Канальцевая реабсорбция – процесс обратного всасывания воды, аминокислот, ионов металла, глюкозы и других необходимых веществ из ультрафильтрата и возвращения их в кровь. Николай агаджанян - нормальная физиология

Кальцитонин, или тиреокальцитонин, вместе с паратгормоном околощитовидных желез участвует в регуляции кальциевого обмена. Под его влиянием снижается уровень кальция в крови (гипокальциемия). Это происходит в результате действия гормона на костную ткань, где он активирует функцию остеобластов и усиливает процессы минерализации. Функция остеокластов, разрушающих костную ткань, напротив, угнетается. В почках и кишечнике кальцитонин угнетает реабсорбцию кальция и усиливает обратное всасывание фосфатов. Продукция тиреокальцитонина регулируется уровнем кальция в плазме крови по типу обратной связи. При снижении содержания кальция тормозится выработка тиреокальцитонина, и наоборот.

Околощитовидные (паращитовидные) железы

Человек имеет 2 пары околощитовидных желез, расположенных на задней поверхности или погруженных внутри щитовидной железы. Главные, или оксифильные, клетки этих желез вырабатывают паратгормон, или паратирин, или паратиреоидный гормон (ПТГ). Паратгормон регулирует обмен кальция в организме и поддерживает его уровень в крови. В костной ткани паратгормон усиливает функцию остеокластов, что приводит к деминерализации кости и повышению содержания кальция в плазме крови (гиперкальциемия). В почках паратгормон усиливает реабсорбцию кальция. В кишечнике повышение реабсорбции кальция происходит благодаря стимулирующему действию паратгормона на синтез кальцитриола – активного метаболита витамина D3. Витамин D3 образуется в неактивном состоянии в коже под воздействием ультрафиолетового излучения. Под влиянием паратгормона происходит его активация в печени и почках. Кальцитриол повышает образование кальцийсвязывающего белка в стенке кишечника, что способствует обратному всасыванию кальция. Влияя на обмен кальция, паратгормон одновременно воздействует и на обмен фосфора в организме: он угнетает обратное всасывание фосфатов и усиливает их выведение с мочой (фосфатурия).

Активность околощитовидных желез определяется содержанием кальция в плазме крови. Если в крови концентрация кальция возрастает, то это приводит к снижению секреции паратгормона. Уменьшение уровня кальция в крови вызывает усиление выработки паратгормона.

Удаление околощитовидных желез у животных или их гипофункция у человека приводит к усилению нервно-мышечной возбудимости, что проявляется фибриллярными подергиваниями одиночных мышц, переходящих в спастические сокращения групп мышц, премущественно конечностей, лица и затылка. Животное погибает от тетанических судорог.

Гиперфункция околощитовидных желез приводит к деминерализации костной ткани и развитию остеопороза. Гиперкальциемия усиливает склонность к камнеобразованию в почках, способствует развитию нарушений электрической активности сердца, возникновению язв в желудочно-кишечном тракте в результате повышенных количеств гастрина и НСl в желудке, образование которых стимулируют ионы кальция.

Надпочечники

Надпочечники являются парными железами. Это эндокринный орган, который имеет жизненно важное значение. В надпочечниках выделяют два слоя – корковый и мозговой. Корковый слой имеет мезодермальное происхождение, мозговой слой развивается из зачатка симпатического ганглия.

Гормоны коры надпочечников

В коре надпочечников выделяют 3 зоны: наружную – клубочковую, среднюю – пучковую и внутреннюю – сетчатую. В клубочковой зоне продуцируются в основном минералокортикоиды, в пучковой – глюкокортикоиды, в сетчатой – половые гормоны преимущественно андрогены). По химическому строению гормоны коры надпочечников являются стероидами. Механизм действия всех стероидных гормонов заключается в прямом влиянии на генетический аппарат ядра клеток, стимуляции синтеза соответствующих РНК, активации синтеза транспортирующих катионы белков и ферментов, а также повышении проницаемости мембран для аминокислот.

Минералокортикоиды.

К этой группе относятся альдостерон, дезоксикортикостерон, 18-оксикортикостерон, 18-оксидезоксикортикостерон. Эти гормоны участвуют в регуляции минерального обмена. Основным представителем минералокортикоидов является альдостерон. Альдостерон усиливает реабсорбцию ионов натрия и хлора в дистальных почечных канальцах и уменьшает обратное всасывание ионов калия. В результате этого уменьшается выделение натрия с мочой и увеличивается выведение калия. В процессе реабсорбции натрия пассивно возрастает и реабсорбция воды. За счет задержки воды в организме увеличивается объем циркулирующей крови, повышается уровень артериального давления, уменьшается диурез. Аналогичное влияние на обмен натрия и калия альдостерон оказывает в слюнных и потовых железах.

Альдостерон способствует развитию воспалительной реакции. Его провоспалительное действие связано с усилением экссудации жидкости из просвета сосудов в ткани и отечности тканей. При повышенной продукции альдостерона усиливается также секреция водородных ионов и аммония в почечных канальцах, что может привести к изменению кислотно-основного состояния – алкалозу.

В регуляции уровня альдостерона в крови имеют место несколько механизмов, основной из них – это ренин-ангиотензин-альдостероновая система. В небольшой степени продукцию аль-достерона стимулирует АКТГ аденогипофиза. Гипонатриемия или гиперкалиемия по механизму обратной связи стимулирует выработку альдостерона. Антагонистом альдостерона является натрийуретический гормон предсердий.

Глюкокортикоиды.

К глюкокортикоидным гормонам относятся кортизол, кортизон, кортикостерон, 11-дезоксикортизол, 11-дегидрокортикостерон. У человека наиболее важным глюкокортикоидом является кортизол.

Эти гормоны оказывают влияние на обмен углеводов, белков и жиров:

1. Глюкокортикоиды вызывают повышение содержания глюкозы в плазме крови (гипергликемия). Этот эффект обусловлен стимулированием процессов глюконеогенеза в печени, т. е. образования глюкозы из аминокислот и жирных кислот. Глюкокортикоиды угнетают активность фермента гексокиназы, что ведет к уменьшению утилизации глюкозы тканями. Глюкокортикоиды являются антагонистами инсулина в регуляции углеводного обмена.

2. Глюкокортикоиды оказывают катаболическое влияние на белковый обмен. Вместе с тем они обладают и выраженным анти-анаболическим действием, что проявляется снижением синтеза особенно мышечных белков, так как глюкокортикоиды угнетают транспорт аминокислот из плазмы крови в мышечные клетки. В результате снижается мышечная масса, может развиться остеопороз, уменьшается скорость заживления ран.

3. Действие глюкокортикоидов на жировой обмен заключается в активации липолиза, что приводит к увеличению концентрации жирных кислот в плазме крови.

4. Глюкокортикоиды угнетают все компоненты воспалительной реакции: уменьшают проницаемость капилляров, тормозят экссудацию и снижают отечность тканей, стабилизируют мембраны лизосом, что предотвращает выброс протеолитических ферментов, способствующих развитию воспалительной реакции, угнетают фагоцитоз в очаге воспаления. Глюкокортикоиды уменьшают лихорадку. Это действие связано с уменьшением выброса интерлейкина-1 из лейкоцитов, который стимулирует центр теплопродукции в гипоталамусе.

5. Глюкокортикоиды оказывают противоаллергическое действие. Это действие обусловлено эффектами, лежащими в основе противовоспалительного действия: угнетение образования факторов, усиливающих аллергическую реакцию, снижение экссудации, стабилизация лизосом. Повышение содержания глюкокортикоидов в крови приводит к уменьшению числа эозинофилов, концентрация которых обычно увеличена при аллергических реакциях.

6. Глюкокортикоиды угнетают как клеточный, так и гуморальный иммунитет. Они снижают продукцию Ти В-лимфоцитов, уменьшают образование антител, снижают иммунологический надзор. При длительном приеме глюкокортикоидов может возникнуть инволюция тимуса и лимфоидной ткани. Ослабление защитных иммунных реакций организма является серьезным побочным эффектом при длительном лечении глюкокортикоидами, так как возрастает вероятность присоединения вторичной инфекции. Кроме того, усиливается и опасность развития опухолевого процесса из-за депрессии иммунологического надзора. С другой стороны, эти эффекты глюкокортикоидов позволяют рассматривать их как активных иммунодепрессантов.

7. Глюкокортикоиды повышают чувствительность гладких мышц сосудов к катехоламинам, что может привести к возрастанию артериального давления. Этому способствует и их небольшое минералокортикоидное действие: задержка натрия и воды в организме.

8. Глюкокортикоиды стимулируют секрецию соляной кислоты.

Образование глюкокортикоидов корой надпочечников стимулируется АКТГ аденогипофиза. Избыточное содержание глюкокортикоидов в крови приводит к торможению синтеза АКТГ и кортиколиберина гипоталамусом. Таким образом, гипоталамус, аденогипофиз и кора надпочечников объединены функционально и поэтому выделяют единую гипоталамо-гипофизарно-надпочечниковую систему. При острых стрессовых ситуациях быстро повышается уровень глюкокортикоидов в крови. В связи с метаболическими эффектами они быстро обеспечивают организм энергетическим материалом.

Гипофункция коры надпочечников проявляется снижением содержания кортикоидных гормонов и носит название Аддисоновой (бронзовой) болезни. Главными симптомами этого заболевания являются: адинамия, снижение объема циркулирующей крови, артериальная гипотония, гипогликемия, усиленная пигментация кожи, головокружение, неопределенные боли в области живота, поносы.

