Какие типы галактик различают современные астрономы. Основные типы галактик (по Э. Хабблу) (8 фото)

Ясной безлунной ночью, вдалеке от больших городов, на бархатно-черном небе разливает свои воды небесная река Млечного Пути. Однако кроме этой "молочной реки" пытливый взор обнаружит на небе и другие туманные пятна, перемещающиеся вместе со звездами. В северном полушарии одно из таких пятен заметно неподалеку от звезды Андромеды. А бинокль или подзорная труба позволят найти уже несколько десятков таких объектов.

В конце XVIII века французский астроном Шарль Мессье составил первый каталог этих туманностей, дабы не путать их с кометами, поисками которых он занимался. Как мы знаем сегодня, в его каталог вошли существенно разные по природе объекты, в том числе и несколько галактик.

Шло время, астрономы открывали на небе все новые галактики, но эти объекты по-прежнему считались обычными туманностями. Настоящее понимание их природы стало проясняться лишь после того, как в начале нашего века шведский Астроном Кнут Лундмарк доказал, что туманность в созвездии Треугольника - это огромная звездная система. А когда астрономы научились надежно определять расстояния до далеких небесных объектов, выяснилось, что галактик во Вселенной существует огромное множество.

Что же такое галактика? Прежде всего - это большая система, в которой звезды связаны друг с другом силами гравитации. Помимо звезд галактики включают в себя межзвездный газ и пыль, а также различные экзотические объекты: белые карлики, нейтронные звезды, черные дыры. Газ в галактиках не только рассеян между звездами, но и образует большие облака и газопылевые туманности.

Мы тоже живем в Галактике, название которой пишем с большой буквы, потому что она - наша, а Млечный Путь представляет собой множество слабых звезд, расположенных в ее плоскости.

Галактики бывают самые разнообразные. Встречаются огромные системы, насчитывающие триллионы солнц. С другой стороны, есть карликовые галактики, которые больше напоминают шаровые скопления, и число звезд в них не превышает нескольких сотен тысяч. Наша Галактика достаточно велика - в ней около 200 миллиардов звезд.

Массы галактик также лежат в широких пределах. Нормальные галактики в миллиард-триллион раз тяжелее Солнца. Карликовые галактики менее массивны - наименьшие из наблюдаемых лишь в 100 тысяч раз тяжелее Солнца. И тут мы имеем солидный вес - масса нашей Галактики оценивается в несколько сотен миллиардов масс Солнца.

В 1925 году американский астроном Эдвин Хаббл предложил классификацию галактик по их формам, внешнему виду. Более поздние классификации галактик придерживаются схемы, предложенной Хабблом.

Эллиптические галактики . Они составляют четвертую часть от общего числа галактик и обозначаются буквой Е. На фотографиях они похожи на шар или эллипс. В зависимости от вытянутости эллипса галактике присваивается класс от 0 до 7. Галактики класса Е0 выглядят шарообразными, а галактики Е7 - как сильно вытянутый эллипс. Цвет у эллиптических галактик имеет красноватый оттенок, так как состоят они преимущественно из старых звезд. Межзвездного газа в таких системах почти нет. По общему виду эллиптические галактики похожи на шаровые звездные скопления, но только очень большие.

Спиральные галактики . К этому классу относится половина всех галактик. По внешнему виду они напоминают чечевицу или двояковыпуклую линзу. При этом толщина спиральной галактики в десятки раз меньше ее диаметра. На их фотографиях виден спиральный узор в виде двух или более (до десятка) закрученных в одну сторону спиральных ветвей или рукавов, выходящих из центра галактики.

На фоне диска галактик рукава выделяются по яркости, так как в них находится много массивных и ярких звезд, а также ярких газовых туманностей. Большинство звезд концентрируется к плоскости симметрии, называемой плоскостью галактики, образуя диск. Чем моложе звезды, тем сильнее они концентрируются к галактической плоскости. В центральной части диска находится утолщение - балдж, переходящий на больших расстояниях в гало галактики. Гало состоит из старых звезд и шаровых скоплений, которые образуют сферическую систему и не тяготеют к плоскости галактики. Самые внешние области галактик часто называют коронами.

В спиральных галактиках много межзвездного газа - до 15% от их общей массы. Много в них и молодых звезд, образовавшихся совсем недавно по сравнению с возрастом самих галактик. Примерно у половины спиральных галактик в центральной части на фотографиях видна почти прямая перемычка, называемая баром.

Обозначают спиральные галактики буквой S. Галактики с яркой, протяженной центральной частью и слабо развитыми спиралями относят к классу Sa. Если же спирали более мощные и четкие, а центр менее выделяется, то галактике присваивают индекс Sc. Промежуточный класс обозначают Sb. Если у галактики имеется центральная перемычка-бар, то к обозначению добавляется буква В, например, SBb.

Наша Галактика тоже относится к классу спиральных, возможно с баром, и Солнце располагается почти точно в ее галактической плоскости. Поэтому большинство звезд нашей системы мы видим в пределах полосы на небе в виде Млечного Пути.

Линзовидные галактики . Это промежуточный тип между спиральными и эллиптическими галактиками. У них есть балдж, гало и диск (линза), но нет спиральных рукавов. Такие галактики обозначаются S0. Среди всех галактик их примерно 20%.

Неправильные галактики . К этому классу относят остальные 5% галактик, не попавших в предыдущие. Для них характерна неправильная, клочковатая форма, возможны зачатки спиральных ветвей. Газа в таких объектах очень много - до половины от общей массы. Неправильные галактики имеют обозначение Ir.

Э. Хаббл расположил типы галактик в порядке увеличения процентного содержания газа и уменьшения вклада сферической составляющей:


В полученном так называемом "камертоне" Хаббл видел некую эволюционную последовательность форм.

Позже выяснилось, что не все галактики вмещаются в простую классификацию Хаббла. Наряду с нормальными галактиками существуют и карликовые . У них своя классификация, однако и в ней можно выделить карликовые эллиптические, дисковые и неправильные галактики, хотя спиральной структуры при этом в карликовых галактиках почти никогда не наблюдается.

Существует также класс больших галактик, яркость у которых намного меньше, чем у обычных. Ненормальным в них является отсутствие ярких звезд, которые по загадочным причинам не образуются в этих галактиках. Такие галактики называют анемичными (то есть "хилыми").

В то же время встречаются галактики, в которых происходят бурные внутренние процессы, связанные с интенсивным образованием звезд. Примером может служить объект М82 из созвездия Большой Медведицы - неправильная галактика, вещество которой в центральных областях движется с большими скоростями, "кипит". Выделяют также класс галактик с высоким содержанием молодых звезд и большой концентрацией вещества, называя их по внешнему виду голубыми компактными галактиками.

