Все фазы поэтапного свертывания крови. Свертываемость крови: что это такое, и что влияет на свертывание крови? Этапы свертывания крови

Свертывание крови - крайне сложный и во многом еще загадочный биохимический процесс, который запускается при повреждении кровеносной системы и ведет к превращению плазмы крови в студенистый сгусток, затыкающий рану и останавливающий кровотечение. Нарушения этой системы крайне опасны и могут привести к кровотечению, тромбозу или другим патологиям, которые совместно отвечают за львиную долю смертности и инвалидности в современном мире. Здесь мы рассмотрим устройство этой системы и расскажем о самых современных достижениях в ее изучении.

Каждый, кто хоть раз в жизни получал царапину или рану, приобретал тем самым замечательную возможность наблюдать превращение крови из жидкости в вязкую нетекучую массу, приводящее к остановке кровотечения. Этот процесс называется свертыванием крови и управляется сложной системой биохимических реакций.

Иметь какую-нибудь систему остановки кровотечения - абсолютно необходимо для любого многоклеточного организма, имеющего жидкую внутреннюю среду. Свертывание крови является жизненно необходимым и для нас: мутации в генах основных белков свертывания, как правило, летальны. Увы, среди множества систем нашего организма, нарушения в работе которых представляют опасность для здоровья, свертывание крови также занимает абсолютное первое место как главная непосредственная причина смерти: люди болеют разными болезнями, но умирают почти всегда от нарушений свертывания крови . Рак, сепсис, травма, атеросклероз, инфаркт, инсульт - для широчайшего круга заболеваний непосредственной причиной смерти является неспособность системы свертывания поддерживать баланс между жидким и твердым состояниями крови в организме.

Если причина известна, почему же с ней нельзя бороться? Разумеется, бороться можно и нужно: ученые постоянно создают новые методы диагностики и терапии нарушений свертывания. Но проблема в том, что система свертывания очень сложна. А наука о регуляции сложных систем учит, что управлять такими системами нужно особым образом. Их реакция на внешнее воздействие нелинейна и непредсказуема, и для того, чтобы добиться нужного результата, нужно знать, куда приложить усилие. Простейшая аналогия: чтобы запустить в воздух бумажный самолетик, его достаточно бросить в нужную сторону; в то же время для взлета авиалайнера потребуется нажать в кабине пилота на правильные кнопки в нужное время и в нужной последовательности. А если попытаться авиалайнер запустить броском, как бумажный самолетик, то это закончится плохо. Так и с системой свертывания: чтобы успешно лечить, нужно знать «управляющие точки».

Вплоть до самого последнего времени свертывание крови успешно сопротивлялось попыткам исследователей понять его работу, и лишь в последние годы тут произошел качественный скачок. В данной статье мы расскажем об этой замечательной системе: как она устроена, почему ее так сложно изучать, и - самое главное - поведаем о последних открытиях в понимании того, как она работает.

Как устроено свертывание крови

Остановка кровотечения основана на той же идее, что используют домохозяйки для приготовления холодца - превращении жидкости в гель (коллоидную систему, где формируется сеть молекул, способная удержать в своих ячейках тысячекратно превосходящую ее по весу жидкость за счет водородных связей с молекулами воды). Кстати, та же идея используется в одноразовых детских подгузниках, в которые помещается разбухающий при смачивании материал. С физической точки зрения, там нужно решать ту же самую задачу, что и в свертывании - борьбу с протечками при минимальном приложении усилий.

Свертывание крови является центральным звеном гемостаза (остановки кровотечения). Вторым звеном гемостаза являются особые клетки - тромбоциты , - способные прикрепляться друг к другу и к месту повреждения, чтобы создать останавливающую кровь пробку.

Общее представление о биохимии свертывания можно получить из рисунка 1, внизу которого показана реакция превращения растворимого белка фибриногена в фибрин , который затем полимеризуется в сетку. Эта реакция представляет собой единственную часть каскада, имеющую непосредственный физический смысл и решающую четкую физическую задачу. Роль остальных реакций - исключительно регуляторная: обеспечить превращение фибриногена в фибрин только в нужном месте и в нужное время.

Рисунок 1. Основные реакции свертывания крови. Система свертывания представляет собой каскад - последовательность реакций, где продукт каждой реакции выступает катализатором следующей. Главный «вход» в этот каскад находится в его средней части, на уровне факторов IX и X: белок тканевый фактор (обозначен на схеме как TF) связывает фактор VIIa, и получившийся ферментативный комплекс активирует факторы IX и X. Результатом работы каскада является белок фибрин, способный полимеризоваться и образовывать сгусток (гель). Подавляющее большинство реакций активации - это реакции протеолиза, т.е. частичного расщепления белка, увеличивающего его активность. Почти каждый фактор свертывания обязательно тем или иным образом ингибируется: обратная связь необходима для стабильной работы системы.

Обозначения: Реакции превращения факторов свертывания в активные формы показаны односторонними тонкими черными стрелками . При этом фигурные красные стрелки показывают, под действием каких именно ферментов происходит активация. Реакции потери активности в результате ингибирования показаны тонкими зелеными стрелками (для простоты стрелки изображены как просто «уход», т.е. не показано, с какими именно ингибиторами происходит связывание). Обратимые реакции формирования комплексов показаны двусторонними тонкими черными стрелками . Белки свертывания обозначены либо названиями, либо римскими цифрами, либо аббревиатурами (TF - тканевый фактор, PC - протеин С, APC - активированный протеин С). Чтобы избежать перегруженности, на схеме не показаны: связывание тромбина с тромбомодулином, активация и секреция тромбоцитов, контактная активация свертывания.

Фибриноген напоминает стержень длиной 50 нм и толщиной 5 нм (рис. 2а ). Активация позволяет его молекулам склеиваться в фибриновую нить (рис 2б ), а затем в волокно, способное ветвиться и образовывать трехмерную сеть (рис. 2в ).

Рисунок 2. Фибриновый гель. а - Схематическое устройство молекулы фибриногена. Основа ее составлена из трех пар зеркально расположенных полипептидных цепей α, β, γ. В центре молекулы можно видеть области связывания, которые становятся доступными при отрезании тромбином фибринопептидов А и Б (FPA и FPB на рисунке). б - Механизм сборки фибринового волокна: молекулы крепятся друг к другу «внахлест» по принципу головка-к-серединке, образуя двухцепочечное волокно. в - Электронная микрофотография геля: фибриновые волокна могут склеиваться и расщепляться, образуя сложную трехмерную структуру.

Рисунок 3. Трехмерная структура молекулы тромбина. На схеме показаны активный сайт и части молекулы, ответственные за связывание тромбина с субстратами и кофакторами. (Активный сайт - часть молекулы, непосредственно распознающее место расщепления и осуществляющее ферментативный катализ.) Выступающие части молекулы (экзосайты) позволяют осуществлять «переключение» молекулы тромбина, делая его мультифункциональным белком, способным работать в разных режимах. Например, связывание тромбомодулина с экзосайтом I физически перекрывает доступ к тромбину прокоагулянтным субстратам (фибриноген, фактор V) и аллостерически стимулирует активность по отношению к протеину C.

Активатор фибриногена тромбин (рис. 3) принадлежит к семейству сериновых протеиназ - ферментов, способных осуществлять расщепление пептидных связей в белках. Он является родственником пищеварительных ферментов трипсина и химотрипсина. Протеиназы синтезируются в неактивной форме, называемой зимогеном . Чтобы их активировать, необходимо расщепить пептидную связь, удерживающую часть белка, которая закрывает активный сайт. Так, тромбин синтезируется в виде протромбина, который может быть активирован. Как видно из рис. 1 (где протромбин обозначен как фактор II), это катализируется фактором Xa.

Вообще, белки свертывания называют факторами и нумеруют римскими цифрами в порядке официального открытия. Индекс «а» означает активную форму, а его отсутствие - неактивный предшественник. Для давно открытых белков, таких как фибрин и тромбин, используют и собственные имена. Некоторые номера (III, IV, VI) по историческим причинам не используются.