При опухолях надпочечников может развиться гиперфункция коры надпочечников с избыточным образованием глюкокортикоидов. Это так называемый первичный гиперкортицизм, или синдром Иценко – Кушинга. Клинические проявления этого синдрома такие же, как и при болезни Иценко – Кушинга.

В средней доле гипофиза вырабатывается гормон меланотропин (интермедин), который оказывает влияние на пигментный обмен.

Задняя доля гипофиза тесно связана с супраоптическим и паравентрикулярным ядром гипоталамуса. Нервные клетки этих ядер вырабатывают нейросекрет, который транспортируется в заднюю долю гипофиза. Накапливаются гормоны в питуицитах, в этих клетках гормоны превращаются в активную форму. В нервных клетках паравентрикулярного ядра образуется окситоцин , в нейронах супраоптического ядра – вазопрессин .

Вазопрессин выполняет две функции:

1) усиливает сокращение гладких мышц сосудов (тонус артериол повышается с последующим повышением артериального давления);

2) угнетает образование мочи в почках (антидиуретическое действие). Антидиуретическое действие обеспечивается способностью вазопрессина усиливать обратное всасывание воды из канальцев почек в кровь. Уменьшение образования вазопрессина является причиной возникновения несахарного диабета (несахарного мочеизнурения).

Окситоцин (оцитоцин) избирательно действует на гладкую мускулатуру матки, усиливает ее сокращение. Сокращение матки резко увеличивается, если она находилась под воздействием эстрогенов. Во время беременности окситоцин не влияет на сократительную способность матки, так как гормон желтого тела прогестерон делает ее нечувствительной ко всем раздражителям. Окситоцин стимулирует выделение молока, усиливается именно выделительная функция, а не его секреция. Особые клетки молочной железы избирательно реагируют на окситоцин. Акт сосания рефлекторно способствует выделению окситоцина из нейрогипофиза.

Гипоталамическая регуляция образования гормонов гипофиза

Нейроны гипоталамуса вырабатывают нейросекрет. Продукты нейросекреции, которые способствуют образованию гормонов передней доли гипофиза, называются либеринами, а тормозящие их образование – статинами. Поступление этих веществ в переднюю долю гипофиза происходит по кровеносным сосудам.

Регуляция образования гормонов передней доли гипофиза осуществляется по принципу обратной связи. Между тропной функцией передней доли гипофиза и периферическими железами существуют двусторонние отношения: тропные гормоны активируют периферические эндокринные железы, последние в зависимости от их функционального состояния тоже влияют на продукцию тропных гормонов. Двусторонние взаимоотношения имеются между передней долей гипофиза и половыми железами, щитовидной железой и корой надпочечников. Эти взаимоотношения называют «плюс-минус» взаимодействия. Тропные гормоны стимулируют («плюс») функцию периферических желез, а гормоны периферических желез подавляют («минус») продукцию и выделение гормонов передней доли гипофиза. Существует обратная связь между гипоталамусом и тропными гормонами передней доли гипофиза. Повышение концентрации в крови гормона гипофиза приводит к торможению нейросекрета в гипоталамусе.

Симпатический отдел вегетативной нервной системы усиливает выработку тропных гормонов, парасимпатический отдел угнетает.

Формирование состава конечной мочи осуществляется в ходе трех процессов — , реабсорбции и секреции в канальцах, трубочках и протоках. Оно представлено следующей формулой:

Выделение = (Фильтрация — Реабсорбция) + Секреция.

Интенсивность выделения многих веществ из организма определяется в большей степени реабсорбцией, а некоторых веществ — секрецией.

Реабсорбция (обратное всасывание) - это возврат необходимых организму веществ из просвета канальцев, трубочек и протоков в интерстиций и кровь (рис. 1).

Реабсорбция характеризуется двумя особенностями.

Во-первых, канальцевая реабсорбция жидкости (воды), как и , является значительным в количественном отношении процессом. Это означает, что потенциальный эффект от малого изменения реабсорбции может оказаться очень существенным для объема выделяемой мочи. Например, снижение реабсорбция всего на 5% (со 178,5 до 169,5 л/сут) увеличит объем конечной мочи с 1,5 л до 10,5 л/сут (в 7 раз, или на 600%) при прежнем уровне фильтрации в клубочках.

Во-вторых, канальцевая реабсорбция отличается высокой селективностью (избирательностью). Некоторые вещества (аминокислоты, глюкоза) почти полностью (более чем на 99%) реабсорбируются, а вода и электролиты (натрий, калий, хлор, бикарбонаты) в очень значительных количествах подвергаются реабсорбции, но их реабсорбция может существенно изменяться в зависимости от потребностей организма, что сказывается на содержании этих веществ в конечной моче. Другие вещества (например, мочевина) реабсорбируются значительно хуже и выделяются в больших количествах с мочой. Многие вещества после фильтрации не подвергаются реабсорбции и полностью экскретируются при любой их концентрации в крови (например, креатинин, инулин). Благодаря избирательной реабсорбции веществ в почках осуществляется точный контроль состава жидких сред организма.

Рис. 1. Локализация транспортных процессов (секреции и реабсорбцин в нефроне)

Вещества в зависимости от механизмов и степени их реабсорбции делят на пороговые и беспороговые.

Пороговые вещества в нормальных условиях реабсорбируются из первичной мочи почти полностью при участии механизмов облегченного транспорта. Эти вещества появляются в значительных количествах в конечной моче, когда их концентрация в плазме крови (и тем самым в первичной моче) увеличится и превысит «порог выведения», или «почечный порог». Величина этого порога определяется возможностями белков-переносчиков в мембране эпителиальных клеток обеспечивать перенос профильтровавщихся веществ через стенку канальцев. При исчерпании (перенасыщении) возможностей транспорта, когда в переносе задействованы все белки-переносчики, часть вещества не может реабсорбироваться в кровь, и оно появляется в конечной моче. Так, например, порог выведения для глюкозы составляет 10 ммоль/л (1,8 г/л) и почти в 2 раза превышает ее нормальное содержание в крови (3,33-5,55 ммоль/л). Это означает, что если концентрация глюкозы в плазме крови превышает 10 ммоль/л, то наблюдается глюкозурия — выделение глюкозы с мочой (в количествах более 100 мг/суг). Интенсивность глюкозурии возрастает пропорционально увеличению содержания глюкозы в плазме крови, что является важным диагностическим признаком тяжести сахарного диабета. В норме уровень глюкозы в плазме крови (и первичной моче) даже после еды почти никогда не превышает величины (10 ммоль/л), необходимой для ее появления в конечной моче.

Беспороговые вещества не имеют порога выведения и удаляются из организма при любой их концентрации в плазме крови. Такими веществами обычно являются продукты метаболизма, подлежащие удалению из организма (креатинин), и другие органические вещества (например, инулин). Эти вещества используются для исследования функций почек.

Одни из удаляемых веществ могут частично реабсорбироваться (мочевина, мочевая кислота) и выводятся не полностью (табл. 1), другие практически не реабсорбируются (креатинин, сульфаты, инулин).

Таблица 1. Фильтрация, реабсорбции и выделение почками различных веществ

Реабсорбция — многоэтапный процесс , включающий переход воды и растворенных в ней веществ сначала из первичной мочи в межклеточную жидкость, а затем через стенки перитубулярных капилляров в кровь. Переносимые вещества могут проникать в межклеточную жидкость из первичной мочи двумя путями: трансцеллюлярно (через клетки канальцевого эпителия) либо парацеллюлярно (по межклеточным пространствам). Реабсорбция макромолекул при этом осуществляется за счет эндоцитоза, а минеральных и низкомолекулярных органических веществ — за счет активного и пассивного транспорта, воды — через аквапорины пассивно, путем осмоса. Из межклеточных пространств в перитубулярные капилляры растворенные вещества реабсорбируются под действием разницы сил между давлением крови в капиллярах (8-15 мм рт. ст.) и ее коллоидно-осмотическим (онкотическим) давлением (28-32 мм рт. ст.).

Процесс реабсорбции ионов Na+ из просвета канальцев в кровь состоит как минимум из грех этапов. На 1-м этапе ионы Na+ поступают из первичной мочи в клетку эпителия канальца через апикальную мембрану пассивно путем облегченной диффузии с помощью белков-переносчиков по концентрационному и электрическому градиентам, создаваемым работой Na+/K+ насоса базолатеральной поверхности эпителиальной клетки. Поступление ионов Na+ в клетку часто сопряжено с совместным транспортом глюкозы (белок-переносчик (SGLUT-1) или аминокислот (в проксимальном канальце), ионов К+ и CI+ (в петле Генле) в клетку (котранспорт, симпорт) или с контртранспортом (антипортом) ионов Н+ , NH3+ из клетки в первичную мочу. На 2-м этапе транспорт ионов Na+ через базолагеральную мембрану в межклеточную жидкость осуществляется первично-активным транспортом против электрического и концентрационного градиентов с помощью Na+/К+ насоса (АТФазы). Реабсорбция ионов Na+ способствует обратному всасыванию воды (путем осмоса), вслед за которой пассивно всасываются ионы CI-, НС0 3 -, частично мочевина. На 3-м этапе реабсорбция ионов Na+, воды и других веществ из межклеточной жидкости в капилляры происходит под действием сил градиентов гидростатического и .

Глюкоза, аминокислоты, витамины реабсорбируются из первичной мочи путем вторично-активного транспорта (симпорта совместно с ионом Na+). Белок-переносчик апикальной мембраны эпителиальной клетки канальца связывает ион Na+ и молекулу органического вещества (глюкозу SGLUT-1 или аминокислоту) и перемещает их внутрь клетки, причем движущей силой является диффузия Na+ в клетку по электрохимическому градиенту. Из клетки через базолагеральную мембрану глюкоза (с участием белка-переносчика GLUT-2) и аминокислоты выходят пассивно путем облегченной диффузии по концентрационному градиенту.