Галактики, об активности которых свидетельствует повышенное радиоизлучение, цвет, нетипичные для большинства спектральные линии, также выделяют в отдельные группы.

Галактики склонны образовывать группы и скопления. Так, наша Галактика входит в так называемую Местную группу галактик, в которой около тридцати разнообразных звездных систем, включая Туманность Треугольника и Туманность Андромеды.

А что будет, если две галактики окажутся очень близко друг к другу? Их свойства и внешний вид изменятся. На фотографиях таких пар или тесных групп галактик можно заметить хвосты и перемычки из газа и звезд, галактики часто окружены общей газовой оболочкой, их форма сильно искажена вследствие взаимного притяжения. Подобные галактики астрономы называют взаимодействующими .

Существуют также галактики-каннибалы, пожирающие своих меньших соседей, затягивая их своим гравитационным полем. В центрах многих больших скоплений галактик располагаются настоящие резиденции "королей каннибалов" - гигантских эллиптических галактик. Они "заглатывают" окружающий газ и медленно падающие на них мелкие галактики скопления.

Галактики объединяются в группы из десятков галактик и в скопления из сотен и даже тысяч галактик. Сами скопления образуют систему сверхскоплений, которые строят крупномасштабную структуру Вселенной.

Галактики являются сложными самоорганизующимися объектами, сравнимыми по уровню сложности с клеткой - основой всего живого. Изучение их в настоящее время активно продолжается, и все новые и новые загадки ждут своего часа.

Разнообразие галактик

Галактики - это большие звездные системы, в которых звезды связаны друг с другом силами гравитации. Существуют галактики, включающие триллионы звезд. Наша Галактика - Млечный Путь - также достаточно велика: в ней более 200 млрд звезд. Самые маленькие галактики содержат звезд в миллион раз меньше и скорее напоминают находящиеся в Млечном Пути шаровые скопления, только значительно больше по размерам. Помимо обычных звезд галактики включают в себя межзвездный газ, пыль, а также различные "экзотические" объекты: белые карлики, нейтронные звезды, черные дыры. Газ в галактиках не только рассеян между звездами, но и образует громадные облака, яркие туманности вокруг горячих звезд, плотные и холодные газопылевые туманности. Большие звездные системы имеют массы в сотни миллиардов масс Солнца. Наименьшие из карликовых галактик "весят" всего лишь в 100 тыс. раз больше Солнца. Таким образом, интервал масс у галактик значительно шире, чему звезд: самые "тяжелые" и самые "легкие" звезды различаются по массе менее чем в 1000 раз.

Звездные острова - многообразие галактик

Внешний вид и структура звездных систем весьма различны, и в соответствии с этим делятся на морфологические типы.

Ближайшими к нам и самыми яркими на небе галактиками являются Магелановы Облака. При исследовании неба с помощью современных телескопов обнаружено множество галактик, похожих на Магелановы Облака. Для них характерна неправильная, клочковатая форма. В таких галактиках содержится много газа - до 50% их общей массы. Этот тип называют неправильными галактиками и обозначают Ir (от англ. irregular - "неправильный").

Эллиптические галактики принято обозначать буквой E (от англ. elliptical - "эллиптический"), к которой добавляется цифра от 0 до 6, соответствующая степени уплощения системы (Е0 - "шаровые" галактики, Е6 - наиболее "сплюснутые"). Цвет у эллиптических галактик красноватый, так как состоят они преимущественно из старых звезд. Холодного газа в таких системах почти нет, но наиболее массивные из них заполнены очень разреженным горячим газом температурой более миллиона градусов.

Спиральные галактики на галактическом диске заметен спиральный узор из двух или более (до десяти) закрученных в одну сторону ветвей, или рукавов, выходящих из центра галактики. Диск погружен в разреженное слабосветящееся сфероидальное облако звезд - гало . Обозначают спиральные галактики буквой S. По степени структурности (развитости) спиральных ветвей и общей форме форме их подразделяют на типы, называемые хаббловскими типами - по имени американского астронома Эдвина Хаббла, предложившего классификацию галактик. Системы с гладкими, туго закрученными спиральными ветвями относят к типу Sa. В них центральная шарообразная часть (балдж) является яркой и протяженной, а рукава - нечеткие, размытые. Если же спирали более мощные и четкие, а центральная часть менее выделяется, то такие галактики принадлежат к типу Sb. Галактики с развитой клочковатой спиральной структурой, балдж которых слабо просматривается на общем фоне, относятся к типу Sc.

У некоторых спиральных систем в центральной части имеется почти прямая звездная перемычка - бар.

Leo A - карликовая неправильная галактика - одна из наиболее многочисленного типа галактик во Вселенной, которые, возможно, являются строительными блоками более массивных галактик.

NGC 205 - одна из представительниц семейства карликовых эллиптических галактик. NGC 205 является, одним из спутников Галактики Андромеды.


В этом случае к их обозначению после буквы S добавляется B (например SBc).
Линзовидные галактики - это промежуточный тип между спиральными и эллиптическими. У них есть балдж, гало и диск, но нет спиральных рукавов. Такие галактики обозначают SO.

Встречаются среди галактик и карликовые , которые не вписываются в классификацию Хаббла. Жизненный путь этих звездных систем настолько своеобразен, что накладывает отпечаток и на свойства звезд внутри галактик, и на свойства галактик в целом. Открытие семейства карликовых галактик началось с 30-х гг. XX в. В те времена американский астроном Харлоу Шепли обнаружил два слабых, еле заметных скопления звезд в созвездиях Скульптора и Печи. Природа их оставалась неясной до тех пор, пока не были измерены расстояния до них. Слабые скопления звезд оказались внегалактическими объектами, самостоятельными карликовыми системами очень низкой плотности. Это вызвало интерес к слабым галактикам с низкой поверхностной яркостью, и через некоторое время было известно уже множество карликовых галактик. Карликовые галактики обозначают буквой d (от англ. dwarf - "карлик"). Их можно разделить на карликовые эллиптические dE, карликовые сфероидальные dSph (Sph - сокращение от англ. sphere - "шар"), карликовые неправильные dIr и карликовые голубые компактные галактики dBCG (здесь BCG - blue compact galaxies).

Карликовые dE отличаются от нормальных эллиптических галактик главным образом размерами и массой. Это фактически те же эллиптические галактики, только с меньшим числом звезд. Состоят они в основном из старых звезд небольшой массы, содержат очень мало газа и пыли. Карликовые сфероидальные галактики во многом похожи на карликовые эллиптические, но гораздо более разрежены. Они образованы старыми водородно-гелиевыми звездами с очень низким содержанием тяжелых химических элементов. Последнее обстоятельство накладывает отпечаток на физические свойства этих звезд: они более горячие, более голубые, и эволюция их протекает несколько иначе, чем у звезд с "солнечным" химическим составом.