Активатором свертывания служит белок, называемый тканевым фактором , присутствующий в мембранах клеток всех тканей, за исключением эндотелия и крови. Таким образом, кровь остается жидкой только благодаря тому, что в норме она защищена тонкой защитной оболочкой эндотелия. При любом нарушении целостности сосуда тканевой фактор связывает из плазмы фактор VIIa, а их комплекс - называемый внешней теназой (tenase, или Xase, от слова ten - десять, т.е. номер активируемого фактора) - активирует фактор X.

Тромбин также активирует факторы V, VIII, XI, что ведет к ускорению его собственного производства: фактор XIa активирует фактор IX, а факторы VIIIa и Va связывают факторы IXa и Xa, соответственно, увеличивая их активность на порядки (комплекс факторов IXa и VIIIa называется внутренней теназой ). Дефицит этих белков ведет к тяжелым нарушениям: так, отсутствие факторов VIII, IX или XI вызывает тяжелейшую болезнь гемофилию (знаменитую «царскую болезнь», которой болел царевич Алексей Романов); а дефицит факторов X, VII, V или протромбина несовместим с жизнью.

Такое устройство системы называется положительной обратной связью : тромбин активирует белки, которые ускоряют его собственное производство. И здесь возникает интересный вопрос, а зачем они нужны? Почему нельзя сразу сделать реакцию быстрой, почему природа делает ее исходно медленной, а потом придумывает способ ее дополнительного ускорения? Зачем в системе свертывания дублирование? Например, фактор X может активироваться как комплексом VIIa-TF (внешняя теназа), так и комплексом IXa-VIIIa (внутренняя теназа); это выглядит совершенно бессмысленным.

В крови также присутствуют ингибиторы протеиназ свертывания. Основными являются антитромбин III и ингибитор пути тканевого фактора. Кроме этого, тромбин способен активировать сериновую протеиназу протеин С , которая расщепляет факторы свертывания Va и VIIIa, заставляя их полностью терять свою активность.

Протеин С - предшественник сериновой протеиназы, очень похожей на факторы IX, X, VII и протромбин. Он активируется тромбином, как и фактор XI. Однако при активации получившаяся сериновая протеиназа использует свою ферментативную активность не для того, чтобы активировать другие белки, а для того, чтобы их инактивировать. Активированный протеин С производит несколько протеолитических расщеплений в факторах свертывания Va и VIIIa, заставляя их полностью терять свою кофакторную активность. Таким образом, тромбин - продукт каскада свертывания - ингибирует свое собственное производство: это называется отрицательной обратной связью. И опять у нас регуляторный вопрос: зачем тромбин одновременно ускоряет и замедляет собственную активацию?

Эволюционные истоки свертывания

Формирование защитных систем крови началось у многоклеточных свыше миллиарда лет назад - собственно, как раз в связи с появлением крови. Сама система свертывания является результатом преодоления другой исторической вехи - возникновения позвоночных около пятисот миллионов лет назад. Скорее всего, эта система возникла из иммунитета. Появление очередной системы иммунных реакций, которая боролась с бактериями путем обволакивания их фибриновым гелем, привело к случайному побочному результату: кровотечение стало прекращаться быстрее. Это позволило увеличивать давление и силу потоков в кровеносной системе, а улучшение сосудистой системы, то есть улучшение транспорта всех веществ, открыло новые горизонты развития. Кто знает, не было ли появление свертывания тем преимуществом, которое позволило позвоночным занять свое нынешнее место в биосфере Земли?

У ряда членистогих (таких, как рак-мечехвост) свертывание также существует, но оно возникло независимо и осталось на иммунологических ролях. Насекомые, как и прочие беспозвоночные, обычно обходятся более слабой разновидностью системы остановки кровотечения, основанной на агрегации тромбоцитов (точнее, амебоцитов - дальних родственников тромбоцитов). Этот механизм вполне функционален, но накладывает принципиальные ограничения на эффективность сосудистой системы, - так же, как трахейная форма дыхания ограничивает максимально возможный размер насекомого.

К сожалению, существа с промежуточными формами системы свертывания почти все вымерли. Единственным исключением являются бесчелюстные рыбы: геномный анализ системы свертывания у миноги показал, что она содержит гораздо меньше компонентов (то есть, устроена заметно проще) . Начиная же с челюстных рыб и до млекопитающих системы свертывания очень похожи. Системы клеточного гемостаза также работают по схожим принципам, несмотря на то, что мелкие, безъядерные тромбоциты характерны только для млекопитающих. У остальных позвоночных тромбоциты - крупные клетки, имеющие ядро.

Подводя итог, система свертывания изучена очень хорошо. В ней уже пятнадцать лет не открывали новых белков или реакций, что для современной биохимии составляет вечность. Конечно, нельзя совсем исключить вероятность такого открытия, но пока что не существует ни одного явления, которое мы не могли бы объяснить при помощи имеющихся сведений. Скорее наоборот, система выглядит гораздо сложнее, чем нужно: мы напомним, что из всего этого (довольно громоздкого!) каскада собственно желированием занимается только одна реакция, а все остальные нужны для какой-то непонятной регуляции.

Именно поэтому сейчас исследователи-коагулологи, работающие в самых разных областях - от клинической гемостазиологии до математической биофизики, - активно переходят от вопроса «Как устроено свертывание?» к вопросам «Почему свертывание устроено именно так?» , «Как оно работает?» и, наконец, «Как нам нужно воздействовать на свертывание, чтобы добиться желаемого эффекта?» . Первое, что необходимо сделать для ответа - научиться исследовать свертывание целиком, а не только отдельные реакции.

Как исследовать свертывание?

Для изучения свертывания создаются различные модели - экспериментальные и математические. Что именно они позволяют получить?

С одной стороны, кажется, что самым лучшим приближением для изучения объекта является сам объект. В данном случае - человек или животное. Это позволяет учитывать все факторы, включая ток крови по сосудам, взаимодействия со стенками сосудов и многое другое. Однако в этом случае сложность задачи превосходит разумные границы. Модели свертывания позволяют упростить объект исследования, не упуская его существенных особенностей.

Попытаемся составить представление о том, каким требованиям должны отвечать эти модели, чтобы корректно отражать процесс свертывания in vivo .

В экспериментальной модели должны присутствовать те же биохимические реакции, что и в организме. Должны присутствовать не только белки системы свертывания, но и прочие участники процесса свертывания - клетки крови, эндотелия и субэндотелия. Система должна учитывать пространственную неоднородность свертывания in vivo : активацию от поврежденного участка эндотелия, распространение активных факторов, присутствие тока крови.

Рассмотрение моделей свертывания естественно начать с методов исследования свертывания in vivo . Основа практически всех используемых подходов такого рода заключается в нанесении подопытному животному контролируемого повреждения с тем, чтобы вызвать гемостатическую или тромботическую реакцию. Данная реакция исследуется различными методами:

  • наблюдение за временем кровотечения;
  • анализ плазмы, взятой у животного;
  • вскрытие умерщвленного животного и гистологическое исследование;
  • наблюдение за тромбом в реальном времени с использованием микроскопии или ядерного магнитного резонанса (рис. 4).

Рисунок 4. Формирование тромба in vivo в модели тромбоза, индуцированного лазером. Эта картинка воспроизведена из исторической работы, где ученые впервые смогли пронаблюдать развитие тромба «вживую». Для этого в кровь мыши впрыснули концентрат флуоресцентно меченных антител к белкам свертывания и тромбоцитам, и, поместив животное под объектив конфокального микроскопа (позволяющего осуществлять трехмерное сканирование), выбрали доступную для оптического наблюдения артериолу под кожей и повредили эндотелий лазером. Антитела начали присоединяться к растущему тромбу, сделав возможным его наблюдение.