Белки молекулярной массой менее 70 кД, фильтрующиеся из крови в первичную мочу, реабсорбируются в проксимальных канальцах путем пиноцитоза, частично расщепляются в эпителии лизосомными ферментами, и низкомолекулярные компоненты и аминокислоты возвращаются в кровь. Появление белка в моче обозначается термином «протеинурия» (чаще альбуминурия). Кратковременная протеинурия до 1 г/л может развиться у здоровых лиц после интенсивной продолжительной физической работы. Наличие постоянной и более высокой протеинурии — признак нарушения механизмов клубочковой фильтрации и (или) канальцевой реабсорбции в почках. Клубочковая (гломерулярная) протеинурия обычно развивается при повышении проницаемости клубочкового фильтра. В результате белок поступает в полость капсулы Шумлянского-Боумена и проксимальные канальцы в количествах, превышающих возможности его ребсорбции механизмами канальцев — развивается умеренная протеинурия. Канальцевая (тубулярная) протеинурия связана с нарушением реабсорбции белка вследствие повреждения эпителия канальцев или нарушения лимфооттока. При одновременном повреждении клубочковых и канальцевых механизмов развивается высокая протеинурия.

Реабсорбция веществ в почках тесно связана с процессом секреции. Термин «секреция» для описания работы почек используется в двух значениях. Во-первых, секреция в почках рассматривается как процесс (механизм) транспорта веществ, подлежащих удалению в просвет канальцев не через клубочки, а из интерстиция почки или непосредственно из клеток почечного эпителия. При этом выполняется экскреторная функция почки. Секреция веществ в мочу осуществляется активно и (или) пассивно и часто сопряжена с процессами образования этих веществ в эпителиоцитах канальцев почек. Секреция дает возможность быстро удалить из организма ионы К+, Н+, NН3+, а также некоторые другие органические и лекарственные вещества. Во-вторых, термин «секреция» используется для описания синтеза в почках и высвобождения ими в кровь гормонов эритропоэтина и кальцитриола, фермента ренина и других веществ. В почках активно идут процессы глюконеогенеза, и образующаяся при этом глюкоза также транспортируется (секретируется) в кровь.

Реабсорбция и секреция веществ в различных отделах нефрона

Осмотическое разведение и концентрирование мочи

Проксимальные канальцы обеспечивают реабсорбцию большей части воды из первичной мочи (примерно 2/3 объема клубочкового фильтрата), значительное количество ионов Na + , К+, Са 2+ , СI-, НСО 3 -. Практически все органические вещества (аминокислоты, белки, глюкоза, витамины), микроэлементы и другие необходимые организму вещества реабсорбируются в проксимальных канальцах (рис. 6.2). В других отделах нефрона осуществляется только реабсорбция воды, ионов и мочевины. Столь высокая реабсорбционная способность проксимального канальца обусловлена рядом структурных и функциональных особенностей его эпителиальных клеток. Они оснащены хорошо развитой щеточной каемкой на апикальной мембране, а также широким лабиринтом межклеточных пространств и каналов на базальной стороне клеток, что существенно увеличивает площадь всасывания (в 60 раз) и ускоряет транспорт веществ через них. В эпителиоцитах проксимальных канальцев очень много митохондрий, и интенсивность метаболизма в них в 2 раза превосходит таковую в нейронах. Это обеспечивает возможность получения достаточного количества АТФ для осуществления активного транспорта веществ. Важная особенность реабсорбции в проксимальной части канальцев заключается в том, что вода и растворенные в ней вещества реабсорбируются здесь в эквивалентных количествах, что обеспечивает изоосмолярность мочи проксимальных канальцев и ее изоосмотичность с плазмой крови (280-300 мосмоль/л).

В проксимальных канальцах нефрона происходит первично-активная и вторично-активная секреция веществ в просвет канальцев с помощью различных белков-переносчиков. Секреция выводимых веществ осуществляется как из крови перитубулярных капилляров, так и химических соединений, образующихся непосредственно в клетках канальцевого эпителия. Из плазмы крови в мочу секретируются многие органические кислоты и основания (например, парааминогиппуровая кислота (ПАГ), холин, тиамин, серотонин, гуанидин и др.), ионы (Н+, NH3+, К+), лекарственные вещества (пенициллин и др.). Для ряда ксенобиотиков органического происхождения, поступивших в организм (антибиотики, красители, рентгено- контрастные вещества), скорость их выделения из крови путем канальцевой секреции значительно превышает их выведение путем клубочковой фильтрации. Секреция ПАГ в проксимальных канальцах идет столь интенсивно, что кровь очищается от нее уже за одно прохождение через перитубулярные капилляры коркового вещества (следовательно, определяя клиренс ПАГ, можно рассчитать объем эффективного, участвующего в моче- образовании почечного плазмотока). В клетках канальцевого эпителия при дезаминировании аминокислоты глутамина образуется аммиак (NH 3), который секретируется в просвет канальца и поступает в мочу. В ней аммиак связывается с ионами Н+ с образованием иона аммония NH 4 + (NH 3 + Н+ -> NH4+). Секретируя NH 3 , и ионы Н + , почки принимают участие в регуляции кислотно-основного состояния крови (организма).

В петле Генле реабсорбция воды и ионов пространственно разделены, что обусловлено особенностями строения и функций ее эпителия, а также гиперосмотичностью мозгового вещества почек. Нисходящая часть петли Генле высокопроницаема для воды и только умеренно проницаема для растворенных в ней веществ (включая натрий, мочевину и др.). В нисходящей части петли Генле происходит реабсорбция 20% воды (под действием высокого осмотического давления в окружающей каналец среде), а осмотически активные вещества остаются в канальцевой моче. Это обусловлено высоким содержанием хлорида натрия и мочевины в гиперосмотичной межклеточной жидкости мозгового слоя почки. Осмотичность мочи по мере ее продвижения к вершине петли Генле (вглубь мозгового слоя почки) возрастает (за счет реабсорбции воды и поступления хлорида натрия и мочевины по концентрационному градиенту), а объем — уменьшается (за счет реабсорбции воды). Данный процесс называется осмотическим концентрированием мочи. Максимальная осмотичность канальцевой мочи (1200-1500 мосмоль/л) достигается на вершине петли Генле юкстамедуллярных нефронов.

Далее моча поступает в восходящее колено петли Генле, эпителий которого не проницаем для воды, но проницаем для ионов, растворенных в ней. Этот отдел обеспечивает реабсорбцию 25% ионов (Na + , K+, СI-) от их общего количества, поступившего в первичную мочу. Эпителий толстой восходящей части петли Генле имеет мощную ферментную систему активного транспорта ионов Na+ и К+ в виде Na+/К+ насосов, встроенных в базальные мембраны эпителиальных клеток.

В апикальных мембранах эпителия имеется котранспортный белок, одновременно переносящий из мочи в цитоплазму один ион Na+ два иона СI- и один ион К+. Источником движущей силы для этого котранспортера является энергия, с которой ионы Na+ по градиенту концентрации устремляются в клетку, ее достаточно и для перемещения ионов К против градиента концентрации. Ионы Na+ могут поступать в клетку и в обмен на ионы Н с помощью Na+/Н+ котранспортера. Выход (секреция) К+ и Н+ в просвет канальца создает в нем избыточный положительный заряд (до +8 мВ), который способствует диффузии катионов (Na+, К+, Са 2+ , Mg 2+) парацеллюлярно, через межклеточные контакты.

Вторично-активный и первично-активный транспорт ионов из восходящего колена петли Генле в окружающее каналец пространство является важнейшим механизмом создания высокого осмотического давления в интерстиции мозгового слоя почки. В восходящем отделе петли Генле вода не реабсорбируется, а концентрация осмотически активных веществ (прежде всего ионов Na+ и СI+) в канальцевой жидкости снижается вследствие их реабсорбции. Поэтому на выходе из петли Генле в канальцах всегда находится гипотоничная моча с концентрацией осмотически активных веществ ниже 200 мосмоль/л. Такое явление называют осмотическим разведением мочи , а восходящую часть петли Генле — разводящим сегментом нефрона.

Создание гиперосмотичности в мозговом веществе почки рассматривается как главная функция петли нефрона. Выделяют несколько механизмов ее создания:

  • активная работа поворотно-противоточной системы канальцев (восходящего и нисходящего) петли нефрона и мозговых собирательных протоков. Движение жидкости в петле нефрона в противоположных направлениях навстречу друг другу вызывает суммацию небольших поперечных градиентов и формирует большой продольный корково-мозговой градиент осмоляльности (от 300 мосмоль/л в корковом веществе до 1500 мосмоль/л возле вершины пирамид в мозговом веществе). Механизм работы петли Генле получил название поворотно-противоточной множительной системы нефрона. Петля Генле юкстамедуллярных нефронов, пронизывающая насквозь все мозговое вещество почки, играет основную роль в этом механизме;
  • циркуляция двух главных осмотически активных соединений — натрия хлорида и мочевины. Эти вещества вносят основной вклад в создание гиперосмотичности интерстиция мозгового вещества почек. Их циркуляция зависит от избирательной проницаемости мембраны восходящего колена петли нсфрона для электролитов (но не для воды), а также регулируемой АДГ проницаемости стенок мозговых собирательных протоков для воды и мочевины. Натрия хлорид циркулирует в петле нефрона (в восходящем колене ионы активно реабсорбируются в интерстиций мозгового вещества, а из него согласно законам диффузии поступают в нисходящее колено и снова поднимаются в восходящее колено и т.д.). Мочевина циркулирует в системе собирательный проток мозгового вещества — интерстиций мозгового вещества -тонкая часть петли Генле — собирательный проток мозгового вещества;
  • пассивная поворотно-противоточная система прямых кровеносных сосудов мозгового вещества почек берег начало от выносящих сосудов юкстамедуллярных нефронов и идет параллельно петле Генле. Кровь движется по нисходящему прямому колену капилляра в область с возрастающей осмолярностью, а затем после поворота на 180° — в обратном направлении. При этом ионы и мочевина, а также вода (в противоположном ионам и мочевине направлении) совершают челночные перемещения между нисходящими и восходящими частями прямых капилляров, что обеспечивает поддержание высокой осмоляльности мозгового вещества почки. Этому способствует также низкая объемная скорость кровотока через прямые капилляры.