Другие типы карликовых галактик - dIr и dBCG - это небольшие по размерам и массе бесформенные системы, очень богатые газом. Основное различие между ними заключается в том, что в dBCG часто наблюдается интенсивное звездообразование и рождается большое число голубых массивных звезд. Благодаря этому галактики выглядят более яркими, компактными и окрашенными в голубой цвет. Галактик с хорошо развитыми спиральными ветвями среди карликов не встречается. Скорее всего для образования спиралей нужен массивный звездный диск.

Существует также класс больших спиральных звездных систем, поверхностная яркость которых намного меньше, чем у нормальных. Необычным в них является низкая плотность звездного диска. Их называют анемичными или спиральными галактиками низкой яркости.

Подсистемы в галактике (балдж, диск, гало) гравитационно взаимодействуют друг с другом, составляя единое целое. До сих пор галактики "достраивают" себя изнутри, образуя звезды и звездные скопления. "Пищей" для этого служит газ. Эллиптические галактики уже давно израсходовали свой запас газа, и молодых звезд в них нет. В других галактиках, где газ еще остался, звезды продолжают рождаться. Возникают они большими группами - звездообразованием бывают охвачены огромные области размерами до нескольких тысяч световых лет. Наиболее массивные звезды, быстро пройдя свой жизненный путь, взрываются как сверхновые. Взрывы сверхновых вызывают мощные волны сжатия в окружающей межзвездной среде, а это в свою очередь стимулирует "эпидемию" звездообразования в соседних участках галактики.

"Общественное положение" галактики зависит от ее массы. Массивные, крупные окружены многочисленной свитой из галактик поменьше. Мелкие галактики при прохождении сквозь крупные подчас "платят дань", отдавая им частично или полностью свой строительный материал - газ. Если две галактики проходят достаточно близко друг от друга, то их гравитационные поля активно влияют на движение звезд и газа в этих системах. В результате внешний вид галактик может претерпеть заметные изменения.

Спиральные галактики

В 1845 г. английский астроном лорд Росс (Уильям Парсонс) с помощью телескопа со 180-сантиметровым металлическим зеркалом обнаружил целый класс "спиральных туманностей", самым ярким примером которых явилась туманность в созвездии Гончих Псов (M 51 по каталогу Ш. Мессье). Природа этих туманностей была установлена лишь в первой половине XX столетия. В то время интенсивно проводились исследования по определению размеров нашей Галактики - Млечного Пути - и расстояний до некоторых туманностей, которые удалось разложить на звезды. Выводы были противоречивы как в оценках расстояний до туманностей, так и в определении масштабов. все встало на свои места, когда в 20-х гг. в ближайших спиральных туманностях были обнаружены цефеиды, позволившие оценить расстояния до них. Еще в 1908 г. астроном Гарвардской обсерватории Генриетта Ливитт обнаружила зависимость между периодом изменения блеска переменных звезд класса цефеид и их светимостью. Это давало возможность по величине периода узнать светимость звезды, по светимости - расстояние до нее, а следовательно, и до той звездной системы, куда она входит. Этот метод позволил определить расстояние до туманности Андромеды в 900 тыс. световых лет. Такая оценка оказалась заниженной. Тем самым были получены последние доказательства того, что спиральные туманности - это огромные звездные системы,


Большая красивая спиральная галактика с перемычкой NGC 1300 находится на расстоянии около 70 миллионов световых лет в созвездии Эридан. Размер NGC 1300 - более 100 тысяч световых лет.

Спиральная галактика M66, показанная на рисунке, имеет размеры 100 тысяч световых лет и находится на расстоянии 35 миллионов световых лет от Солнца. Это самая большая галактика в триплете Льва.


сравнимые с нашей Галактикой. С тех пор их и стали называть галактиками.

Спиральные галактики плоские, дискообразной формы, что объясняется вращением. Во время образования галактики центробежные силы препятствовали сжатию протогалактического облака или системы облаков газа в направлении, перпендикулярном оси вращения. В результате газ концентрировался к некоторой плоскости - так образовались вращающиеся диски спиральных галактик. Диск вращается не как единое твердое тело (например, колесо): период обращения звезд по краям диска намного больше, чем во внутренних частях.

Немало усилий пришлось приложить астрономам, чтобы понять причину других наблюдаемых свойств спиральных галактик. Заметный вклад в исследование их природы внесла отечественная наука. Вот как представляют себе природу спиральных ветвей галактик в наши дни. Все звезды, населяющие галактику, гравитационно взаимодействуют, в результате чего создается общее гравитационное поле галактики.

Известно несколько причин, по которым при вращении массивного диска возникают регулярные уплотнения вещества, распространяющиеся подобно волнам на поверхности воды. В галактиках они имеют форму спиралей, что связано с характером вращения диска. В спиральных ветвях наблюдается повышение плотности как звезд, так и межзвездного вещества - пыли и газа. Повышенная плотность газа ускоряет образование и последующее сжатие газовых облаков и тем самым стимулирует рождение новых звезд. Поэтому спиральные ветви являются местом интенсивного звездообразования.

Спиральные ветви - это волны плотности, бегущие по вращающемуся диску. Поэтому через некоторое время звезда, родившаяся в спирали, оказывается вне ее. У самых ярких и массивных звезд очень короткий срок жизни, они сгорают, не успев покинуть спиральную ветвь. Менее массивные звезды живут долго и доживают свой век в межспиральном пространстве диска. Маломассивные желтые и красные звезды, составляющие балдж (шарообразное "вздутие" в центре галактики), намного старше звезд, концентрирующихся в спиральных ветвях. Эти звезды родились еще до того, как сформировался галактический диск. Возникнув в центре протогалактического облака, они уже не могли быть вовлечены в сжатие к плоскости галактики и потому образуют шарообразную структуру.

Рассмотрим спиральные галактики на примере M 51, называемой Водоворотом. У этой галактике на конце одной из спиральных ветвей имеется небольшая галактика-спутник. Она обращается вокруг материнской галактики. Удалось построить компьютерную модель образования этой системы. Предполагается, что маленькая галактика, пролетая вблизи большой, привела к сильным гравитационным возмущениям ее диска. В результате в диске большой галактики создается волна плотности спиральной формы. Звезды, рождающиеся в спиральных ветвях, делают эти ветви яркими и четкими.