Классическая постановка эксперимента по свертыванию in vitro заключается в том, что плазма крови (или цельная кровь) смешивается в некоторой емкости с активатором, после чего производится наблюдение за процессом свертывания. По методу наблюдения экспериментальные методики можно разделить на следующие типы:

  • наблюдение за самим процессом свертывания;
  • наблюдение за изменением концентраций факторов свертывания от времени.

Второй подход дает несравненно больше информации. Теоретически, зная концентрации всех факторов в произвольный момент времени, можно получить полную информацию о системе. На практике исследование даже двух белков одновременно дорого и связано с большими техническими трудностями.

Наконец, свертывание в организме протекает неоднородно. Формирование сгустка запускается на поврежденной стенке, распространяется с участием активированных тромбоцитов в объеме плазмы, останавливается с помощью эндотелия сосудов. Адекватно изучить эти процессы с помощью классических методов невозможно. Вторым важным фактором является наличие потока крови в сосудах.

Осознание этих проблем привело к появлению, начиная с 1970-х годов, разнообразных проточных экспериментальных систем in vitro . Несколько больше времени потребовалось на осознание пространственных аспектов проблемы. Только в 1990-е годы стали появляться методы, учитывающие пространственную неоднородность и диффузию факторов свертывания, и только в последнее десятилетие они стали активно использоваться в научных лабораториях (рис. 5).

Рисунок 5. Пространственный рост фибринового сгустка в норме и патологии. Свертывание в тонком слое плазмы крови активировалось иммобилизованным на стенке тканевым фактором. На фотографиях активатор расположен слева . Серая расширяющаяся полоса - растущий фибриновый сгусток.

Наряду с экспериментальными подходами для исследований гемостаза и тромбоза также используются математические модели (этот метод исследований часто называется in silico ). Математическое моделирование в биологии позволяет устанавливать глубокие и сложные взаимосвязи между биологической теорией и опытом. Проведение эксперимента имеет определенные границы и сопряжено с рядом трудностей. Кроме того, некоторые теоретически возможные эксперименты неосуществимы или запредельно дороги вследствие ограничений экспериментальной техники. Моделирование упрощает проведение экспериментов, так как можно заранее подобрать необходимые условия для экспериментов in vitro и in vivo , при которых интересующий эффект будет наблюдаем.

Регуляция системы свертывания

Рисунок 6. Вклад внешней и внутренней теназы в формирование фибринового сгустка в пространстве. Мы использовали математическую модель, чтобы исследовать, как далеко может простираться влияние активатора свертывания (тканевого фактора) в пространстве. Для этого мы посчитали распределение фактора Xa (который определяет распределение тромбина, который определяет распределение фибрина). На анимации показаны распределения фактора Xa, произведенного внешней теназой (комплексом VIIa–TF) или внутренней теназой (комплексом IXa–VIIIa), а также общее количество фактора Xa (заштрихованная область). (Вставка показывает то же самое на более крупной шкале концентраций.) Можно видеть, что произведенный на активаторе фактор Xa не может проникнуть далеко от активатора из-за высокой скорости ингибирования в плазме. Напротив, комплекс IXa–VIIIa работает вдали от активатора (т.к. фактор IXa медленнее ингибируется и потому имеет большее расстояние эффективной диффузии от активатора), и обеспечивает распространение фактора Xa в пространстве.

Сделаем следующий логический шаг и попробуем ответить на вопрос - а как описанная выше система работает?

Каскадное устройство системы свертывания

Начнем с каскада - цепочки активирующих друг друга ферментов. Один фермент, работающий с постоянной скоростью, дает линейную зависимость концентрации продукта от времени. У каскада из N ферментов эта зависимость будет иметь вид t N , где t - время. Для эффективной работы системы важно, чтобы ответ носил именно такой, «взрывной» характер, поскольку это сводит к минимуму тот период, когда сгусток фибрина еще непрочен.

Запуск свертывания и роль положительных обратных связей

Как упоминалось в первой части статьи, многие реакции свертывания медленны. Так, факторы IXa и Xa сами по себе являются очень плохими ферментами и для эффективного функционирования нуждаются в кофакторах (факторах VIIIa и Va, соответственно). Эти кофакторы активируются тромбином: такое устройство, когда фермент активирует собственное производство, называется петлей положительной обратной связи.

Как было показано нами экспериментально и теоретически, положительная обратная связь активации фактора V тромбином формирует порог по активации - свойство системы не реагировать на малую активацию, но быстро срабатывать при появлении большой. Подобное умение переключаться представляется весьма ценным для свертывания: это позволяет предотвратить «ложное срабатывание» системы.

Роль внутреннего пути в пространственной динамике свертывания

Одной из интригующих загадок, преследовавших биохимиков на протяжении многих лет после открытия основных белков свертывания, была роль фактора XII в гемостазе. Его дефицит обнаруживался в простейших тестах свертывания, увеличивая время, необходимое для образования сгустка, однако, в отличие от дефицита фактора XI, не сопровождался нарушениями свертывания.

Один из наиболее правдоподобных вариантов разгадки роли внутреннего пути был предложен нами с помощью пространственно неоднородных экспериментальных систем. Было обнаружено, что положительные обратные связи имеют большое значение именно для распространения свертывания. Эффективная активация фактора X внешней теназой на активаторе не поможет сформировать сгусток вдали от активатора, так как фактор Xa быстро ингибируется в плазме и не может далеко отойти от активатора. Зато фактор IXa, который ингибируется на порядок медленнее, вполне на это способен (и ему помогает фактор VIIIa, который активируется тромбином). А там, куда сложно дойти и ему, начинает работать фактор XI, также активируемый тромбином. Таким образом, наличие петель положительных обратных связей помогает создать трехмерную структуру сгустка.

Путь протеина С как возможный механизм локализации тромбообразования

Активация протеина С тромбином сама по себе медленна, но резко ускоряется при связывании тромбина с трансмембранным белком тромбомодулином, синтезируемым клетками эндотелия. Активированный протеин С способен разрушать факторы Va и VIIIa, на порядки замедляя работу системы свертывания. Ключом к пониманию роли данной реакции стали пространственно-неоднородные экспериментальные подходы. Наши эксперименты позволили предположить, что она останавливает пространственный рост тромба, ограничивая его размер.

Подведение итогов

В последние годы сложность системы свертывания постепенно становится менее загадочной. Открытие всех существенных компонентов системы, разработка математических моделей и использование новых экспериментальных подходов позволили приоткрыть завесу тайны. Структура каскада свертывания расшифровывается, и сейчас, как мы видели выше, практически для каждой существенной части системы выявлена или предложена роль, которую она играет в регуляции всего процесса.

На рисунке 7 представлена наиболее современная попытка пересмотреть структуру системы свертывания. Это та же схема, что и на рис. 1, где разноцветным затенением выделены части системы, отвечающие за разные задачи, как обсуждалось выше. Не все в этой схеме является надежно установленным. Например, наше теоретическое предсказание, что активация фактора VII фактором Xa позволяет свертыванию пороговым образом отвечать на скорость потока, остается пока еще непроверенным в эксперименте.

Свёртывание крови - это важнейший этап работы системы гемостаза , отвечающий за остановку кровотечения при повреждении сосудистой системы организма. Совокупность взаимодействующих между собой весьма сложным образом различных факторов свёртывания крови образует систему свёртывания крови .

Свёртыванию крови предшествует стадия первичного сосудисто-тромбоцитарного гемостаза. Этот первичный гемостаз почти целиком обусловлен сужением сосудов и механической закупоркой агрегатами тромбоцитов места повреждения сосудистой стенки. Характерное время для первичного гемостаза у здорового человека составляет 1-3 минуты . Собственно свёртыванием крови (гемокоагуляция, коагуляция, плазменный гемостаз, вторичный гемостаз) называют сложный биологический процесс образования в крови нитей белка фибрина , который полимеризуется и образует тромбы, в результате чего кровь теряет текучесть, приобретая творожистую консистенцию. Свёртывание крови у здорового человека происходит локально, в месте образования первичной тромбоцитарной пробки. Характерное время образования фибринового сгустка - около 10 минут . Свёртывание крови - ферментативный процесс.