Из петли Генле моча попадает в дистальный извитой каналец, далее — в соединительный каналец, затем — в собирательную трубочку и собирательный проток коркового вещества почек. Все указанные структуры расположены в корковом веществе почки.

В дистальных и соединительных канальцах нефрона и собирательных трубочках реабсорбция ионов Na+ и воды зависит от состояния водно-электролитного баланса организма и находится под контролем антидиуретического гормона, альдостерона, натрийуретического пептида.

Первая половина дистального канальца является продолжением толстого сегмента восходящей части петли Генле и сохраняет ее свойства — проницаемость для воды и мочевины практически равна нулю, но здесь активно реабсорбируются ионы Na+ и СI- (5% от объема их фильтрации в клубочках) путем симпорта с помощью Na+/CI- котранспортера. Моча в ней становится еще более разбавленной (гипоосмотичной).

По этой причине первую половину дистального канальца, как и восходящую часть петли нефрона, относят к разводящему мочу сегменту.

Вторая половина дистального канальца, соединительный каналец, собирательные трубочки и протоки коркового вещества имеют схожее строение и схожие функциональные характеристики. Среди клеток их стенок выделяют два основных типа — главные и вставочные клетки. Главные клетки реабсорбируют ионы Na+ и воду и секретируют в просвет канальца ионы К+. Проницаемость главных клеток для воды (почти полностью) регулируется АДГ. Этот механизм предоставляет организму возможность управлять объемом выделенной мочи и ее осмолярностыо. Здесь начинается концентрирование вторичной мочи — от гипотоничной до изотоничной (). Вставочные клетки реабсорбируют ионы К+, карбонаты и секретируют в просвет ионы Н+. Секреция протонов идет первично-активно за счет работы Н+ транспортирующих АТФаз против значительного градиента концентрации, превышающего 1000:1. Вставочные клетки играют ключевую роль в регуляции кислотно-основного равновесия в организме. Оба типа клеток практически непроницаемы для мочевины. Поэтому мочевина остается в моче в той же концентрации от начала толстой части восходящего колена петли Генле до собирательных протоков мозгового вещества почки.

Собирательные протоки мозгового вещества почки представляют собой отдел, в котором состав мочи формируется окончательно. Клетки этого отдела играют чрезвычайно важную роль в определении содержания воды и растворенных веществ в выделяемой (конечной) моче. Здесь реабсорбируется до 8% всей профильтровавшейся воды и только 1% ионов Na+ и СI-, и реабсорбция воды играет главную роль в концентрировании конечной мочи. В отличие от вышележащих отделов нефрона стенки собирательных протоков, располагающиеся в мозговом веществе почки, проницаемы для мочевины. Реабсорбция мочевины способствует поддержанию высокой осмолярности интерстиция глубоких слоев мозгового вещества почки и формированию концентрированной мочи. Проницаемость собирательных протоков для мочевины и воды регулируется АДГ, для ионов Na+ и СI- альдостероном. Клетки собирательных протоков способны реабсорбировать бикарбонаты и секретировать протоны, преодолевая высокий градиент концентрации.

Методы исследования экскреторной функции ночек

Определение почечного клиренса для разных веществ позволяет исследовать интенсивность протекания всех трех процессов (фильтрации, реабсорбции и секреции), определяющих выделительную функцию почек. Почечный клиренс вещества — это объем плазмы крови (мл), который с помощью почек освобождается от вещества за единицу времени (мин). Клиренс описывается формулой

К в * ПК в = М в * О м,

где К в — клиренс вещества; ПК В — концентрация вещества в плазме крови; М в — концентрация вещества в моче; О м — объем выделенной мочи.

Если вещество свободно фильтруется, но не реабсорбируется и не секретируется, тогда интенсивность его выделения с мочой (М в. О м) будет равна скорости фильтрации вещества в клубочках (СКФ. ПК в). Отсюда можно вычислить путем определения клиренса вещества:

СКФ = М в. О м /ПК в

Таким веществом, удовлетворяющим перечисленным выше критериям, является инулин, клиренс которого составляет в среднем у мужчин 125 мл/мин, у женщин 110 мл/мин. Значит, количество плазмы крови, проходящей через сосуды почек и профильтрованной в клубочках для доставки такого количества инулина в конечную мочу, должно составить 125 мл у мужчин и 110 мл у женщин. Таким образом, объем образования первичной мочи составляет у мужчин 180 л/сут (125 мл/мин. 60 мин. 24 ч), у женщин 150 л/сут (110 мл/мин. 60 мин. 24 ч).

Учитывая, что полисахарид инулин отсутствует в организме человека и его требуется вводить внутривенно, в клинике для определения СКФ чаще используется другое вещество — креатинин.

Определив клиренс других веществ и сравнив его с клиренсом инулина, можно оценить процессы реабсорбции и секреции этих веществ в почечных канальцах. Если клиренсы вещества и инулина совпадают, то данное вещество выделяется только с помощью фильтрации; если клиренс вещества больше, чем у инулина, то вещество дополнительно секретируется в просвет канальцев; если клиренс вещества меньше, чем у инулина, то оно, по-видимому, частично реабсорбируется. Зная интенсивность выделения вещества с мочой (М в. О м), можно рассчитать интенсивность процессов реабсорбции (реабсорбция = Фильтрация — Выделение = СКФ. ПК в — М в. О м) и секреции (Секреция = Выделение — Фильтрация = М в. О м — СКФ. ПК).

С помощью клиренса некоторых веществ можно оценивать величину почечного плазмотока и кровотока. Для этого используют вещества, которые высвобождаются в мочу путем фильтрации и секреции и при этом не реабсорбируются. Клиренс таких веществ теоретически будет равен общему плазма- току в почке. Подобных веществ практически нет, тем не менее от некоторых веществ кровь очищается при одном прохождении через ночки почти на 90%. Одним из таких естественных веществ является парааминогиппуровая кислота, клиренс которой составляет 585 мл/мин, что позволяет оценить величину почечного плазмотока в 650 мл/мин (585: 0,9) с учетом коэффициента ее извлечения из крови 90%. При гематокрите, равном 45%, и почечном плазмотоке 650 мл/мин, кровоток в обеих почках составит 1182 мл/мин, т.е. 650 / (1-0,45).

Регуляция канальцевой реабсорбции и секреции

Регуляция канальцевой реабсорбции и секреции осуществляется, главным образом, в дистальных отделах нефрона с помощью гуморальных механизмов, т.е. находится под контролем различных гормонов.

Проксимальная реабсорбция в отличие процессов переноса веществ в дистальных канальцах и собирательных трубочках не подвергается такому тщательному контролю со стороны организма, поэтому ее часто называют облигатной реабсорбцией. В настоящее время установлено, что интенсивность облигатной реабсорбции может изменяться под влиянием некоторых нервных и гуморальных воздействий. Так, возбуждение симпатической нервной системы ведет к увеличению реабсорбции ионов Na + , фосфатов, глюкозы, воды клетками эпителия проксимальных канальцев нефрона. Ангиотензин-Н также способен вызывать увеличение скорости проксимальной реабсорбции ионов Na + .

Интенсивность проксимальной реабсорбции зависит от величины клубочковой фильтрации и возрастает с увеличением скорости клубочковой фильтрации, что носит название клубочково-канальцевое равновесие. Механизмы сохранения этого равновесия до конца не изучены, однако известно, что они относятся к внутрипочечным регуляторным механизмам и их осуществление не требует дополнительных нервных и гуморальных влияний со стороны организма.

В дистальных канальцах и собирательных трубочках почки осуществляется, главным образом, реабсорбция воды и ионов, выраженность которой зависит от водно-электролитного баланса организма. Дистальная реабсорбция воды и ионов называется факультативной и контролируется антидиуретическим гормоном, альдостероном, Предсердным натрийуретическим гормоном.

Образование антидиуретического гормона (вазопрессина) в гипоталамусе и выброс его в кровь из гипофиза увеличивается при уменьшении содержания воды в организме (дегидратации), снижении артериального давления крови (гипотензии), а также при повышении осмотического давления крови (гиперосмии). Этот гормон действует на эпителий дистальных канальцев и собирательных трубочек почки и вызывает повышение его проницаемости для воды вследствие формирования в цитоплазме эпителиальных клеток особых белков (аквапоринов), которые встраиваются в мембраны и формируют каналы для тока воды. Под влиянием антидиуретичсского гормона происходит увеличение реабсорбции воды, снижение диуреза и повышение концентрации образующейся мочи. Таким образом, антидиуретический гормон способствует сохранению воды в организме.

При снижении выработки антидиуретического гормона (травма, опухоль гипоталамуса) образуется большое количество гипотоничной мочи (несахарный диабет); потеря жидкости с мочой может привести к обезвоживанию организма.