Балдж и диск галактики погружены в массивное гало. Некоторые исследователи предполагают, что основная масса гало заключена не в звездах, а в несветящемся (скрытом) веществе, состоящем либо из тел с массой, промежуточной между массами звезд и планет, либо из элементарных частиц, существование которых предсказывают теоретики, но которые еще предстоит открыть. Проблема природы этого вещества - скрытой массы - сейчас занимает умы многих ученых, и ее решение может дать ключ к природе вещества во Вселенной в целом.

Галактики с активными ядрами

Во всех галактиках, кроме самых небольших, выделяется яркая центральная часть, называемая ядром. В нормальных галактиках, таких, как наша, большая яркость ядра объясняется высокой концентрацией звезд. Но все же суммарное количество звезд ядра составляет лишь несколько процентов от их общего числа в галактике.

Встречаются галактики, у которых ядра особенно яркие. Причем в этих ядрах помимо звезд наблюдается яркий звездоподобный источник в центре и светящийся газ, движущийся с огромными скоростями - тысячи км в секунду. Галактики с активными ядрами были открыты американским астрономом Карлом Сейфертом в 1943 г. и впоследствии получили название сейфертовских галактик. Сейчас известны тысячи подобных объектов. Сейфертовские галактики (или просто сейферты) относятся к гигантским


Активная галактика Центавр А, в центре клубится смесь молодых голубых звездных скоплений, гигантских светящихся газовых облаков и вкрапленные темные пылевые прожилки.

Художественное изображение струй вокруг массив-ной черной дыры с акреционным диском. Струи - джеты вещества.


спиральным звездным системам. Среди них повышена доля пересеченных спиралей, т.е. галактик с баром (SB). Сейферты чаще, чем обычные галактики, образуют пары или группы, но избегают крупных скоплений. Сейферт обнаружил 12 галактик с активными ядрами, но в течение 15 лет их практически не изучали. В 1958 г. советский астрофизик Виктор Амазаспович Амбарцумян привлек внимание астрономии.

Формы проявления активности ядер неодинаковы в различных галактиках. Это может быть очень большая мощность излучения в оптической, рентгеновской или инфракрасной области спектра, причем заметно меняющаяся за несколько лет, месяцев или даже дней. В некоторых случаях наблюдается очень быстрое движение газа в ядре - со скоростями тысячи км в секунду. Иногда газ образует длинные прямолинейные выбросы. В некоторых галактиках ядра являются источниками высокоэнергетичных элементарных частиц. Эти потоки частиц нередко навсегда покидают галактику в виде радиовыбросов, или радиоджетов. Активные ядра любого типа характеризуются очень большой светимостью во всем диапазоне электромагнитного спектра. Мощность излучения сейфертовских галактик иногда достигает 10 35 Вт, что ненамного уступает светимости всей нашей галактики. Но эта огромная энергия выделяется в области диаметром около 1 пк - меньше, чем расстояние от Солнца до ближайшей звезды! Мощность излучения света (оптическая светимость) значительно ниже. Основная часть энергии излучается обычно в инфракрасном диапазоне.

Что же служит источником энергии для столь бурной активности? Что за "реактор", занимающий менее 1 пк, вырабатывает столько энергии? Окончательного ответа пока не знает никто, но в результате длительной работы теоретиков и наблюдателей разработано несколько наиболее вероятных моделей. Первой была выдвинута гипотеза, что в центре галактики находится плотное массивное скопление молодых звезд. В таком скоплении часто должны происходить взрывы сверхновых. Эти взрывы могут объяснить и наблюдаемые выбросы вещества из ядер, и переменность излучения. Вторая модель была предложена в конце 60-х гг. отчасти по аналогии с тогда только открытыми пульсарами. Согласно этой версии, источником активности ядра служит сверхмассивный звездоподобный объект с мощным магнитным полем - так называемый магнетоид. Третья модель связана с таким загадочным объектом, как черная дыра. Предполагается наличие черной дыры массой в десятки или сотни миллионов масс Солнца в центре галактики. В результате аккрекции (падения) вещества на черную дыру выделяется огромное количество энергии. При падении в гравитационном поле черной дыры вещество разгоняется до скоростей, близких к скорости света. Затем при столкновении газовых масс вблизи черной дыры энергия движения преобразуется в излучение электромагнитных волн.

Спектральные наблюдения на Хаббловском космическом телескопе и крупных наземных телескопах подтвердили наличие больших масс несветящегося вещества в ядрах целого ряда галактик. Это хорошо согласуется с предположением, что причиной активности ядер являются массивные черные дыры. Черные дыры массой более миллиона масс Солнца могут иметься у значительной части галактик. Есть наблюдательные свидетельства существования черных дыр в ядрах нашей Галактики и туманности Андромеды. Но поскольку их масса сравнительно невелика, активность ядер слабая.

Взаимодействующие галактики

В середине XX столетия крупные телескопы позволили астрономам исследовать положения и формы десятков тысяч слабых галактик. Обращало на себя внимание, что часть галактик (5-10%) имеет весьма странный, искаженный вид, так что их иногда трудно отнести к какому-то морфологическому типу. Некоторые из них выглядят сильно ассиметричными, словно помятыми. Иногда две галактики окружены общим светящимся звездным туманом либо связаны звездной или газовой перемычкой. А в отдельных случаях от галактик отходят длинные хвосты, протянувшиеся на сотни тысяч световых лет в межгалактическое пространство. Некоторые системы отличаются характером внутренних движений межзвёздного газа, которые не сводятся к простому обращению вещества вокруг центра. Такие некруговые движения не могут продолжаться долго, они должны затухать за один-два оборота диска. 3начит, они возникли сравнительно недавно. Быть может, мы наблюдаем молодые, ещё не д0 конца сформировавшиеся галактики? Нет, анализ звёздного состава показал, что они такие же старые, Как и большинство других.

Чаще всего эти необычные звёздные системы являются членами пар или тесных групп, И это говорит о том, что все перечисленные особенности - результат влияния галактик друг на друга. Известный советский астроном Борис Александрович Воронцов-Вельяминов, первым начавший исследование таких объектов, дал им название "взаимодействующие галактики". Он описал и занес в каталоги тысячи взаимодействующих систем, в том числе редчайшие по своей структуре и форме


Исследования объекта Arp 230 показали, что выглядящая одиноко эта спиральная галактика, на самом деле, является результатом недавнего столкновения двух спиральных галактик.

Центавр A по-видимому является продуктом столкновения двух галактик, обломки которого продолжают заглатываться черной дырой.


