можно обнаружить визуально и при применении метода пальпации:

  • Формируются ксантомы на теле пациента;
  • Формирование ксантелазм на глазных веках и на кожных покровах;
  • Ксантомы на сухожилиях и суставах;
  • Появление холестериновых отложений в уголках глазных разрезов;
  • Повышается масса тела;
  • Происходит увеличение селезёнки, а также печёночного органа;
  • Диагностируются явные признаки развития нефроза;
  • Формируются обобщённые симптомы патологии эндокринной системы.

Данная симптоматика указывает на нарушение липидного обмена и увеличения индекса холестерина в составе крови.

При изменении в липидном обмене в сторону снижения липидов в плазме крови, выраженная такая симптоматика:

  • Снижается масса и объём тела, что может привести к полному истощению организма — анорексии;
  • Выпадение волос с головы;
  • Расслоение и ломкость ногтей;
  • Экземы и язвочки на кожных покровах;
  • Воспалительные процессы на коже;
  • Сухость кожи и отшелушивание эпидермиса;
  • Патология нефроз;
  • Нарушение у женщин цикла менструации;
  • Женское бесплодие.

Симптомы изменения в липидном обмене одинаковы в детском организме и в организме взрослого.

У детей чаще проявляются наружные признаки повышения индекса холестерина в крови, или же снижение концентрации липидов, а во взрослом организме внешние признаки проявляются тогда, когда патология прогрессирует.

Диагностика

Чтобы установить правильный диагноз, доктор должен провести осмотр больного, а также направить пациента на лабораторную диагностику состава крови. Только в совокупности всех результатов исследования, можно поставить точный диагноз изменений в липидном обмене.

Первичный метод диагностики проводит доктор на перовом приёме пациента:

  • Визуальный осмотр больного;
  • Изучение патологии не только самого пациента, но и генетических родственников на предмет выявления семейной наследственной гиперхолестеринемии;
  • Сбор анамнеза. Особое внимание уделяется питанию пациента, а также стилю жизни и пагубных привычек;
  • Применение метода пальпации передней стенки брюшины, что поможет выявить патологию гепатоспленомегалию;
  • Доктор измеряет индекс АД;
  • Полный опрос пациента о начале развития патологии, чтобы иметь возможность установить начало изменения в липидном обмене.

Лабораторная диагностика нарушений в метаболизме липидов проводится по такой методике:

  • Общий анализ состава крови;
  • Биохимия состава плазменной крови;
  • Общий анализ мочи;
  • Лабораторное исследование крови метолом липидного спектра — липограммы;
  • Иммунологический анализ состава крови;
  • Кровь на выявление индекса гормонов в организме;
  • Исследование генетического выявления дефектных и аномальных генов.

Методы инструментальной диагностики при нарушениях метаболизма жиров:

  • УЗИ (ультразвуковое исследование) клеток печени и почечного органа;
  • КТ (компьютерная томография) внутренних органов, которые задействованы в метаболизме липидов;
  • МРТ (магнитно-резонансная томография) внутренних органов и системы кровотока.

Как восстановить и улучшить холестериновый обмен?

Корректировка нарушения жирового обмена начинается с пересмотра стиля жизни и питания.

Первым делом после постановки диагноза, необходимо сразу:

  • Отказаться от существующих пагубных привычек;
  • Повысить активность, можно начать ездить на велосипеде, или же пойти заниматься в бассейн. Подойдет и 20 — 30 минутное занятие на велотренажёре, но поездка на велосипеде на свежем воздухе, предпочтительнее;
  • Постоянный контроль массы тела и борьба с ожирением;
  • Диетическое питание.

Диета при нарушении липосинтеза способна:

  • Восстановить липидный и углеводный обмен у пациента;
  • Наладить работу сердечного органа;
  • Восстановить микроциркуляцию крови в мозговых сосудах;
  • Нормализация метаболизма всего организма;
  • Снизить уровень плохого холестерина до 20,0%;
  • Предотвратить формирование холестериновых бляшек в магистральных артериях.

Восстановление липидного обмена при помощи питания

Диетические питание при нарушении обмена липидов и липидоподобных соединений в составе крови – это изначально профилактика развития атеросклероза и болезней сердечного органа.

Диета не только выступает, как самостоятельная часть немедикаментозной терапии, но и как составляющая комплекса медикаментозного лечения препаратами.