Альдостерон вырабатывается в клубочковой зоне коры надпочечников, действует на эпителиальные клетки дистальных отделов нефрона и собирательных трубочек, вызывает увеличение реабсорбции ионов Na+, воды и повышение секреции ионов К+ (или ионов Н+ при их избыточном содержании в организме). Альдостерон является частью ренин-ангиотензии-альдостероновой системы (функции которой рассмотрены ранее).

Предсердный натрийуретический гормон образуется миоцитами предсердий при их растяжении избыточным объемом крови, то есть при гиперволемии. Под влиянием этого гормона происходит увеличение клубочковой фильтрации и уменьшение реабсорбции ионов Na + и воды в дистальных отделах нефрона, вследствие чего происходит усиление процесса мочеобразования и выведение из организма избытка воды. Кроме того, этот гормон снижает продукцию ренина и альдостерона, что дополнительно тормозит дистальную реабсорбцию ионов Na + и воды.

Виды действия гормонов

Различают пять видов действия гормонов на ткани-мишени: метаболическое, морфогенетическое, кинетическое, корригирующее и реактогенное.

Метаболическое действие ― гормон вызывает изменение обмена веществ в тканях. Оно происходит за счет трех основных гормональных влияний. Во-первых, гормоны меняют проницаемость мембран клетки и органоидов, что изменяет условия мембранного транспорта субстратов, ферментов, ионов и метаболитов и, соответственно, все виды метаболизма. Во-вторых, гормоны меняют активность ферментов в клетке, приводя к изменению их структуры и конфигурации, облегчая связи с кофакторами, уменьшая или увеличивая интенсивность распада ферментных молекул, стимулируя или подавляя активацию проферментов. В-третьих, гормоны изменяют синтез ферментов, индуцируя или подавляя их образование за счет влияния на генетический аппарат ядра клетки, как прямо вмешиваясь в процессы синтеза нуклеиновых кислот и белка, так и опосредованно через энергетическое и субстратно-ферментное обеспечение этих процессов. Сдвиги метаболизма, вызываемые гормонами, лежат в основе изменения функции клеток, ткани или органа. Например, инсулин вызывает снижение уровня глюкозы в крови, адреналин, глюкоген, глюкокортикоиды – его возрастание.

Морфогенетическое действие - влияние гормонов на процессы формообразования, дифференцировки и роста структурных элементов. Осуществляются эти процессы за счет изменений генетического аппарата клетки и обмена веществ. Примерами может служить влияние соматотропина на рост тела и внутренних органов, половых гормонов - на развитие вторичных половых признаков.

Кинетическое действие - способность гормонов запускать деятельность эффектора, включать реализацию определенной функции. Например, окситоцин вызывает сокращение мускулатуры матки, адреналин запускает распад гликогена в печени и выход глюкозы в кровь, вазопрессин включает обратное всасывание воды в собирательных трубочках нефрона, без него не происходящее.

Корригирующее действие - изменение деятельности органов или процессов, которые происходят и в отсутствие гормона. Примером корригирующего действия гормонов является влияние адреналина на частоту сердечных сокращений, активация окислительных процессов тироксином, уменьшение обратного всасывания ионов калия в почках под влиянием альдостерона. Разновидностью корригирующего действия является нормализующий эффект гормонов, когда их влияние направлено на восстановление измененного или даже нарушенного процесса. Например, при исходном превалировании анаболических процессов белкового обмена глюкокортикоиды вызывают катаболический эффект, но если исходно преобладает распад белков, глюкокортикоиды стимулируют их синтез.

Реактогенное действие гормонов - способность гормона менять реактивность ткани к действию того же гормона, других гормонов или медиаторов нервных импульсов. Так, например, кальцийрегулирующие гормоны снижают чувствительность дистальных отделов нефрона к действию вазопрессина, фолликулин усиливает действие прогестерона на слизистую оболочку матки, тиреоидные гормоны усиливают эффекты катехоламинов. Разновидностью реактогенного действия гормонов является пермиссивное действие, означающее способность одного гормона давать возможность реализоваться эффекту другого гормона. Так, например, глюкокортикоиды обладают пермиссивным действием по отношению к катехоламинам, т.е. для реализации эффектов адреналина необходимо присутствие малых количеств кортизола, инсулин обладает пермиссивным действием для соматотропина (гормона роста) и др. Особенностью гормональной регуляции является то, что реактогенное действие гормоны могут реализовать не только в тканях-мишенях, где концентрация рецепторов к ним высока, но и в других тканях и органах, имеющих единичные рецепторы к гормону.

Гипофиз занимает особое положение в системе эндокринных желез. Его называют центральной железой, так как за счет его тропных гормонов регулируется деятельность других эндокринных желез. Гипофиз – сложный орган, он состоит из аденогипофиза (передней и средней долей) и нейрогипофиза (задней доли). Гормоны передней доли гипофиза делятся на две группы: гормон роста и пролактин и тропные гормоны (тиреотропин, кортикотропин, гонадотропин).

К первой группе относят соматотропин и пролактин.

Гормон роста (соматотропин) принимает участие в регуляции роста, усиливая образование белка. Наиболее выражено его влияние на рост эпифизарных хрящей конечностей, рост костей идет в длину. Нарушение соматотропной функции гипофиза приводит к различным изменениям в росте и развитии организма человека: если имеется гиперфункция в детском возрасте, то развивается гигантизм; при гипофункции – карликовость. Гиперфункция у взрослого человека не влияет на рост в целом, но увеличиваются размеры тех частей тела, которые еще способны расти (акромегалия).

Пролактин способствует образованию молока в альвеолах, но после предварительного воздействия на них женских половых гормонов (прогестерона и эстрогена). После родов увеличивается синтез пролактина и наступает лактация. Акт сосания через нервно-рефлекторный механизм стимулирует выброс пролактина. Пролактин обладает лютеотропным действием, способствует продолжительному функционированию желтого тела и выработке им прогестерона. Ко второй группе гормонов относят:

1) тиреотропный гормон (тиреотропин). Избирательно действует на щитовидную железу, повышает ее функцию. При сниженной выработке тиреотропина происходит атрофия щитовидной железы, при гиперпродукции – разрастание, наступают гистологические изменения, которые указывают на повышение ее активности;

2) адренокортикотропный гормон (кортикотропин). Стимулирует выработку глюкокортикоидов надпочечниками. Кортикотропин вызывает распад и тормозит синтез белка, является антагонистом гормона роста. Он тормозит развитие основного вещества соединительной ткани, уменьшает количество тучных клеток, подавляет фермент гиалуронидазу, снижая проницаемость капилляров. Этим определяется его противовоспалительное действие. Под влиянием кортикотропина уменьшаются размер и масса лимфоидных органов. Секреция кортикотропина подвержена суточным колебаниям: в вечерние часы его содержание выше, чем утром;

3) гонадотропные гормоны (гонадотропины – фоллитропин и лютропин). Присутствуют как у женщин, так и у мужчин;

а) фоллитропин (фолликулостимулирующий гормон), стимулирующий рост и развитие фолликула в яичнике. Он незначительно влияет на выработку эстрагенов у женщин, у мужчин под его влиянием происходит образование сперматозоидов;

б) лютеинизирующий гормон (лютропин), стимулирующий рост и овуляцию фолликула с образованием желтого тела. Он стимулирует образование женских половых гормонов – эстрагенов. Лютропин способствует выработке андрогенов у мужчин.

2. Гормоны средней и задней долей гипофиза

В средней доле гипофиза вырабатывается гормон меланотропин (интермедин), который оказывает влияние на пигментный обмен.

Задняя доля гипофиза тесно связана с супраоптическим и паравентрикулярным ядром гипоталамуса. Нервные клетки этих ядер вырабатывают нейросекрет, который транспортируется в заднюю долю гипофиза. Накапливаются гормоны в питуицитах, в этих клетках гормоны превращаются в активную форму. В нервных клетках паравентрикулярного ядра образуется окситоцин , в нейронах супраоптического ядра – вазопрессин .

Вазопрессин выполняет две функции:

1) усиливает сокращение гладких мышц сосудов (тонус артериол повышается с последующим повышением артериального давления);

2) угнетает образование мочи в почках (антидиуретическое действие). Антидиуретическое действие обеспечивается способностью вазопрессина усиливать обратное всасывание воды из канальцев почек в кровь. Уменьшение образования вазопрессина является причиной возникновения несахарного диабета (несахарного мочеизнурения).

Окситоцин (оцитоцин) избирательно действует на гладкую мускулатуру матки, усиливает ее сокращение. Сокращение матки резко увеличивается, если она находилась под воздействием эстрогенов. Во время беременности окситоцин не влияет на сократительную способность матки, так как гормон желтого тела прогестерон делает ее нечувствительной ко всем раздражителям. Окситоцин стимулирует выделение молока, усиливается именно выделительная функция, а не его секреция. Особые клетки молочной железы избирательно реагируют на окситоцин. Акт сосания рефлекторно способствует выделению окситоцина из нейрогипофиза.

Гипоталамическая регуляция образования гормонов гипофиза

Нейроны гипоталамуса вырабатывают нейросекрет. Продукты нейросекреции, которые способствуют образованию гормонов передней доли гипофиза, называются либеринами, а тормозящие их образование – статинами. Поступление этих веществ в переднюю долю гипофиза происходит по кровеносным сосудам.