галактики, необычный внешний вид которых до сих пор озадачивает астрономов. Статистические исследования привели к выводу, что большинство взаимодействующих галактик - это не случайно встретившиеся странники во Вселенной, а родственники, связанные Общим происхождением. В cвоем движении они то сближаются, то удаляются друг от друга. Гравитационные поля близких звездных систем создают приливные силы, достаточные для того, чтобы исказить форму галактик ИЛИ изменить их внутреннюю структуру. Теоретически описать этот процесс довольно сложно. Очень большую роль в его исследовании сыграло построение компьютерных моделей. Те процессы, которые в природе занимают сотни миллионов лет, на экране монитора разворачиваются буквально у нас на глазах. При сближении звездных систем искажается их форма, возникают мощные спиральные ветви, рождаются перемычки между галактиками. Позднее, когда галактики начинают удаляться друг от друга, из одной или обеих выбрасываются длинные хвосты из газа и звезд. При сильном взаимодействии необратимо меняются размеры, форма и даже морфологический тип галактик.

Характер взаимодействия зависит от многих факторов. Например, от того, обладает ли галактика звездным диском, много ли в ней межзвездного газа, на какое расстояние подходит к ней соседняя галактика, в каком направлении и с какой скоростью она движется, как ориентирована ее орбита. Поэтому формы взаимодействующих систем так разнообразны. Но можно сделать одно общее предсказание: если галактики не случайно встретились в пространстве, а образуют систему, то их взаимодействие рано или поздно должно привести к тесному сближению и последующему слиянию. Этот процесс может продолжаться более миллиарда лет. Такие сливающиеся системы действительно были обнаружены среди известных галактик. В них наблюдаются двойные, реже кратные ядра, светлые струи некогда выброшенного в межгалактическое пространство вещества или необычайно протяженные звездные "короны".

Взаимодействие играет очень большую роль в эволюции звездных систем. Многие галактики должны были испытать сильное взаимодействие, завершившееся слиянием, в далеком прошлом. Сейчас их внешний вид может быть совершенно нормален, и только специальные исследования позволяют заподозрить некогда пережитые ими бурные процессы. Так, ближайшая к нам радиогалактика Центавр А считается результатом слияния эллиптической системы с дисковой, межзвездный газ которой образовал гигантский газопылевой диск. Он расположен к нам ребром и поэтому виден на фотографиях как темная полоса, пересекающая галактику. Можно предположить, что миллиарды лет назад взаимодействие и слияние галактик происходили значительно чаще - ведь многие галактики уже успели к настоящему времени слиться в единые системы. И действительно, проведенные на Хаббловском космическом телескопе наблюдения далеких и слабых галактик, свет от которых летел к нам миллиарды лет, показали, что среди них повышена доля искаженных, взаимодействующих систем.

Взаимодействие галактик не ограничивается простым изменением их структуры или типа. Влияние друг на друга даже сравнительно далеких галактик часто приводит к вспышке звездообразования в одной из них или в обеих. Приливное взаимодействие галактик способствует формированию массивных облаков газа. Кроме того, относительные скорости облаков возрастают, и они чаще сталкиваются друг с другом. Именно эти процессы во многом определяют интенсивность рождения звезд. Наконец, среди взаимодействующих галактик довольно много систем с активными ядрами. По современным представлениям, для активности ядра требуется массивный компактный объект в центре галактики и газ, который может свободно падать на него.

Основные типы галактик и их отличительные особенности

Галактики. Квазары.

Типы, состав и структура галактик. Системы галактик. Радиогалактики. Квазары.
-наша галактика Млечный путь

Распределение звезд в пространстве. Млечный путь. Структура и размер нашей Галактики.

Движение Солнца и звезд в Галактике. Положение Солнца в Галактике.

Галактики – это большие звездные системы, в которых звезды связаны друг с другом силами гравитации.

различают три основных класса галактик:

Спиральные галактики - характерны сравнительно яркими ветвями, расположенными по спирали. Ветви выходят либо из яркого ядра (такие галактики обозначаются S), либо из концов светлой перемычки, пересекающей ядро (обозначаются - SB).

Спиральные галактики – самый многочисленный тип – составляют около 50 % всех наблюдаемых галактик. Большая часть звёзд галактики занимает линзообразный объём (галактический диск). На галактическом диске заметен спиральный узор из двух или более закрученных в одну сторону ветвей или рукавов, выходящих из центра галактики. Различаются два типа спиралей. У одних, обозначаемых SA или S, спиральные ветви выходят непосредственно из центрального уплотнения. У других они начинаются у концов продолговатого образования, в центре которого находится овальное уплотнение. Создаётся впечатление, что две спиральные ветви соединены перемычкой, почему такие галактики и называются пересеченными спиралями; они обозначаются символом SB.

Диск спиральных галактик погружён в разреженное слабосветящееся облако звёзд – гало.

Масса спиральных галактик до ~10 12 М¤ (масс Солнца).

II. Эллиптические галактики (обозначаются Е) - имеющие форму эллипсоидов.

Эллиптические галактики состоят из звезд второго типа населения. Вращение обнаружено лишь у наиболее сжатых из них. Космической пыли в них, как правило, нет, чем они отличаются от неправильных и особенно спиральных галактик, в которых поглощающее свет пылевое вещество имеется в большом количестве.

Эллиптические галактики составляют 25% от общего числа галактик. Они выглядят как нерезкий круг или эллипс, яркость которого быстро уменьшается от центра к периферии. По форме эллиптические галактики очень разнообразны: бывают как шаровые, так и очень сплюснутые. В связи с этим они подразделены на 8 подклассов – от Е0 (шаровая форма, сжатие отсутствует) до Е7 (наибольшее сжатие). Размеры больших a и малых b осей эллиптических галактик измеряют по фотографиям и по ним определяют сжатие галактик:

Это наиболее простые по структуре галактики. Состоят, преимущественно, из старых звёзд. Холодного газа, как и космической пыли в них почти нет, наиболее массивные галактики заполнены очень разреженным горячим газом с температурой более 1 000 000 К, поэтому цвет этих галактик красноватый. Вращение обнаружено лишь у наиболее сжатых из эллиптических галактик.



III. Иррегулярные (неправильные ) галактики (обозначаются I) - обладающие неправильными формами.

Для неправильных или иррегулярных галактик (Ir) характерна неправильная, клочковатая форма. Неправильные галактики характеризуются отсутствием центральных уплотнений и симметричной структуры, а также низкой светимостью. Такие галактики содержат много газа (в основном нейтрального водорода) – до 50% их общей массы. К этому типу относится около 5% всех звёздных систем.

Особой разновидностью галактик являются радиогалактики .