Основоположником современной физиологической теории свёртывания крови является Александр Шмидт . В научных исследованиях XXI века , проведённых на базе Гематологического научного центра под руководством Атауллаханова Ф. И. , было убедительно показано , что свёртывание крови представляет собой типичный автоволновой процесс , в котором существенная роль принадлежит эффектам бифуркационной памяти .

Энциклопедичный YouTube

  • 1 / 5

    Процесс гемостаза сводится к образованию тромбоцитарно-фибринового сгустка. Условно его разделяют на три стадии :

    1. временный (первичный) спазм сосудов;
    2. образование тромбоцитарной пробки за счёт адгезии и агрегации тромбоцитов;
    3. ретракция (сокращение и уплотнение) тромбоцитарной пробки.

    Повреждение сосудов сопровождается немедленной активацией тромбоцитов. Адгезия (прилипание) тромбоцитов к волокнам соединительной ткани по краям раны обусловлена гликопротеином фактором Виллебранда . Одновременно с адгезией наступает агрегация тромбоцитов: активированные тромбоциты присоединяются к повреждённым тканям и к друг другу, формируя агрегаты, преграждающие путь потере крови. Появляется тромбоцитарная пробка .

    Из тромбоцитов, подвергшихся адгезии и агрегации, усиленно секретируются различные биологически активные вещества (АДФ, адреналин, норадреналин и другие), которые приводят к вторичной, необратимой агрегации. Одновременно с высвобождением тромбоцитарных факторов происходит образование тромбина , который воздействует на фибриноген с образованием сети фибрина, в которой застревают отдельные эритроциты и лейкоциты – образуется так называемый тромбоцитарно-фибриновый сгусток (тромбоцитарная пробка). Благодаря контрактильному белку тромбостенину тромбоциты подтягиваются друг к другу, тромбоцитарная пробка сокращается и уплотняется, наступает её ретракция .

    Процесс свёртывания крови

    Процесс свёртывания крови представляет собой преимущественно проферментно-ферментный каскад, в котором проферменты, переходя в активное состояние, приобретают способность активировать другие факторы свёртывания крови . В самом простом виде процесс свёртывания крови может быть разделён на три фазы:

    1. фаза активации включает комплекс последовательных реакций, приводящих к образованию протромбиназы и переходу протромбина в тромбин;
    2. фаза коагуляции - образование фибрина из фибриногена;
    3. фаза ретракции - образование плотного фибринового сгустка.

    Данная схема была описана ещё в 1905 году Моравицем и до сих пор не утратила своей актуальности .

    В области детального понимания процесса свёртывания крови с 1905 года произошёл значительный прогресс. Открыты десятки новых белков и реакций, участвующих в процессе свёртывания крови, который имеет каскадный характер. Сложность этой системы обусловлена необходимостью регуляции данного процесса.

    Современное представление с позиций физиологии каскада реакций, сопровождающих свёртывание крови, представлено на рис. 2 и 3. Вследствие разрушения тканевых клеток и активации тромбоцитов высвобождаются белки фосфолипопротеины, которые вместе с факторами плазмы X a и V a , а также ионами Ca 2+ образуют ферментный комплекс, который активирует протромбин. Если процесс свёртывания начинается под действием фосфолипопротеинов, выделяемых из клеток повреждённых сосудов или соединительной ткани , речь идёт о внешней системе свёртывания крови (внешний путь активации свёртывания, или путь тканевого фактора). Основными компонентами этого пути являются 2 белка: фактор VIIа и тканевый фактор, комплекс этих 2 белков называют также комплексом внешней теназы.

    Если же инициация происходит под влиянием факторов свёртывания, присутствующих в плазме, используют термин внутренняя система свёртывания . Комплекс факторов IXа и VIIIa, формирующийся на поверхности активированных тромбоцитов, называют внутренней теназой. Таким образом, фактор X может активироваться как комплексом VIIa-TF (внешняя теназа), так и комплексом IXa-VIIIa (внутренняя теназа). Внешняя и внутренняя системы свёртывания крови дополняют друг друга .

    В процессе адгезии форма тромбоцитов меняется - они становятся округлыми клетками с шиповидными отростками. Под влиянием АДФ (частично выделяется из повреждённых клеток) и адреналина способность тромбоцитов к агрегации повышается. При этом из них выделяются серотонин , катехоламины и ряд других веществ. Под их влиянием происходит сужение просвета повреждённых сосудов, возникает функциональная ишемия . В конечном итоге сосуды перекрываются массой тромбоцитов, прилипших к краям коллагеновых волокон по краям раны .

    На этой стадии гемостаза под действием тканевого тромбопластина образуется тромбин . Именно он инициирует необратимую агрегацию тромбоцитов. Реагируя со специфическими рецепторами в мембране тромбоцитов, тромбин вызывает фосфорилирование внутриклеточных белков и высвобождение ионов Ca 2+ .

    При наличии в крови ионов кальция под действием тромбина происходит полимеризация растворимого фибриногена (см. фибрин) и образование бесструктурной сети волокон нерастворимого фибрина. Начиная с этого момента в этих нитях начинают фильтроваться форменные элементы крови, создавая дополнительную жёсткость всей системе, и через некоторое время образуя тромбоцитарно-фибриновый сгусток (физиологический тромб), который закупоривает место разрыва, с одной стороны, предотвращая потерю крови, а с другой - блокируя поступление в кровь внешних веществ и микроорганизмов. На свёртывание крови влияет множество условий. Например, катионы ускоряют процесс, а анионы - замедляют. Кроме того, существуют вещества как полностью блокирующие свёртывание крови (гепарин , гирудин и другие), так и активирующие его (яд гюрзы, феракрил).

    Врождённые нарушения системы свёртывания крови называют гемофилией .

    Методы диагностики свёртывания крови

    Все многообразие клинических тестов свёртывающей системы крови можно разделить на две группы :

    • глобальные (интегральные, общие) тесты;
    • «локальные» (специфические) тесты.

    Глобальные тесты характеризуют результат работы всего каскада свёртывания. Они подходят для диагностики общего состояния свёртывающей системы крови и выраженности патологий, с одновременным учётом всех привходящих факторов влияний. Глобальные методы играют ключевую роль на первой стадии диагностики: они дают интегральную картину происходящих изменений в свёртывающей системе и позволяют предсказывать тенденцию к гипер- или гипокоагуляции в целом. «Локальные» тесты характеризуют результат работы отдельных звеньев каскада свёртывающей системы крови, а также отдельных факторов свёртывания. Они незаменимы для возможного уточнения локализации патологии с точностью до фактора свёртывания. Для получения полной картины работы гемостаза у пациента врач должен иметь возможность выбирать, какой тест ему необходим.

    Глобальные тесты :

    • определение времени свёртывания цельной крови (метод Мас-Магро или Метод Моравица);
    • тест генерации тромбина (тромбиновый потенциал, эндогенный тромбиновый потенциал);

    «Локальные» тесты :

    • активированное частичное тромбопластиновое время (АЧТВ);
    • тест протромбинового времени (или протромбиновый тест, МНО, ПВ);
    • узкоспециализированные методы для выявления изменений в концентрации отдельных факторов.

    Все методы, измеряющие промежуток времени с момента добавления реагента (активатора, запускающего процесс свёртывания) до формирования фибринового сгустка в исследуемой плазме, относятся к клоттинговым методам (от англ. сlot - сгусток).