Регуляция образования гормонов передней доли гипофиза осуществляется по принципу обратной связи. Между тропной функцией передней доли гипофиза и периферическими железами существуют двусторонние отношения: тропные гормоны активируют периферические эндокринные железы, последние в зависимости от их функционального состояния тоже влияют на продукцию тропных гормонов. Двусторонние взаимоотношения имеются между передней долей гипофиза и половыми железами, щитовидной железой и корой надпочечников. Эти взаимоотношения называют «плюс-минус» взаимодействия. Тропные гормоны стимулируют («плюс») функцию периферических желез, а гормоны периферических желез подавляют («минус») продукцию и выделение гормонов передней доли гипофиза. Существует обратная связь между гипоталамусом и тропными гормонами передней доли гипофиза. Повышение концентрации в крови гормона гипофиза приводит к торможению нейросекрета в гипоталамусе.

Симпатический отдел вегетативной нервной системы усиливает выработку тропных гормонов, парасимпатический отдел угнетает.

3. Гормоны эпифиза, тимуса, паращитовидных желез

Эпифиз находится над верхними буграми четверохолмия. Значение эпифиза крайне противоречиво. Из его ткани выделены два соединения:

1) мелатонин (принимает участие в регуляции пигментного обмена, тормозит развитие половых функций у молодых и действие гонадотропных гормонов у взрослых). Это обусловлено прямым действием мелатонина на гипоталамус, где идет блокада освобождения люлиберина, и на переднюю долю гипофиза, где он уменьшает действие люлиберина на освобождение лютропина;

2) гломерулотропин (стимулирует секрецию альдостерона корковым слоем надпочечников).

Тимус (вилочковая железа) – парный дольчатый орган, расположенный в верхнем отделе переднего средостения. Тимус образует несколько гормонов: тимозин, гомеостатический тимусный гормон, тимопоэтин I, II, тимусный гуморальный фактор . Они играют важную роль в развитии иммунологических защитных реакций организма, стимулируя образование антител. Тимус контролирует развитие и распределение лимфоцитов. Секреция гормонов тимуса регулируется передней долей гипофиза.

Вилочковая железа достигает максимального развития в детском возрасте. После полового созревания она начинает атрофироваться (железа стимулирует рост организма и тормозит развитие половой системы). Есть предположение, что тимус влияет на обмен ионов Ca и нуклеиновых кислот.

При увеличении вилочковой железы у детей возникает тимико-лимфатический статус. При этом состоянии, кроме увеличения тимуса, происходят разрастание лимфатической ткани, увеличение вилочковой железы является проявлением надпочечниковой недостаточности.

Паращитовидные железы – парный орган, они расположены на поверхности щитовидной железы. Гормон паращитовидной железы – паратгормон (паратирин). Паратгормон находится в клетках железы в виде прогормона, превращение прогормона в паратгормон происходит в комплексе Гольджи. Из паращитовидных желез гормон непосредственно поступает в кровь.

Паратгормон регулирует обмен Ca в организме и поддерживает его постоянный уровень в крови. В норме содержания Ca в крови составляет 2,25-2,75 ммоль/л (9-11 мг%). Костная ткань скелета – главное депо Ca в организме. Имеется определенная зависимость между уровнем Ca в крови и содержанием его в костной ткани. Паратгормон усиливает рассасывание кости, что приводит к увеличению освобождения ионов Ca, регулирует процессы отложения и выхода солей Ca в костях. Влияя на обмен Са, паратгормон параллельно воздействует на обмен фосфора: уменьшает обратное всасывание фосфатов в дистальных канальцах почек, что приводит к понижению их концентрации в крови.

Удаление паращитовидных желез приводит к вялости, рвоте, потере аппетита, к разрозненным сокращениям отдельных групп мышц, которые могут переходить в длительное тетаническое сокращение. Регуляция деятельности паращитовидных желез определяется уровнем Са в крови. Если в крови нарастает концентрация Са, это приводит к снижению функциональной активности паращитовидных желез. При уменьшении уровня Са повышается гормонообразовательная функция желез.

4. Гормоны щитовидной железы. Йодированные гормоны. Тиреокальцитонин. Нарушение функции щитовидной железы

Щитовидная железа расположена с обеих сторон трахеи ниже щитовидного хряща, имеет дольчатое строение. Структурной единицей является фолликул, заполненный коллоидом, где находится йодсодержащий белок – тиреоглобулин.

Гормоны щитовидной железы делятся на две группы:

1) йодированные – тироксин, трийодтиронин ;

2) тиреокальцитонин (кальцитонин) .

Йодированные гормоны образуются в фолликулах железистой ткани, его образование происходит в три этапа:

1) образование коллоида, синтез тиреоглобулина;

2) йодирование коллоида, поступление йода в организм, всасывание в виде йодидов. Йодиды поглощаются щитовидной железой, окисляются в элементарный йод и включаются в состав тиреоглобулина, процесс стимулируется ферментом – тиреоидпероксиказой;

3) выделение в кровоток происходит после гидролиза тиреоглобулина под действием катепсина, при этом освобождаются активные гормоны – тироксин, трийодтиронин.

Основной активный гормон щитовидной железы – тироксин, соотношение тироксина и трийодтиронина составляет 4: 1. Оба гормона находятся в крови в неактивном состоянии, они связаны с белками глобулиновой фракции и альбумином плазмы крови. Тироксин легче связывается с белками крови, поэтому быстрее проникает в клетку и имеет большую биологическую активность. Клетки печени захватывают гормоны, в печени гормоны образуют соединения с глюкуроновой кислотой, которые не обладают гормональной активностью и выводятся с желчью в ЖКТ. Этот процесс называется дезинтоксикацией, он предотвращает чрезмерное насыщение крови гормонами.

Роль йодированных гормонов:

1) влияние на функции ЦНС. Гипофункция ведет к резкому снижению двигательной возбудимости, ослаблению активных и оборонительных реакций;

2) влияние на высшую нервную деятельность. Включаются в процесс выработки условных рефлексов, дифференцировки процессов торможения;

3) влияние на рост и развитие. Стимулируют рост и развитие скелета, половых желез;

4) влияние на обмен веществ. Происходит воздействие на обмен белков, жиров, углеводов, минеральный обмен. Усиление энергетических процессов и увеличение окислительных процессов приводят к повышению потребления тканями глюкозы, что заметно снижает запасы жира и гликогена в печени;

5) влияние на вегетативную систему. Увеличивается число сердечных сокращений, дыхательных движений, повышается потоотделение;

6) влияние на свертывающую систему крови. Снижают способность крови к свертыванию (уменьшают образование факторов свертывания крови), повышают ее фибринолитическую активность (увеличивают синтез антикоагулянтов). Тироксин угнетает функциональные свойства тромбоцитов – адгезию и агрегацию.

Регуляция образования йодсодержащих гормонов осуществляется:

1) тиреотропином передней доли гипофиза. Влияет на все стадии йодирования, связь между гормонами осуществляется по типу прямых и обратных связей;

2) йодом. Малые дозы стимулируют образование гормона за счет усиления секреции фолликулов, большие – тормозят;

3) вегетативной нервной системой: симпатическая – повышает активность продукции гормона, парасимпатическая – снижает;

4) гипоталамусом. Тиреолиберин гипоталамуса стимулирует тиреотропин гипофиза, который стимулирует продукцию гормонов, связь осуществляется по типу обратных связей;

5) ретикулярной формацией (возбуждение ее структур повышает выработку гормонов);

6) корой головного мозга. Декортикация активизирует функцию железы первоначально, значительно снижает с течением времени.

Тиреокальцитоцин образуется парафолликулярными клетками щитовидной железы, которые расположены вне железистых фолликул. Он принимает участие в регуляции кальциевого обмена, под его влиянием уровень Ca снижается. Тиреокальцитоцин понижает содержание фосфатов в периферической крови.

Тиреокальцитоцин тормозит выделение ионов Ca из костной ткани и увеличивает его отложение в ней. Он блокирует функцию остеокластов, которые разрушают костную ткань, и запускают механизм активации остеобластов, участвующих в образовании костной ткани.

Уменьшение содержания ионов Ca и фосфатов в крови обусловлено влиянием гормона на выделительную функцию почек, уменьшая канальцевую реабсорбцию этих ионов. Гормон стимулирует поглощение ионов Ca митохондриями.

Регуляция секреции тиреокальцитонина зависит от уровня ионов Ca в крови: повышение его концентрации приводит к дегрануляции парафолликулов. Активная секреция в ответ на гиперкальциемию поддерживает концентрацию ионов Ca на определенном физиологическом уровне.

Секреции тиреокальцитонина способствуют некоторые биологически активные вещества: гастрин, глюкагон, холецистокинин.

При возбуждении бета-адренорецепторов повышается секреция гормона, и наоборот.

Нарушение функции щитовидной железы сопровождается повышением или понижением ее гормонообразующей функции.

Недостаточность выработки гормона (гипотериоз), появляющаяся в детском возрасте, ведет к развитию кретинизма (задерживаются рост, половое развитие, развитие психики, наблюдается нарушение пропорций тела).

Недостаточность выработки гормона ведет к развитию микседемы, которая характеризуется резким расстройством процессов возбуждения и торможения в ЦНС, психической заторможенностью, снижением интеллекта, вялостью, сонливостью, нарушением половых функций, угнетением всех видов обмена веществ.

При повышении активности щитовидной железы (гипертиреозе) возникает заболевание тиреотоксикоз . Характерные признаки: увеличение размеров щитовидной железы, числа сердечных сокращений, повышение обмена веществ, температуры тела, увеличение потребления пищи, пучеглазие. Наблюдаются повышенная возбудимость и раздражительность, изменяется соотношение тонуса отделов вегетативной нервной системы: преобладает возбуждение симпатического отдела. Отмечаются мышечное дрожание и мышечная слабость.