Радиоволны в той или иной степени излучают все галактики. Однако у большинства обычных галактик на радиоизлучение приходится лишь ничтожная доля всей их мощности, в то время как поток радиоволн от некоторых галактик оказывается сравнимым с мощностью их оптического излучения. Такие галактики называются радиогалактиками. Мощность их радиоизлучения часто в тысячи и десятки тысяч раз больше, чем у обычных галактик.

Примером очень мощной радиогалактики может служить галактика, связанная с одним из источников радиоизлучения в созвездии Лебедя, называемым Лебедь-А. Между двумя его компонентами находится слабая галактика 18m, пересечённая широкой тёмной полосой (возможно, две галактики).

Расстояние до источника Лебедь-А составляет 170 Мпк. Мощность его радиоизлучения в шесть раз превышает мощность оптического излучения, больше половины которого приходится на эмиссионные линии.

Имеется также несколько десятков других радиогалактик, которые удалось отождествить с оптическими объектами – гигантскими, чаще всего эллиптическими галактиками.

Компактные далекие галактики, обладающие мощным нетепловым радиоизлучением, называются N-галактиками.

Звездообразные источники с таким радиоизлучением, называются квазарами (квазозвездными радиоисточниками), а галактики обладающие мощным радиоизлучением и имеющие заметные угловые размеры, - радиогалактиками.

Радиогалактики - это галактики, у которых ядра находятся в процессе распада. Выброшенные плотные части, продолжают дробиться, возможно, образуют новые галактики - сестры, или спутники галактик меньшей массы. При этом скорости разлета осколков могут достигать огромных значений. Исследования показали, что многие группы и даже скопления галактик распадаются: их члены неограниченно удаляются друг от друга, как если бы они все были порождены взрывом.

Размеры галактик весьма разнообразны и колеблются от десятков парсек до десятков тысяч парсек.

Ближайшая к нам галактика М -31, находится на расстоянии 2 млн световых лет. В созвездии Вероники обнаружено около тысячи таких галактик, удалённых от нас на миллионы световых лет.

Галактики по типу бывают неправильные, эллиптические и спиральные.

Самой мощной из известных радиога­лактик и даже самым мощным внегалактическим ви­димым источником является очень далекая галактика Лебедь А.

В 1963 году были открыты квазары – самые мощные источники радиоизлучения во Вселенной со светимостью в сотни раз большей светимости галактик и размерами в десятки раз меньшими их. Возможно, что квазары представляют собой нестационарные ядра новых галактик, и процесс образования галактик продолжается и поныне. Квазары имеют звёздообразный вид. Для квазаров характерно внетепловое излучение, широкие эмиссионные линии со значительным красным смещением. Известно измеренных более 1500 квазаров, больше оптических, чем радиоквазаров. Около нескольких близких квазаров обнаружены слабые туманности, состоящие из звёзд. По светимости они примыкают к сейфертовским галактикам, обладают переменностью излучения и выбросами вещества с огромными скоростями. При небольших размерах (не более 1 светового месяца) средний квазар излучает вдвое больше энергии, чем вся наша Галактика, имеющая в поперечнике размер в 100 тысяч световых лет и состоящая из 200 млрд. звёзд.

В 1963 г. некоторые источники радиоизлучения с угловыми размерами в 1" или меньше были отождествлены со звездообразными объектами в оптическом диапазоне, иногда окружёнными диффузным ореолом или выбросами вещества. Изучено более 1000 подобных объектов, названных квазарами (англ. quasar, сокр. от quasistellar radiosource – квазизвездный источник радиоизлучения).

Такие же оптические объекты, но не обладающие сильным радиоизлучением, были открыты в 1965 г. и названы квазизвездными галактиками (квазагами), а вместе с квазарами их стали называть квазизвездными объектами.

Квазары, как и активные ядра галактик, обладают избытком излучения в инфракрасной и рентгеновской областях спектра.

Расстояния, найденные по красным смещениям, показывают, что квазары – самые далёкие из известных нам объектов. Если это действительно так, то они позволяют изучить свойства вещества на протяжении огромных расстояний более 10 9 пк, которым соответствуют масштабы времени в миллиарды лет.

Один из ближайших квазаров 3С 273 (номер по Третьему Кембриджскому каталогу), наблюдаемый как объект 13m, находится от нас на расстоянии 500 млн. пк и удаляется со скоростью 50 000 км./с. Гигантские галактики с такого расстояния выглядели бы слабее 18m; следовательно, мощность оптического излучения квазаров в сотни раз больше, чем у самых ярких галактик.

Наиболее удивительным свойством квазаров оказалась переменность излучения некоторых из них, открытая сначала в оптическом, а затем и в радиодиапазоне. Колебания светимости происходят неправильным образом за время порядка года и даже меньше (до недели). Отсюда можно сделать вывод, что размеры квазаров не превышают пути, проходимого светом за время существенного изменения светимости (иначе переменность не наблюдалась бы) и заведомо меньше светового года, т.е. не более десятков тысяч астрономических единиц.

В 1965 г. Сандейдж в США сделал еще одно сен­сационное открытие. Он обнаружил в направлении на полюс Галактики множество очень слабых голу­бых звездообразных объектов, по цвету сходных с квазарами. Он получил фотографии спектров шести из них. Один спектр принадлежал обычной, сравни­тельно близкой звезде, два спектра были без всяких линий, а в трех случаях обнаружились яркие линии с огромными красными смещениями, как у квазаров, хотя радиоизлучение от них пока не обнаружено.

Такие объекты Сандейдж назвал «квазизвездными галактиками» или, сокращенно, квазагами и из изме­рения числа голубых объектов заключил, что их долж­но быть в сотни раз больше, чем квазаров.

Полагают, что, может быть, квазары являются кратковременной фазой бурного развития квазагов, отчего мощное радиоизлучение наблюдается только у немногих из них, когда мы их и регистрируем как квазары. Во всяком случае, открытие квазаров и ква­загов явилось самым волнующим открытием в астро­номии не только за последнее время. Ведь это какие-то совершенно новые виды небесных светил с загадочны­ми свойствами, быть может, подводящими нас к от­крытию величайших законов природы.

квазар - невероятно мощный точечный источник радиоизлучения; по одной из гипотез, он представляет собой удаленную активную галактику, которая получает энергию в результате аккреции вещества на сверхмассивную черную дыру, находящуюся в центре квазара.

вскоре после открытия квазаров были обнаружены такой же природы оптические объекты без признаков радиоизлучения. Они получили название "радиоспокойные" квазары. Оказалось, что таких квазаров во много десятков раз больше, чем радиоизлучающих.

Выше мы уже говорили о переменности оптического излучения квазаров.