    Примеры нарушений свёртывания крови:

    См. также

    Примечания

    1. Атауллаханов Ф.И. , Зарницына В. И. , Кондратович А. Ю. , Лобанова Е. С. , Сарбаш В. И. Особый класс автоволн - автоволны с остановкой - определяет пространственную динамику свертывания крови (рус.) // УФН: журнал. - 2002. - Т. 172 , № 6 . - С. 671-690 . -

    Свертываемость крови - это сложная система биологических реакций, которая позволяет сохранить кровь в жидком состоянии в сосудистом русле и останавливает кровотечение путем тромбирования. То есть если нарушается целостность сосудов, за короткий период образуется кровяной сгусток, который закрывает рану и останавливает кровопотерю. Постепенно рана затягивается. Если процесс свертывания крови нарушился под влиянием каких-либо факторов, то даже незначительные повреждения могут иметь опасные последствия.

    Как происходит свертывание крови

    Значение свертывания крови трудно переоценить. Благодаря этому процессу полностью сохраняется объем крови, находящейся в организме. Изменение ее консистенции происходит под воздействием физико-химических реакций. Главную роль в этом процесс играет белок фибриноген. При повреждении он превращается в нерастворимый фибрин, который представляет собой тонкие нити. Они образуют густую сеть с множеством ячеек и задерживают потерю форменных элементов крови. Таким образом, формируется тромб. Постепенно он становится более плотным, края раны затягиваются, начинается процесс заживления. В процессе уплотнения сгустка крови важную роль играют тромбоциты. Постепенно рана затягивается и фибриновый сгусток растворяется.

    Свертывание крови состоит из трех этапов:

    1. Активация.
    2. Коагуляция.
    3. Ретракция.

    Эти этапы в итоге вызывают процессы, из-за которых образуются тромбы. Каждый фактор свертывания важен по-своему, но главные в этом - белки. Процесс свертывания невозможен также и без иных элементов.

    В обычном состоянии кровь имеет водянистую консистенцию. Она состоит из большого количества элементов, полностью растворенных в жидкости.

    И лишь после получения повреждений запускаются механизмы, которые приводят к сворачиванию крови. Рана закупоривается, кровь не может вытекать, а микробы и другие вещества не могут проникнуть внутрь организма.

    На этот процесс влияют различные факторы.

    Что влияет на этот процесс

    Конечно, очень важно, чтобы кровь быстро сворачивалась. Но при этом она должна не терять жидкую консистенцию. Существуют определенные заболевания, при которых кровь может свернуться внутри сосудов. Этот процесс более опасный, чем кровотечения.

    Что же влияет на свертываемость крови? В человеческом организме работают две системы. Если они работают нормально, то в поврежденном месте кровь сворачивается, но в сосудах ее состояние не меняется и остается жидким.

    Положительно на процесс свертывания влияют:

    • Нервная система. При сильных болевых раздражениях кровь сворачивается быстрее.
    • Условные рефлексы - это также фактор, влияющий на этот процесс.

    • При травмах надпочечники начинают вырабатывать адреналин, который ускоряет свертывание крови. А также он сужает просвет артерий, чем снижает вероятность кровопотерь.
    • Витамин K и соли кальция. Они также ускоряют процесс свертывания.

    Если и другая система, которая препятствует сворачиванию крови:

    1. Легкие и печень содержат гепарин. Он останавливает свертывание крови и образование тромбопластина. Интересно, что у молодых людей после физических нагрузок количество гепарина в организме снижается.
    2. Белок фибринолизин. Под его воздействием происходит растворение фибрина.
    3. Слишком сильные болевые ощущения могут замедлить процесс сворачивания крови.
    4. В сильном холоде кровь может не свернуться.

    Свертывание крови очень замедлено у самых маленьких детей. Такая ситуация продолжается на протяжении первых семи дней жизни. Постепенно уровень протромбина повышается, состояние всех факторов свертывания нормализуется.

    Кровь ребенка, достигшего одного года, будет практически в таком состоянии, как и кровь взрослого человека.

    Как определяют свертываемость крови

    Различают внешний и внутренний этап, по которому осуществляется процесс свертывания. Работа факторов активизируется в клеточных мембранах, получивших повреждения при травмах.

    Под воздействием катионов кровь свертывается быстрее, а анионы этот процесс замедляют. Вся система не работает без тканевого тромбопластина. Все процессы должны начаться через одну минуту после получения травмы.

    Есть специальный метод, который позволяет определить, как быстро начинает свертываться кровь в организме человека. Исследование называется «время свертывания по Мас-Магро».

    Оно проводится таким образом:

    • на стекло часов наносят небольшое количество вазелинового масла;
    • в спирте смачивают вату и протирают ею палец;
    • одноразовой иглой делают прокол;
    • кровь, которая начала вытекать, протирают ваткой и выдавливают новую каплю, ее всасывают пипеткой;
    • эту пипетку предварительно смазывают парафиновым маслом;
    • взятый материал выдавливают на стекло, которое было смазано вазелиновым маслом;
    • процедуру повторяют до тех пор, пока кровь не свернется так, что ее нельзя будет взять пипеткой.

    Если в организме человека все нормально, то кровь должна свертываться минут за десять при температуре 25ºC. Если обнаруживают нарушения, то назначают необходимое лечение. Если кровь не сворачивается, значит, у человека гемофилия. Эта болезнь не лечится, но если следить за состоянием своего здоровья, прожить с ней можно долго.

    Кроме того, есть и иные способы (по Сухареву, по Дуке и т. п.).

    Нарушения процесса

    Почему кровь сворачивается, должен знать каждый. Ведь нарушения этого состояния могут иметь серьезные последствия.

    И повышение, и понижение этого процесса - очень опасные состояния.

    Нарушения могут произойти по таким причинам:

    • употребление некоторых препаратов;
    • такие генетические мутации, как гемофилия;
    • нарушения под влиянием таких сопутствующих заболеваний, как недостаток витамина K в организме или патологии печени.

    Пониженная свертываемость на любой стадии опасна. Она может стать причиной внутренних кровотечений. Чаще всего «провокатором» является язва желудка. В этом случае необходимо как можно быстрее принять меры. Еще больше последствий может иметь повышенная свертываемость.

    В зависимости от стадии заболевания возможны такие последствия:

    1. Может оторваться тромб. Тромбами называют кровяные сгустки. Это самое опасное последствие нарушений системы свертывания. Даже небольшие тромбы могут привести к нарушениям кровообращения, а если произошла закупорка сосуда, то возможен летальный исход. К отрыву тромба может привести травма или определенный лекарственный препарат. Опасней всего, если тромб закупорит легочную артерию. Это осложнения чаще всего заканчивается смертью больного.
    2. Тромбофлебит. В этом случае тромбы располагаются на стенках сосудов и закупоривают просвет. Из-за этого определенные области организма страдают от недостаточного кровоснабжения.
    3. Повышение свертываемости может привести к необратимым поражениям сердца и головного мозга. Что это такое, подробней может рассказать специалист.

    Что влиять на свертываемость крови, должен знать каждый, чтобы в случае нарушений вовремя предотвратить осложнения.

    Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

    Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

    Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

    Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

    Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

    СВЁРТЫВАЮЩАЯ СИСТЕМА КРОВИ (син.: коагуляционная система, система гемостаза, гемокоагуляция ) - ферментативная система, обеспечивающая остановку кровотечения путем формирования фибринных тромбов, поддержание целости кровеносных сосудов и жидкого состояния крови. С. с. к.- функциональная часть физиол. системы регуляции агрегатного состояния крови (см.).

    Основы учения о свертывании крови (см.) были разработаны А. А. Шмидтом. Он сформулировал теорию двухфазного свертывания крови, согласно к-рой в первой фазе свертывания крови в результате ферментативных реакций образуется тромбин (см.), во второй фазе под влиянием тромбина фибриноген (см.) превращается в фибрин (см.). В 1904 г. Моравитц (Р. О. Morawitz), затем Салиби (В. S. Salibi, 1952) и Оврен (P. A. Owren, 1954) открыли образование тромбопластинов в плазме и показали роль ионов кальция в превращении протромбина (см.) в тромбин. Это позволило сформулировать трехфазную теорию свертывания крови, согласно к-рой процесс протекает последовательно: в первой фазе происходит формирование активной протромбиназы, во второй - образование тромбина, в третьей - появление фибрина.