Недостаток в воде йода приводит к снижению функции щитовидной железы со значительным разрастанием ее ткани и образованием зоба. Разрастание ткани – компенсаторный механизм в ответ на снижение содержания йодированных гормонов в крови.

5. Гормоны поджелудочной железы. Нарушение функции поджелудочной железы

Поджелудочная железа – железа со смешанной функцией. Морфологической единицей железы служат островки Лангерганса, преимущественно они расположены в хвосте железы. Бета-клетки островков вырабатывают инсулин, альфа-клетки – глюкагон, дельта-клетки – соматостатин. В экстрактах ткани поджелудочной железы обнаружены гормоны ваготонин и центропнеин.

Инсулин регулирует углеводный обмен, снижает концентрацию сахара в крови, способствует превращению глюкозы в гликоген в печени и мышцах. Он повышает проницаемость клеточных мембран для глюкозы: попадая внутрь клетки, глюкоза усваивается. Инсулин задерживает распад белков и превращение их в глюкозу, стимулирует синтез белка из аминокислот и их активный транспорт в клетку, регулирует жировой обмен путем образования высших жирных кислот из продуктов углеводного обмена, тормозит мобилизацию жира из жировой ткани.

В бета-клетках инсулин образуется из своего предшественника проинсулина. Он переносится в клеточные аппарат Гольджи, где происходят начальные стадии превращения проинсулина в инсулин.

В основе регуляции инсулина лежит нормальное содержание глюкозы в крови: гипергликемия приводит к увеличению поступления инсулина в кровь, и наоборот.

Паравентрикулярные ядра гипоталамуса повышают активность при гипергликемии, возбуждение идет в продолговатый мозг, оттуда в ганглии поджелудочной железы и к бета-клеткам, что усиливает образование инсулина и его секрецию. При гипогликемии ядра гипоталамуса снижают свою активность, и секреция инсулина уменьшается.

Гипергликемия непосредственно приводит в возбуждение рецепторный аппарат островков Лангерганса, что увеличивает секрецию инсулина. Глюкоза также непосредственно действует на бета-клетки, что ведет к высвобождению инсулина.

Глюкагон повышает количество глюкозы, что также ведет к усилению продукции инсулина. Аналогично действует гормоны надпочечников.

Вегетативная нервная система регулирует выработку инсулина посредством блуждающего и симпатического нервов. Блуждающий нерв стимулирует выделение инсулина, а симпатический тормозит.

Количество инсулина в крови определяется активностью фермента инсулиназы, который разрушает гормон. Наибольшее количество фермента находится в печени и мышцах. При однократном протекании крови через печень разрушается до 50 % находящегося в крови инсулина.

Важную роль в регуляции секреции инсулина выполняет гормон соматостатин, который образуется в ядрах гипоталамуса и дельта-клетках поджелудочной железы. Соматостатин тормозит секрецию инсулина.

Активность инсулина выражается в лабораторных и клинических единицах.

Глюкагон принимает участие в регуляции углеводного обмена, по действию на обмен углеводов он является антагонистом инсулина. Глюкагон расщепляет гликоген в печени до глюкозы, концентрация глюкозы в крови повышается. Глюкагон стимулирует расщепление жиров в жировой ткани.

Механизм действия глюкагона обусловлен его взаимодействием с особыми специфическими рецепторами, которые находятся на клеточной мембране. При связи глюкагона с ними увеличивается активность фермента аденилатциклазы и концентрации цАМФ, цАМФ способствует процессу гликогенолиза.

Регуляция секреции глюкагона. На образование глюкагона в альфа-клетках оказывает влияние уровень глюкозы в крови. При повышении глюкозы в крови происходит торможение секреции глюкагона, при понижении – увеличение. На образование глюкагона оказывает влияние и передняя доля гипофиза.

Гормон роста соматотропин повышает активность альфа-клеток. В противоположность этому гормон дельта-клетки – соматостатин тормозит образование и секрецию глюкагона, так как он блокирует вхождение в альфа-клетки ионов Ca, которые необходимы для образования и секреции глюкагона.

Физиологическое значение липокаина . Он способствует утилизации жиров за счет стимуляции образования липидов и окисления жирных кислот в печени, он предотвращает жировое перерождение печени.

Функции ваготонина – повышение тонуса блуждающих нервов, усиление их активности.

Функции центропнеина – возбуждение дыхательного центра, содействие расслаблению гладкой мускулатуры бронхов, повышение способности гемоглобина связывать кислород, улучшение транспорта кислорода.

Нарушение функции поджелудочной железы.

Уменьшение секреции инсулина приводит к развитию сахарного диабета, основными симптомами которого являются гипергликемия, глюкозурия, полиурия (до 10 л в сутки), полифагия (усиленный аппетит), полидиспепсия (повышенная жажда).

Увеличение сахара в крови у больных сахарным диабетом является результатом потери способности печени синтезировать гликоген из глюкозы, а клеток – утилизировать глюкозу. В мышцах также замедляется процесс образования и отложения гликогена.

У больных сахарным диабетом нарушаются все виды обмена.

6. Гормоны надпочечников. Глюкокортикоиды

Надпочечники – парные железы, расположенные над верхними полюсами почек. Они имеют важное жизненное значение. Различают два типа гормонов: гормоны коркового слоя и гормоны мозгового слоя.

Гормоны коркового слоя длятся на три группы:

1) глюкокортикоиды (гидрокортизон, кортизон, кортикостерон) ;

2) минералокортикоиды (альдестерон, дезоксикортикостерон) ;

3) половые гормоны (андрогены, эстрогены, прогестерон) .

Глюкокортикоиды синтезируются в пучковой зоне коры надпочечников. По химическому строению гормоны являются стероидами, образуются из холестерина, для синтеза необходима аскорбиновая кислота.

Физиологическое значение глюкокортикоидов.

Глюкокортикоиды влияют на обмен углеводов, белков и жиров, усиливают процесс образования глюкозы из белков, повышают отложение гликогена в печени, по своему действию являются антагонистами инсулина.

Глюкокортикоиды оказывают катаболическое влияние на белковый обмен, вызывают распад тканевого белка и задерживают включение аминокислот в белки.

Гормоны обладают противовоспалительным действием, что обусловлено снижением проницаемости стенок сосуда при низкой активности фермента гиалуронидазы. Уменьшение воспаления обусловлено торможением освобождения арахидоновой кислоты из фосфолипидов. Это ведет к ограничению синтеза простагландинов, которые стимулируют воспалительный процесс.

Глюкокортикоиды оказывают влияние на выработку защитных антител: гидрокортизон подавляет синтез антител, тормозит реакцию взаимодействия антитела с антигеном.

Глюкокортикоиды оказывают выраженное влияние на кроветворные органы:

1) увеличивают количество эритроцитов за счет стимуляции красного костного мозга;

2) приводят к обратному развитию вилочковой железы и лимфоидной ткани, что сопровождается уменьшением количества лимфоцитов.

Выделение из организма осуществляется двумя путями:

1) 75–90 % поступивших гормонов в кровь удаляется с мочой;

2) 10–25 % удаляется с калом и желчью.

Регуляция образования глюкокортикоидов.

Важную роль в образовании глюкокортикоидов играет кортикотропин передней доли гипофиза. Это влияние осуществляется по принципу прямых и обратных связей: кортикотропин повышает продукцию глюкокортикоидов, а избыточное их содержание в крови приводит к торможению кортикотропина в гипофизе.

В ядрах переднего отдела гипоталамуса синтезируется нейросекрет кортиколиберин , который стимулирует образование кортикотропина в передней доле гипофиза, а он, в свою очередь, стимулирует образование глюкокортикоида. Функциональное отношение «гипоталамус – передняя доля гипофиза – кора надпочечников» находится в единой гипоталамо-гипофизарно-надпочечниковой системе, которая играет ведущую роль в адаптационных реакциях организма.

Адреналин – гормон мозгового вещества надпочечников – усиливает образование глюкокортикоидов.

7. Гормоны надпочечников. Минералокортикоиды. Половые гормоны

Минералокортикоиды образуются в клубочковой зоне коры надпочечников и принимают участие в регуляции минерального обмена. К ним относятся альдостерон и дезоксикортикостерон . Они усиливают обратное всасывание ионов Na в почечных канальцах и уменьшают обратное всасывание ионов K, что приводит к повышению ионов Na в крови и тканевой жидкости и увеличению в них осмотического давления. Это вызывает задержку воды в организме и повышение артериального давления.

Минералокортикоиды способствуют проявлению воспалительных реакций за счет повышения проницаемости капилляров и серозных оболочек. Они принимают участие в регуляции тонуса кровеносных сосудов. Альдостерон обладает способностью увеличивать тонус гладких мышц сосудистой стенки, что приводит к повышению величины кровяного давления. При недостатке альдостерона развивается гипотония.

Регуляция образования минералокортикоидов

Регуляция секрета и образования альдостерона осуществляется системой «ренин-ангиотензин». Ренин образуется в специальных клетках юкстагломерулярного аппарата афферентных артериол почки и выделяется в кровь и лимфу. Он катализирует превращение ангиотензиногена в ангиотензин I, который переходит под действием специального фермента в ангиотензин II. Ангиотензин II стимулирует образование альдостерона. Синтез минералокортикоидов контролируется концентрацией ионов Na и K в крови. Повышение ионов Na приводит к торможению секреции альдостерона, что приводит к выделению Na с мочой. Снижение образования минерало-кортикоидов происходит при недостаточном содержании ионов K. На синтез минералокортикоидов влияет количество тканевой жидкости и плазмы крови. Увеличение их объема приводит к торможению секреции альдостеронов, что обусловлено усиленным выделением ионов Na и связанной с ним воды. Гормон эпифиза гломерулотропин усиливает синтез альдостерона.