Как крайнее проявление такой переменности следует упомянуть о "вспышке" квазара 3С 279. В настоящее время он наблюдается как слегка переменная слабая звездочка 18-й величины. Однако на старых астрономических фотографиях довоенного времени (т.е. задолго до открытия квазаров) этот объект оказался существенно более ярким - почти 13 величины! Это означает, что он был ярче, чем теперь, в сотню раз! Зная по красному смещению расстояние 3С 279, можно найти, что во время "вспышки" его светимость была почти в сотню раз больше, чем у 3С 273 и в десять тысяч раз больше, чем у нашей Галактики! И при этом размеры излучающей области ничтожно малы, меньше светового года. В настоящее время квазар 3С 279 считается самым мощным "маяком" Вселенной. Мы видим, что разброс значений светимостей метагалактических объектов чрезвычайно вели почти такой же, как у звезд!

Практически все квазары являются источниками рентгеновского излучения, мощность которого меняется в широких пределах, от сотых долей полного излучения нашей Галактики ( 10 44 эрг/с) до значений, в тысячу раз превосходящих полную мощность Галактики. Как правило, рентгеновское излучение квазаров переменно; это указывает (как в случае радиоизлучения), что оно возникает в малой области. Наличие мощного рентгеновского излучения квазаров и активных ядер галактик свидетельствует о происходящих там грандиозных процессах, связанных с нагревом газа до температуры порядка сотни миллионов градусов. По-видимому, часть рентгеновского излучения не связана с горячей плазмой, а создается релятивистскими электронами, взаимодействующими с полем излучения большой плотности (явление Комптона). Всего было исследовано рентгеновское излучение более чем 100 квазаров и большого количества сейфертовских галактик и скоплений.

Связанная силами гравитационного взаимодействия. Количество звезд и размеры галактик могут быть различными. Как правило, галактики содержат от нескольких миллионов до нескольких триллионов (1 000 000 000 000) звезд. Кроме обычных звезд и межзвездной среды галактики также содержат различные туманности. Размеры галактик от нескольких тысяч до нескольких сотен тысяч световых лет. А расстояние между галактиками достигает миллионов световых лет.

Около 90 % массы галактик приходится на долю темной материи и энергии. Природа этих невидимых компонентов пока не изучена. Существуют свидетельства того, что в центре многих галактик находятся сверхмассивные . Пространство между галактиками практически не содержит вещества и имеет среднюю плотностью меньше одного атома на кубический метр. Предположительно, в видимой части вселенной находится около 100 млрд. галактик.

По классификации, предложенной астрономом Эдвином Хабблом, в 1925 году существуют несколько видов галактик:

  • эллиптические(E),
  • линзообразные(S0),
  • обычные спиральные(S),
  • пересеченные спиральные(SB),
  • неправильные (Ir).


Эллиптические галактики — класс галактик с четко выраженной сферической структурой и уменьшающейся к краям яркостью. Они сравнительно медленно вращаются, заметное вращение наблюдается только у галактик со значительным сжатием. В таких галактиках нет пылевой материи, которая в тех галактиках, в которых она имеется, видна как тёмные полосы на непрерывном фоне звёзд галактики. Поэтому внешне эллиптические галактики отличаются друг от друга в основном одной чертой — большим или меньшим сжатием.

Доля эллиптических галактик в общем числе галактик в наблюдаемой части вселенной — около 25 %.

Спиральные галактики названы так, потому что имеют внутри диска яркие рукава звёздного происхождения, которые почти логарифмически простираются из балджа (почти сферического утолщения в центре галактики). Спиральные галактики имеют центральное сгущение и несколько спиральных ветвей, или рукавов, которые имеют голубоватый цвет, так как в них присутствует много молодых гигантских звезд. Эти звезды возбуждают свечение диффузных газовых туманностей, разбросанных вместе с пылевыми облаками вдоль спиральных ветвей. Диск спиральной галактики обычно окружён большим сфероидальным гало (светящееся кольцо вокруг объекта; оптический феномен), состоящим из старых звёзд второго поколения. Все спиральные галактики вращаются со значительными скоростями, поэтому звезды, пыль и газы сосредоточены у них в узком диске. Обилие газовых и пылевых облаков и присутствие ярких голубых гигантов говорит об активных процессах звездообразования, происходящих в спиральных рукавах этих галактик.



Многие спиральные галактики имеют в центре перемычку (бар), от концов которой отходят спиральные рукава. Наша Галактика также относится к спиральным галактикам с перемычкой.

Линзообразные галактики — это промежуточный тип между спиральными и эллиптическими. У них есть балдж, гало и диск, но нет спиральных рукавов. Их примерно 20% среди всех звездных систем. В этих галактиках яркое основное тело - линза, окружено слабым ореолом. Иногда линза имеет вокруг себя кольцо.

Неправильные галактики — это галактики, которые не обнаруживают ни спиральной, ни эллиптической структуры. Чаще всего такие галактики имеют хаотичную форму без ярко выраженного ядра и спиральных ветвей. В процентном отношении составляют одну четверть от всех галактик. Большинство неправильных галактик в прошлом являлись спиральными или эллиптическими, но были деформированы гравитационными силами.

Эволюция галактик

Образование галактик рассматривают как естественный этап эволюции , происходящий под действием гравитационных сил. Как предполагают ученые, около 14 млрд. лет назад произошел большой взрыв, после которого Вселенная везде была одинаковой. Затем частицы пыли и газа начали группироваться, объединяться, сталкиваться и таким образом появлялись сгустки, которые позднее превращались в галактики. Многообразие форм галактик связано с разнообразием начальных условий образования галактик. Скопление газообразного водорода в пределах таких сгустков стало первыми звездами.

С момента зарождении галактика начинает сжиматься. Сжатие галактики длится около 3 млрд лет. За это время происходит превращение газового облака в звездную систему. Звезды образуются путем гравитационного сжатия облаков газа. Когда в центре сжатого облака достигаются плотности и температуры, достаточные для эффективного протекания термоядерных реакций, рождается звезда. В недрах массивных звезд происходит термоядерный синтез химических элементов тяжелее гелия. Эти элементы попадают в первичную водородно-гелиевую среду при взрывах звезд или при спокойном истечении вещества со звездами. Элементы тяжелее железа образуются при грандиозных взрывах сверхновых звезд. Таким образом, звезды первого поколения обогащают первичный газ химическими элементами, тяжелее гелия. Эти звезды наиболее старые и состоят из водорода, гелия и очень малой примеси тяжелых элементов. В звездах второго поколения примесь тяжелых элементов более заметная, так как они образуются из уже обогащенного тяжелыми элементами первичного газа.