Принцип правильного питания для нормализации метаболизма жиров:

  • Ограничить употребление холестеринсодержащие продукты. Исключить из рациона продукты, содержащие животный жир — красные сорта мяса, жирная молочная продукция, яйца;
  • Питание маленькими порциями, но не менее 5 — 6 раз в день;
  • Ввести в ежедневный рацион продукты, которые богаты на клетчатку — это свежие фрукты и ягоды, свежие и приготовленные методом отваривания и тушения овощи, а также злаковые крупы и бобовые. Свежие овощи и фрукты наполнят организм целым комплексом витаминов;
  • До 4-х раз в неделю употреблять морскую рыбу;
  • Ежедневно использовать в приготовлении блюд растительные масла, которые содержат полиненасыщенные жирные кислоты Омега-3 — оливковое, кунжутное и льняное масло;
  • Мясо употреблять только нежирных сортов, а птицу готовить и кушать без шкуры;
  • Кисломолочная продукция должно быть с 0% жирности;
  • Ввести в ежедневное меню орехи и семечки;
  • Усиленное питье. В сутки выпивать не менее 2000,0 миллилитров чистой воды.

Выпивать не менее 2 литров чистой воды

Корректировка нарушенного липидного обмена при помощи медикаментов дает наилучший результат в нормализации индекса общего холестерина в составе крови, а также восстановление баланса фракций липопротеидов.

Применяемые препараты для восстановления метаболизма липопротеидов:

группа препаратов молекулы ЛПНП молекулы триглицеридов молекулы ЛПВП терапевтический эффект
группа статинов снижение 20,0% - 55,0% снижение 15,0% - 35,0% повышение 3,0% - 15,0% показан хороший терапевтический эффект в лечении атеросклероза, а также в первичной и вторичной профилактики развития мозгового инсульта и инфаркта миокарда.
группа фибратов снижение 5,0% - 20,0% снижение 20,0% - 50,0% повышение 5,0% - 20,0% усиление транспортных свойств молекул ЛПВП по доставке обратно в клетки печени холестерина для его утилизации. Фибраты имеют противовоспалительные свойства.
секвестранты жёлчи снижение 10,0% - 25,0% снижение 1,0% - 10,0% повышение 3,0% - 5,0% хороший медикаментозный эффект при значительном повышении триглицеридов в составе крови. Есть недостатки в переносимости препарата органами пищеварительного тракта.
препарат Ниацин снижение 15,0% - 25,0% снижение 20,0% - 50,0% повышение 15,0% 35,0% самый эффективный препарат по увеличению индекса ЛПВП, а также эффективно снижает индекс липопротеина А.
Препарат зарекомендовал себя в профилактике и лечении атеросклероза с положительной динамикой терапии.
препарат Эзетимиб снижение 15,0% - 20,0% снижение 1,0% - 10,0% повышение 1,0% - 5,0% терапевтический эффект оказывает в применении с препаратами группы статинов. Препарат предотвращает всасывания молекул липидов с кишечника.
рыбий жир - Омега-3 повышение 3,0% - 5,0; снижение 30,0% - 40,0% не проявляются никакие изменения данные препараты применяются в лечение гипертриглицеридемии и гиперхолестеринемии.

При помощи народных средств

Лечить расстройство липидного обмена лекарственными растениями и травами, можно только после консультации с лечащим доктором.

Эффективные растения в восстановлении метаболизма липопротеидов:

  • Листья и корни подорожника;
  • Цветки бессмертника;
  • Листья полевого хвоща;
  • Соцветия ромашки и календулы;
  • Листья спорыша и зверобоя;
  • Листья и плоды боярышника;
  • Листья и плоды земляники и растения калины;
  • Корни одуванчика и его листья.

Рецепты народной медицины:

  • Взять 5 ложек цветков земляники и запарить 1000,0 миллилитрами кипятка. Настоять на протяжении 2-х часов. Принимать 3 раза в день по 70,0 — 100,0 миллиграмм. Данный настой восстанавливает функционирование клеток печени и поджелудочной железы;
  • Каждое утро и каждый вечер употреблять по 1 чайной ложечке измельчённых семян льна. Запивать необходимо 100,0 — 150,0 миллилитрами воды, или же обезжиренного молока;
  • к содержанию

    Прогноз на жизнь

    Прогноз на жизнь индивидуален для каждого пациента, потому что сбой в липидном обмене у каждого имеет свою этиологию.

    Если своевременно диагностировать сбой в метаболических процессах в организме, тогда прогноз — благоприятный.