    Согласно схеме Макфарлена свертывание крови протекает по типу каскада, т. е. происходит последовательное превращение неактивного фактора (профермента) в активный фермент, к-рый активирует следующий фактор. Т. о., свертывание крови - сложный, многоступенчатый механизм, действующий по принципу обратной связи. При этом в процессе такого преобразования увеличивается скорость последующего превращения и количество активируемого вещества.

    В свертывании крови, представляющем собой ферментативную цепную реакцию, участвуют компоненты плазмы, тромбоцитов и тканей, к-рые называются факторами свертывания крови (см. Гемостаз). Различают плазменные (прокоагулянты), тканевые (сосудистые) и клеточные (тромбоцитарные, эритроцитарные и др.) факторы свертывания крови.

    Основными плазменными факторами являются фактор I (см. Фибриноген), фактор II (см. Протромбин), фактор III, или тканевый тромбопластин, фактор IV, или ионизированный кальций, фактор VII, или фактор Коллера (см. Проконвертин), факторы V, X, XI, XII, XIII (см. Геморрагические диатезы), факторы VIII и IX (см. Гемофилия); фактор III (тромбопластический фактор) - фосфолипопротеид, содержится во всех тканях организма; образует при взаимодействии с фактором VII и кальцием комплекс, активирующий фактор X. Факторы II, V (Ас-глобулин), VII, IX, X, XI, XII и XIII являются ферментами; фактор VIII (антигемофильный глобулин - АГГ) - сильный акцелератор коагулирующих ферментов, вместе с фактором I он составляет неферментную группу.

    В активации свертывания крови и фибринолиза участвуют тканевые факторы, компоненты калликреин-кининовой ферментной системы (см. Кинины): плазменный прекалликреин (фактор Флетчера, фактор XIV) и высокомолекулярный кининоген (фактор Фитцджеральда, фактор Вильямса, фактор Флоджека, фактор XV). К тканевым факторам относятся синтезируемый в эндотелии сосудов фактор Виллебранда, активаторы и ингибиторы фибринолиза (см.), простациклин - ингибитор агрегации тромбоцитов, а также субэндотел и-альные структуры (напр., коллаген), активирующие фактор XII и адгезию тромбоцитов (см.).

    К клеточным факторам крови относят группу коагуляционных тром-боцитарных факторов, из к-рых наиболее важны фосфолигшдный (мембранный) фактор 3 тромбоцитов (3 тф) и белковый антигепариновый фактор (фактор 4), а также тромбоксан Аг (простагландин G2), эритроцитар-ный аналог фактора 3 тромбоцитов (эритропластин, эритроцитин) и др.

    Условно механизм свертывания крови можно разделить на внешний (запускается при поступлении из тканей в кровь тканевого тромбопластина) и внутренний (запуск осуществляется за счет ферментных факторов, содержащихся в крови или плазме), к-рые до фазы активации фактора X, или фактора Стюарта - Прауэра, и образования протромбиназного комплекса осуществляются в определенной степени раздельно с вовлечением разных факторов свертывания, а впоследствии реализуются по общему пути. Каскадно-комплексный механизм свертывания крови представлен на схеме.

    Между обоими механизмами свертывания крови существуют сложные взаимоотношения. Так, под влиянием внешнего механизма образуются небольшие количества тромбина, достаточные лишь для стимуляции агрегации тромбоцитов, освобождения тромбоцитарных факторов, активации факторов VIII и V, что усиливает дальнейшую активацию фактора X. Внутренний механизм свертывания крови более сложен, но его активация обеспечивает массивную трансформацию фактора X в фактор Ха и соответственно протромбина в тромбин. Несмотря на, казалось бы, важную роль фактора XII в механизме свертывания крови, при его дефиците геморрагии отсутствуют, возникает лишь удлинение времени свертывания крови. Возможно, это объясняется способностью тромбоцитов в сочетании с коллагеном активировать одновременно факторы IX и XI без участия фактора XII.

    В активации начальных этапов свертывания крови принимают участие компоненты калликреин-кининовой системы, стимулятором к-рой является фактор XII. Калликреин участвует во взаимодействии факторов XI 1а и XI и ускоряет активацию фактора VII, т. е. выполняет роль связующего звена между внутренним и внешним механизмами свертывания крови. В активации фактоpa XI принимает также участие фактор XV. На разных этапах свертывания крови образуются сложные белково-фосфолипидные комплексы.

    В наст, время в каскадную схему вносятся изменения и дополнения.

    Свертывание крови по внутреннему механизму начинается с активации фактора XII (фактора контакта, или фактора Хагемана) при соприкосновении с коллагеном и другими компонентами соединительной ткани (при повреждении сосудистой стенки), при появлении в кровяном русле избытка катехоламинов (напр., адреналина), протеаз, а также вследствие контакта крови и плазмы с чужеродной поверхностью (иглы, стекло) вне организма. При этом образуется его активная форма - фактор ХНа, к-рый вместе с фактором 3 тромбоцитов, являющимся фосфолипидом (3 тф), действуя как фермент на фактор XI, превращает его в активную форму- фактор Х1а. В этом процессе ионы кальция не участвуют.

    Активация фактора IX является результатом ферментного воздействия на него фактора Х1а, причем для образования фактора 1Ха необходимы ионы кальция. Активация фактора VIII (фактор Villa) происходит под влиянием фактора 1Ха. Активацию фактора X вызывает комплекс факторов IXa, Villa и 3 тф в присутствии ионов кальция.

    При внешнем механизме свертывания крови тканевый тромбопластин, поступивший из тканей и органов в кровь, активирует фактор VII и в комплексе с ним в присутствии ионов кальция формирует активатор фактора X.

    Общий путь внутреннего и внешнего механизмов начинается с активации фактора X - относительно стабильного протеолитическо-го фермента. Активация фактора X ускоряется в 1000 раз при его взаимодействии с фактором Va. Протромбиназный комплекс, образующийся при взаимодействии фактора Ха с фактором Va, ионами кальция и 3 тф, приводит к активации фактора II (протромбина), в результате чего образуется тромбин.

    Последняя фаза свертывания крови заключается в превращении фибриногена в стабилизированный фибрин. Тромбин - про-теолитический фермент - отщепляет от альфа- и бета-цепей фибриногена сначала два пептида А, затем два пептида В, в результате остается мономер фибрина с четырьмя свободными связями, к-рые потом соединяются в полимер - волокна нестабилизированного фибрина. Затем при участии фактора XIII (фибринстабилизирующего фактора), активированного тромбином, образуется стабилизированный, или нерастворимый, фибрин. В фибриновом сгустке содержится много эритроцитов, лейкоцитов и тромбоцитов, также обеспечивающих его консолидацию.

    Так, установлено, что не все белковые факторы свертывания крови являются ферментами и поэтому не могут вызывать расщепление и активацию других белков. Установлено также, что на разных этапах свертывания крови образуются комплексы факторов, в к-рых активируются ферменты, а неферментные компоненты ускоряют и усиливают эту активацию и обеспечивают специфичность действия на субстрат. Из этого следует, что каскадную схему целесообразно рассматривать как каскадно-комплексную. В ней сохраняется последовательность взаимодействия различных плазменных факторов, но предусматривается формирование комплексов, активирующих факторы, участвующие в последующих этапах.

    В системе свертывания крови различают также так наз. сосудисто-тромбоцитарный (первичный) и коагуляционный (вторичный) механизмы гемостаза (см.). При сосудисто-тромбоцитарном механизме наблюдается окклюзия поврежденного сосуда массой тромбоцитов, т. е. образование клеточной гемостатической пробки. Этот механизм обеспечивает достаточно надежный гемостаз в мелких сосудах с невысоким кровяным давлением. При повреждении стенки сосуда возникает его спазм. Обнажившийся коллаген и базальная мембрана вызывают адгезию тромбоцитов к раневой поверхности. В дальнейшем осуществляется аккумуляция и агрегация тромбоцитов в области поражения сосуда при участии фактора Виллебранда, происходит реакция освобождения тромбоцитарных факторов свертывания крови, вторая фаза агрегации тромбоцитов„ вторичный спазм сосуда, образование фибрина. Фиб-ринстабилизирующий фактор участвует в формировании полноценного фибрина. Важная роль в образовании тромбоцитарного тромба принадлежит АДФ, под влиянием к-рой в присутствии ионов кальция тромбоциты (см.) приклеиваются друг к другу и образуют агрегат. Источником АДФ является АТФ стенки сосудов, эритроцитов и тромбоцитов.