Процесс рождения звезд идет при продолжающемся сжатии галактики, поэтому формирование звезд происходит все ближе к центру системы, и чем ближе к центру, тем больше должно быть в звездах тяжелых элементов. Этот вывод хорошо согласуется с данными о содержании химических элементов в звездах гало нашей Галактики и эллиптических галактик. Во вращающейся галактике звезды будущего гало образуются на более ранней стадии сжатия, когда вращение еще не повлияло на общую форму галактики. Свидетельствами этой эпохи в нашей Галактике являются шаровые звездные скопления.

Когда прекращается сжатие протогалактики, кинетическая энергия образовавшихся звезд диска равна энергии коллективного гравитационного взаимодействия. В это время, создаются условия для образования спиральной структуры, а рождение звезд происходит уже в спиральных ветвях, в которых газ достаточно плотный. Это звезды третьего поколения . К ним относится наше .

Запасы межзвездного газа постепенно истощаются, рождение звезд становится менее интенсивным. Через несколько миллиардов лет, когда будут исчерпаны все запасы газа, спиральная галактика превратится в линзообразную, состоящую из слабых красных звезд. Эллиптические галактики уже находятся на этой стадии: весь газ в них израсходован 10-15 млрд. лет назад.

Возраст галактик равен примерно возрасту Вселенной. Одним из секретов астрономии остаётся вопрос о том, что из себя представляют ядра галактик. Очень важным открытием явилось то, что некоторые ядра галактик активны. Это открытие было неожиданным. Раньше считалось, что ядро галактики - это не больше чем скопление сотен миллионов звёзд. Оказалось, что и оптическое и радиоизлучение некоторых галактических ядер может меняться за несколько месяцев. Это означает, что в течение короткого времени из ядер освобождается огромное количество энергии, в сотни раз превышающее то, которое освобождается при вспышке сверхновой. Такие ядра получили название «активных», а процессы, происходящие в них, «активность».

В 1963 году были обнаружены объекты нового типа, находящиеся за приделами нашей галактики. Эти объекты имеют звездообразный вид. Со временем выяснили, что их светимость во много десятков раз превосходит светимость галактик! Самое удивительное то, что их яркость меняется. Мощность их излучения в тысячи раз превосходит мощность излучения активных ядер. Эти объекты назвали . Сейчас считается, что ядра некоторых галактик представляют собой квазары.


В 1936 году Эдвин Хаббл предложил последовательность эволюции галактик, которая, с незначительными модификациями, остается актуальной до сих пор. По этой классификации существует четыре основных типа галактик. Иногда к отдельному виду относят карликовые галактики, однако ничем, кроме своего относительно малого размера они не выделяются и сами принадлежат к тому или иному типу в классической категоризации.


©GALEX, JPL-Caltech, NASA

Эллиптическая галактика

Со стороны выглядит как гигантская звезда – светящийся шар с сильнейшей яркостью в центре и тускнеющий к краям. Эллиптические, или сфероидальные галактики почти полностью состоят из старых звезд, поэтому всегда имеют желтый или красноватый оттенок. Новые звезды в них практически не образуются, так как количество межзвездного газа и пыли в них ничтожно (хотя встречаются и исключения). Отличаются между собой эллиптические звездные системы лишь по размеру и степени сжатия. Именно по сжатию их и классифицируют, от E0 до E7. Составляют примерно четверть из числа видимых галактик. По классификации Хаббла – это начальная стадия галактической эволюции.


©NASA/ESA

Спиральная галактика

Самый распространенный тип и, вероятно, самый красивый – составляет более половины числа всех известных галактик. Выглядит как диск с ярким желтым шаром в центре, вокруг которого в виде спиралей закручены более тусклые ветви-рукава голубоватого оттенка (из-за наличия особых звезд – белых и голубых сверхгигантов).

От эллиптических звездных систем отличается целым рядом особенностей строения. Во-первых, у спиральных галактик присутствуют рукава, где проходят процессы активного звездообразования. Во-вторых, присутствует звездный диск – относительно тонкий слой материи вдоль плоскости галактики, где находится основная масса объектов системы, и звезды в котором вращаются вокруг центра диска. В-третьих, широко наблюдается наличие межзвездного газа и пыли – необходимой для рождения звезд среды. Многие спиральные галактики имеют в своем центре своеобразную перемычку (бар), от концов которой расходятся рукава. Классифицируются буквой S и различаются по плотности расположения рукавов (Sa-Sd, с перемычкой – SBa-SBd).

Количество рукавов в среднем составляет пару, однако встречается и больше; в некоторых случаях рукава отличаются по размеру. Все они (если не переживают галактическое столкновение) закручены в одну сторону вокруг центра, где сосредоточена основная масса вещества в виде сверхмассивной черной дыры и плотного шарообразного скопления из старых звезд – балджа.

И наша галактика – Млечный путь, и Туманность Андромеды, с которой мы неминуемо столкнемся через 4 миллиарда лет, – обе представляют собой спиральные галактики. Солнце находится между рукавов и вдали от галактического центра, причем скорость его движения примерно равна скорости вращения рукавов; таким образом, солнечная система избегает опасных для земной жизни областей активного звездообразования, где часто вспыхивают сверхновые.


©NASA

Линзообразная галактика

По классификации Хаббла это промежуточный тип между эллиптической и спиральной галактиками (S0). Линзообразные звездные системы обладают звездным диском вокруг центрального шаровидного скопления-балджа, однако рукава относительно малы и выражены не очень ярко, а количества межзвездной газопылевой материи недостаточно для активного рождения новых звезд. Основные жители – старые большие звезды, красного или желтого цветов.

Различаются по количеству межзвездной пыли и плотности перемычки в галактическом центре. Составляют примерно 20% числа галактик.


©NASA/ESA

Неправильная галактика

Ни эллипс, ни спираль – неправильные галактики не обладают ни одной из распространенных форм. Как правило, это хаотически связанные гравитацией звездные скопления, порой не имеющие четкой формы и даже ярко выраженного центра. Составляют примерно 5% галактик.

Почему они так сильно отличаются от своих галактических собратьев? Очень вероятно, что каждая такая звездная система когда-то была эллиптической или спиральной, но ее изуродовало столкновение с другой галактикой, или тесное соседство с ней.

Делятся на два основных типа: те, кто имеет хоть какое-то подобие структуры, позволяющее отнести их к последовательности Хаббла (Irr I), и те, кто не обладает даже подобием (Irr II).

Иногда выделяют третий тип – карликовые неправильные галактики (dl или dIrr). В них наблюдается низкое количество тяжелых элементов и большое количество межзвездного газа, что делает их похожими на протогалактики ранней Вселенной. Поэтому изучение этого вида неправильных галактик имеет важное значение для понимания процесса галактической эволюции.



©NASA/ESA