Половые гормоны (андрогены, эстрогены, прогестерон) образуются в сетчатой зоне коры надпочечников. Они имеют большое значение в развитии половых органов в детском возрасте, когда внутрисекреторная функция половых желез незначительна. Оказывают анаболическое действие на белковый обмен: повышают синтез белка за счет увеличенного включения в его молекулу аминокислот.

При гипофункции коры надпочечников возникает заболевание – бронзовая болезнь, или аддисонова болезнь. Признаками этого заболевания являются: бронзовая окраска кожи, особенно на руках шее, лице, повышенная утомляемость, потеря аппетита, появление тошноты и рвоты. Больной становится чувствителен к боли и холоду, более восприимчив к инфекции.

При гиперфункции коры надпочечников (причиной которой чаще всего является опухоль) происходит увеличение образования гормонов, отмечается преобладание синтеза половых гормонов над другими, поэтому у больных начинают резко изменяться вторичные половые признаки. У женщин наблюдается проявление вторичных мужских половых признаков, у мужчин – женских.

8. Гормоны мозгового слоя надпочечников

Мозговой слой надпочечников вырабатывает гормоны, относящиеся к катехоламинам. Основной гормон – адреналин , вторым по значимости является предшественник адреналина – норадреналин . Хромаффиновые клетки мозгового слоя надпочечников находятся и в других частях организма (на аорте, у места разделения сонных артерий и т. д.), они образуют адреналовую систему организма. Мозговой слой надпочечников – видоизмененный симпатический ганглий.

Значение адреналина и норадреналина

Адреналин выполняет функцию гормона, он поступает в кровь постоянно, при различных состояниях организма (кровопотере, стрессе, мышечной деятельности) происходит увеличение его образования и выделения в кровь.

Возбуждение симпатической нервной системы приводит к повышению поступления в кровь адреналина и норадреналина, они удлиняют эффекты нервных импульсов в симпатической нервной системе. Адреналин влияет на углеродный обмен, ускоряет расщепление гликогена в печени и мышцах, расслабляет бронхиальные мышцы, угнетает моторику ЖКТ и повышает тонус его сфинктеров, повышает возбудимость и сократимость сердечной мышцы. Он повышает тонус кровеносных сосудов, действует сосудорасширяюще на сосуды сердца, легких и головного мозга. Адреналин усиливает работоспособность скелетных мышц.

Повышение активности адреналовой системы происходит под действием различных раздражителей, которые вызывают изменение внутренней среды организма. Адреналин блокирует эти изменения.

Адреналин – гормон короткого периода действия, он быстро разрушается моноаминоксидазой. Это находится в полном соответствии с тонкой и точной центральной регуляцией секреции этого гормона для развития приспособительных и защитных реакций организма.

Норадреналин выполняет функцию медиатора, он входит в состав симпатина – медиатора симпатической нервной системы, он принимает участие в передаче возбуждения в нейронах ЦНС.

Секреторная активность мозгового слоя надпочечников регулируется гипоталамусом, в задней группе его ядер расположены высшие вегетативные центры симпатического отдела. Их активация ведет к увеличению выброса адреналина в кровь. Выделение адреналина может происходить рефлекторно при переохлаждении, мышечной работе и т. д. При гипогликемии рефлекторно повышается выделение адреналина в кровь.

9. Половые гормоны. Менструальный цикл

Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормонов, которые непосредственно поступают в кровь.

Мужские половые гормоны – андрогены образуются в интерстициальных клетках семенников. Различают два вида андрогенов – тестостерон и андростерон .

Андрогены стимулируют рост и развитие полового аппарата, мужских половых признаков и появление половых рефлексов.

Они контролируют процесс созревания сперматозоидов, способствуют сохранению их двигательной активности, проявлению полового инстинкта и половых поведенческих реакций, увеличивают образование белка, особенно в мышцах, уменьшают содержание жира в организме. При недостаточном количестве андрогена в организме нарушаются процессы торможения в коре больших полушарий.

Женские половые гормоны эстрогены образуются в фолликулах яичника. Синтез эстрогенов осуществляется оболочкой фолликула, прогестерона – желтым телом яичника, которое развивается на месте лопнувшего фолликула.

Эстрогены стимулируют рост матки, влагалища, труб, вызывают разрастание эндометрия, способствуют развитию вторичных женских половых признаков, проявлению половых рефлексов, усиливают сократительную способность матки, повышают ее чувствительность к окситоцину, стимулируют рост и развитие молочных желез.

Прогестерон обеспечивает процесс нормального протекания беременности, способствует разрастанию слизистой эндометрия, имплантации оплодотворенной яйцеклетки в эндометрий, тормозит сократительную способность матки, уменьшает ее чувствительность к окситоцину, тормозит созревание и овуляцию фолликула за счет угнетения образования лютропина гипофиза.

Образование половых гормонов находится под влиянием гонадотропных гормонов гипофиза и пролактина. У мужчин гонадотропный гормон способствует созреванию сперматозоидов, у женщин – росту и развитию фолликула. Лютропин определяет выработку женских и мужских половых гормонов, овуляцию и образование желтого тела. Пролактин стимулирует выработку прогестерона.

Мелатонин тормозит деятельность половых желез.

Нервная система принимает участие в регуляции активности половых желез за счет образования в гипофизе гонадотропных гормонов. ЦНС регулирует протекание полового акта. При изменении функционального состояния ЦНС могут произойти нарушение полового цикла и даже его прекращение.

Менструальный цикл включает четыре периода.

1. Предовуляционный (с пятого по четырнадцатый день). Изменения обусловлены действием фоллитропина, в яичниках происходит усиленное образование эстрогенов, они стимулируют рост матки, разрастание слизистой оболочки и ее желез, ускоряется созревание фолликула, поверхность его разрывается, и из него выходит яйцеклетка – происходит овуляция.

2. Овуляционный (с пятнадцатого по двадцатьвосьмой день). Начинается с выхода яйцеклетки в трубу, сокращение гладкой мускулатуры трубы способствует продвижению ее к матке, здесь может произойти оплодотворение. Оплодотворенное яйцо, попадая в матку, прикрепляется к ее слизистой и наступает беременность. Если оплодотворение не произошло, наступает послеовуляционный период. На месте фолликула развивается желтое тело, оно вырабатывает прогестерон.

3. Послеовуляционный период. Неоплодотворенное яйцо, достигая матки, погибает. Прогестерон уменьшает образование фоллитропина и снижает продукцию эстрогенов. Изменения, возникшие в половых органах женщины исчезают. Параллельно уменьшается образование лютропина, что ведет к атрофии желтого тела. За счет уменьшения эстрогенов матка сокращается, происходит отторжение слизистой оболочки. В дальнейшем происходит ее регенерация.

4. Период покоя и послеовуляционный период продолжаются с первого по пятый день полового цикла.

10. Гормоны плаценты. Понятие о тканевых гормонах и антигормонах

Плацента – уникальное образование, которое связывает материнский организм с плодом. Она выполняет многочисленные функции, в том числе метаболическую и гормональную. Она синтезирует гормоны двух групп:

1) белковые – хорионический гонадотропин (ХГ), плацентарный лактогенный гормон (ПЛГ), релаксин ;

2) стероидные – прогестерон, эстрогены .

ХГ образуется в больших количествах через 7-12 недель беременности, в дальнейшем образование гормона снижается в несколько раз, его секреция не контролируется гипофизом и гипоталамусом, его транспорт к плоду ограничен. Функции ХГ – увеличение роста фолликулов, образование желтого тела, стимулирование выработки прогестерона. Защитная функция заключается в способности предотвращать отторжение зародыша организмом матери. ХГ обладает антиаллергическим действием.

ПЛГ начинает секретироваться с шестой недели беременности и прогрессивно увеличивается. Он влияет на молочные железы подобно пролактину гипофиза, на белковый обмен (повышает синтез белка в организме матери). Одновременно возрастает содержание свободных жирных кислот, повышается устойчивость к действию инсулина.

Релаксин секретируется на поздних стадиях развития беременности, расслабляет связки лонного сочленения, снижает тонус матки и ее сократимость.

Прогестерон синтезируется желтым телом до четвертой– шестой недели беременности, в дальнейшем в этот процесс включается плацента, процесс секреции прогрессивно нарастает. Прогестерон вызывает расслабление матки, снижение ее сократимости и чувствительность к эстрогенам и окситоцину, накопление воды и электролитов, особенно внутриклеточного натрия. Эстрогены и прогестерон способствуют росту, растяжению матки, развитию молочных желез и лактации.

Тканевые гормоны – биологически активные вещества, действующие в месте своего образования, не поступающие в кровь. Простагландины образуются в микросомах всех тканей, принимают участие в регуляции секреции пищеварительных соков, изменении тонуса гладких мышц сосудов и бронхов, процесса агрегации тромбоцитов. К тканевым гормонам, регулирующим местное кровообращение, относят гистамин (расширяет сосуды) и серотонин (обладает прессорным действием). Тканевыми гормонами считают медиаторы нервной системы – норадреналин и ацетилхолин.

Антигормоны – вещества, обладающие противогормональной активностью. Их образование происходит при длительном введении гормона в организм извне. Каждый антигормон обладает выраженной видовой специфичностью и блокирует действие того вида гормона, на который выработался. Он появляется в крови спустя 1–3 месяца после введения гормона и исчезает через 3–9 месяцев после последней инъекции гормона.