    При коагуляционном механизме основная роль принадлежит факторам С. с. к. Выделение сосудисто-тромбоцитарного и коагуляционного механизмов гемостаза относительно, т. к. оба обычно функционируют сопряженно. По времени возникновения кровотечения после воздействия травмирующего фактора можно предположительно установить его причину. При дефектах в плазменных факторах оно возникает позже, чем при тромбоцитопении (см.).

    В организме наряду с механизмами свертывания крови существуют механизмы, поддерживающие жидкое состояние циркулирующей крови. По теории Б. А. Кудряшова, эту функцию осуществляет так наз. противосвертывающая система, основным звеном к-рой является ферментативный и неферментативный фибринолиз, обеспечивающий жидкое состояние крови в сосудистом русле. Другие исследователи (напр., А. А. Маркосян, 1972) считают противосвертывающие механизмы частью единой свертывающей системы. Установлена взаимосвязь С. с. к. не только с фибринолитической системой, но и с кининами (см.) и системой комплемента (см.). Активированный фактор XII является для них пусковым; кроме того, он ускоряет активацию фактора VII. По данным 3. С. Баркагана (1975) и других исследователей, в результате этого начинает функционировать фактор XII - калликреиновый «мост» между внутренним и внешним механизмами свертывания крови и одновременно активируется фибринолиз. Противосвертывающая система (антисвертывающая система) имеет рефлекторную природу. Она активируется при раздражении хеморецепторов кровеносного русла вследствие появления в кровотоке относительного избытка тромбина. Ее эффекторный акт характеризуется выбросом в кровоток гепарина (см.) и активаторов фибринолиза из тканевых источников. Гепарин образует комплексы с антитромбином III, тромбином, фибриногеном и рядом других тромбогенных белков, а также катехоламинами. Эти комплексы обладают антикоагулянтной активностью, лизируют нестабилизиро-ванный фибрин, блокируют неферментативным путем полимеризацию фибрин-мономера и являются антагонистами фактора XIII. Вследствие активации ферментативного фибринолиза осуществляется лизис стабилизированных сгустков.

    Сложная система ингибиторов протеолитических ферментов тормозит активность плазмина, тромбина, кал-ликреина и активированных факторов свертывания крови. Механизм их действия связан с образованием белок-белковых комплексов между ферментом и ингибитором. Обнаружено 7 ингибиторов: а-макроглобу-лин, интер-а-ингибитор трипсина, Cl-инактиватор, альфа-1-антихимотрипсин, антитромбин III, альфа-2-антиплазмин, о^-антитрипсин. Немедленное антикоагулянтное действие оказывает гепарин. Основным ингибитором тромбина является антитромбин III, связывающий 75% тромбина, а также другие активированные факторы свертывания крови (1Ха, Ха, ХПа) и калликреин. В присутствии гепарина активность антитромбина III резко возрастает. Важным для свертывания крови является а2"макР°‘ глобулин, обеспечивающий 25% ан-титромбинового потенциала крови и полностью подавляющий активность калликреина. Но основным ингибитором калликреина является Cl-ингибитор, к-рый тормозит фактор XII. Антитромбино-вым действием обладают также фибрин, продукты протеолитической деградации фибрин/фибриногена, оказывающие антиполимеразное действие на фибрин и фибринопептиды, отщепляемые от фибриногена тромбином. Нарушение активности С. с. к. вызывает высокая активность фермента плазмина (см. Фибринолиз).

    Факторов свертывания крови в организме содержится значительно больше, чем это необходимо для обеспечения гемостаза. Однако кровь не свертывается, т. к. имеются антикоагулянты, и в процессе гемостаза потребляется лишь небольшое количество коагулирующих факторов, напр, протромбина, за счет самоторможения гемокоагуляции, а также нейроэндокринных регуляторных механизмов.

    Нарушения в С. с. к. могут служить основой патол. процессов, клинически проявляющихся в виде тромбозов кровеносных сосудов (см. Тромбоз), геморрагических диатезов (см.), а также сопутствующих нарушений в системе регуляции агрегатного состояния крови, напр, тромбогеморрагического синдрома (см.), или синдрома Мачабели. Изменения гемостаза могут быть обусловлены различными аномалиями тромбоцитов, кровеносных сосудов, плазменных факторов коагуляции или их комбинацией. Нарушения могут быть количественными и (или) качественными, т. е. связанными с дефицитом или излишком какого-либо фактора, нарушениями его активности или структуры, а также с изменениями стенки сосудов, органов и тканей. Они бывают приобретенными (влияние токсических хим. соединений, инфекций, ионизирующего излучения, нарушение белкового, липидного обмена, онкологические заболевания, гемолиз), наследственными или врожденными (генетические дефекты). Среди приобретенных нарушений, приводящих к отклонениям в С. с. к., наиболее частыми являются тромбоцитопении (см.), связанные с угнетением функции костного мозга, напр, при гипопластической анемии (см.), или с избыточным разрушением тромбоцитов, напр, при болезни Верльгофа (см. Пурпура тромбоцитопеническая). Часто также встречаются приобретенные и наследственные тромбоцитопатии (см.), к-рые являются результатом качественных дефектов в оболочке тромбоцитов (напр., дефицит мембранных гликопротеинов), их ферментов, реакции освобождения тромбоцитов, приводящих к нарушению способности их к агрегации или адгезии, к снижению содержания тромбо-цитарных факторов свертывания крови и др.

    Повышенная кровоточивость может развиться вследствие дефицита факторов свертывания крови или их ингибиции специфическими антителами. Т. к. многие факторы свертывания крови образуются в печени, то при ее поражении (гепатит, цирроз) довольно часто возникают геморрагии, обусловленные снижением концентрации в крови факторов II, V, VII, IX, X или печеночной дис(гипо)фибриногенемией. Дефицит К-витаминозависимых факторов (II, VII, IX, X), сопровождающийся в ряде случаев кровоточивостью, наблюдается при нарушении поступления желчи в кишечник (механическая желтуха), избыточном приеме антагонистов витамина К (кумаринов, варфарина), дисбактериозе кишечника, при геморрагической болезни новорожденных (см. Геморрагические диатезы).

    В результате активации С. с. к., в частности тканевыми тромбопласти-нами (оперативное вмешательство, тяжелые травмы, ожоги, шок, сепсис и др.), часто развивается полное и неполное диссеминированное внутрисосудистое свертывание крови (см. Тромбогеморрагический синдром), плохо поддающееся коррекции, требующее динамического контроля за показателями С. с. к.

    Развитию диссеминированного свертывания крови и тромбозов способствует также наследственный или приобретенный дефицит основных физиол. антикоагулянтов, особенно антитромбина III, и компонентов фибринолитической системы. Вторичное истощение этих веществ, требующее проведения трансфузионно-заместительной терапии, может быть следствием интенсивного их потребления как в процессе свертывания крови, так и при интенсивном применении гепарина, усиливающего метаболизацию антитромбина III, активаторов фибринолиза (напр., стрептокиназы), снижающих уровень плазминогена в крови.

    Нарушения липидного обмена и воспалительные процессы в стенках сосудов ведут к структурным изменениям в стенке сосуда, органическому сужению его просвета, что может служить пусковым механизмом в образовании тромба (напр., при инфаркте миокарда). Избыточное разрушение эритроцитов, содержащих тромбопластические факторы, также нередко является предпосылкой для образования тромбов, напр, при пароксизмальной ночной гемоглобинурии и аутоиммунной гемолитической анемии (см. Гемолитическая анемия), серповидно-клеточной анемии (см.).

    Наиболее часто дефицит факторов свертывания крови обусловлен генетически. Так, дефицит факторов VIII, IX, XI наблюдается у больных гемофилией (см.). К повышенной кровоточивости приводит дефицит факторов II, V, VII (см. Гипопроконвертинемия), а также факторов X, XIII и гипофибриногенемия или афибриногенемия (см.).

    Наследственная функциональная неполноценность тромбоцитов лежит в основе большой группы заболеваний, напр, тромбастении Гланцманна, к-рая характеризуется нарушением агрегационной способности тромбоцитов и ретракции кровяного сгустка (см. Тромбоцитопатии). Описаны геморрагические диатезы, протекающие с нарушением реакции освобождения компонентов гранул тромбоцитов или с нарушением накопления в тромбоцитах АДФ и других стимуляторов агрегации (так наз. болезни пула накопления). Нередко тромбоцитопатии сочетаются с тромбоцитопенией (болезнь Бернара - Сулье и др.). Нарушение агрегации тромбоцитов, дефект гранул, снижение содержания АДФ отмечены при аномалии Чедиака - Хигаси (см. Тромбоцитопатии). Причиной дисфункции тромбоцитов может быть дефицит плазменных белков, участвующих в процессах адгезии и агрегации тромбоцитов. Так, при дефиците фактора Виллебранда нарушается адгезия тромбоцитов к субэндотелию и к чужеродной поверхности и одновременно снижается коагуляционная активность фактора VIII, одним из компонентов к-рого является фактор Виллебранда. При болезни Виллебранда - Юргенса (см. Ангиогемофилия) дополнительно с этими нарушениями снижается активность фос-фолипидного фактора 3 тромбоцитов.

    Методы исследования С. с. к. используются для выяснения причин кровоточивости, тромбозов и тромбогеморрагий. Способность крови свертываться исследуют серией методов, в основе к-рых лежит определение скорости появления кровяного сгустка в разных условиях. Наиболее распространенными методами, имеющими ориентировочное значение, являются установление времени свертывания крови (см.), времени кровотечения (см.), времени рекальцификации плазмы и Оврена тромботест, к-рый применяется для контроля за антикоагулянтной терапией. При определении времени рекальцификации плазмы к исследуемой плазме добавляют дистиллированную воду и р-р хлористого кальция; фиксируют время образования сгустка крови (удлинение времени свидетельствует о склонности к кровоточивости, укорочение- о гиперкоагуляции). При Оврена тромботесте к исследуемой плазме добавляют реактив, в к-ром содержатся все факторы свертывания крови, кроме факторов II, VII, IX и X; задержка свертывания плазмы свидетельствует о дефиците этих факторов.

    К более точным методам относят метод Зигга, с помощью к-рого определяют толерантность плазмы к гепарину, тромбоэластографию (см.), методы определения тромбинового времени (см. Тромбин) и протромбинового времени (см.), тест генерации тромбопластина, или метод тромбопластинообразования Биггс Дугласа, метод определения каолин-кефалинового времени. При методе тромбопластинообразования Биггс - Дугласа к исследуемой сыворотке добавляют обработанную гидратом окиси алюминия плазму и тромбоциты здорового человека; задержка свертывания плазмы при этом свидетельствует о дефиците факторов свертывания крови. Для определения каолин-кефалинового времени к исследуемой плазме, бедной тромбоцитами, добавляют суспензию каолина и р-р хлористого кальция; по времени свертывания плазмы можно установить дефицит VIII, IX, XI и XII факторов и избыток антикоагулянтов.

    Фибринолитическую активность крови определяют эуглобиновым, гистохим. методом и др. (см. Фибринолиз). Существуют дополнительные методы, напр, тесты выявления Холодовой активации калликреино-вого моста между факторами XII и VII, методы определения продуктов паракоагуляции, физиологических антикоагулянтов, антитромбопласти-новой активности, продуктов деградации фибриногена и др.

    Библиография: Андреенко Г. В. Фиб-ринолиз, М., 1979, библиогр.; Б алу-д а В. П. и др. Лабораторные методы исследования системы гемостаза, Томск, 1980; Баркаган 3. С. Геморрагические заболевания и синдромы, М., 1980; Биохимия животных и человека, под ред. М. Д. Курского и др., в. 6, с. 3, 94, Киев, 1982; Гаврилов О. К. Биологические закономерности системы регуляции агрегатного состояния крови и задачи их изучения, Пробл. гематол. и перелив, крови, т. 24, № 7, с. 3, 1979; Геморрагический синдром острой лучевой болезни, под ред. Т. К. Джаракьяна, JI., 1976, библиогр.; Гемофилия и ее лечение, под ред. 3. Д. Федоровой, Л., 1977, библиогр.; Георгиева С. А. и К л я ч-к и н JI. М. Побочное действие лекарств на свертываемость крови и фибринолиз, Саратов, 1979, библиогр.; Гри-ц ю к А. И. Лекарственные средства и свертываемость крови, Киев, 1978; Кудряшов Б. А. Биологические проблемы регуляции жидкого состояния крови и ее свертывания, М., 1975, библиогр.; Кузни к Б. И. и Скипетров В. П. Форменные элементы крови, сосудистая стенка, гемостаз и тромбоз, М., 1974; Маркосян А. А. Физиология свертывания крови, М., 1966, библиогр.; М а-чабели М. С. Ко агулопатические синдромы, М., 1970; М о г о ш Г. Тромбозы и эмболии при сердечно-сосудистых заболеваниях, пер. с румын., Бухарест, 1979; Онтогенез системы свертывания крови, под ред. А. А. Маркосяна, Л., 1968, библиогр.; Проблемы и гипотезы в учении о свертывании крови, под ред. О. К. Гаврилова, М., 1981, библиогр.; Раби К. Локализованная и рассеянная виутргтсо-судистая коагуляция, пер. с франц., М., 1974; Р з а е в Н. М. и 3 а к и р д-жаев Д. Д. Антитромботическая терапия, Баку, 1979: Савельев В. С., Я б л о к о в Е. Г. и К и р и е н-к о А. И. Тромбоэмболия легочных артерий, М., 1979; Скипетров В. П. и К у з н и к Б. II. Акушерский тромбогеморрагический синдром, Иркутск -■ Чита, 1973; У и л л о у б и М. Детская гематология, пер. с англ., М.. 1981; Филатов А. Н. и Котовщи нова М. А. Свертывающая система крови в клинической практике, Л., 1963, библиогр.; Хрущева Е. А. и Титова М. И. Система гемостаза при хирургических заболеваниях сердца, сосудов и легких, М., 1974; Чазов Е. И. и Л а к и н К. М. Антикоагулянты и фиб-ринолитические средства, М., 1977; Blood coagulation and haemostasis, ed. by J. M. Thomson, Edinburgh - N. Y., 1980; Haemostasis, biochemistry, physiology and pathology, ed. by D. Ogston a. B. Bennett, L.- N. Y., 1977; Haemostasis and thrombosis, ed. by G. G. Neri Serneri a. C. R. Prentice, L. a. o., 1979: Human blood coagulation, haemostasis and thrombosis, ed. by R. Biggs, Oxford, 1976; Nilsson I. M. Haemorrhagic and thrombotic diseases, L. a. o., 1974; Progress in chemical fibrinolysis and thrombolysis, ed. by J. F. Davidson, N. Y., 1978; Quick A. J. The hemorrhagic diseases and pathology of hemostasis, Springfield, 1974; Recent advances in hemophilia, ed. by L. M. Aledort, N. Y., 1975; Venous and arterial thrombosis, pathogenesis, diagnosis, prevention, and therapy, ed. by J. H. Joist a. L. A. Sherman, N. Y., 1979.

    О. К. Гаврилов.