Все о медицине. Антигены Какие антигены

По отношению к организму антигены могут быть как внешнего, так и внутреннего происхождения. Хотя все антигены могут связываться с антителами, не все они могут вызвать массовую выработку этих антител организмом, то есть иммунный ответ . Антиген, способный вызывать иммунный ответ организма, называют иммуногеном .

Антигены, как правило, являются белками или полисахаридами и представляют собой части бактериальных клеток, вирусов и других микроорганизмов. Липиды и нуклеиновые кислоты , как правило, проявляют иммуногенные свойства только в комплексе с белками. Простые вещества, даже металлы, также могут вызывать выработку специфичных антител, если они находятся в комплексе c белком-носителем. Такие вещества называют гаптенами .

К антигенам немикробного происхождения относятся пыльца , яичный белок и белки трансплантатов тканей и органов , а также поверхностные белки клеток крови при гемотрансфузии.

Аллергены - это антигены, вызывающие аллергические реакции .

Энциклопедичный YouTube

    1 / 5

    ✪ Профессиональные антиген-представляющие клетки и ГКГ II

    ✪ Болезнь Бехтерева - hla b27 антиген и вероятность наследования анкилозирующего спондилита

    ✪ Что такое ИФА? Имуноферментный анализ. Антиген - антитело

    ✪ Что такое группа крови

    ✪ 55 лет без мяса. Почему? Доктор гематолог. Микробиолог.1930 года рождения.

    Субтитры

    Мы уже обсуждали неспецифические защитные механизмы, и узнали, что если у нас имеется определенный тип патогенов - например, бактерия - наши фагоциты способны распознавать белки на ее поверхности, или, если это другой вид патогенов - то, соответствующий маркер этого патогена. Они не знают тип патогена, но фагоцитам этого достаточно. Они его поглощают. Поэтому они и называются фагоцитами. Каким-то образом рецептор соприкасается с белком на поверхности, в данном случае, поверхности бактерии, сообщает, что происходит что-то нехорошее, и съедает его. Мембрана просто окружает патоген - и тот целиком оказывается внутри. Потом он сдавливается, и в результате оказывается окруженным мембраной и поглощается - то есть фагоцит его фагоцитирует. А в результате - мы видели это в первом ролике, когда я рассказывал про фагоциты - мембрана фагоцита полностью окружает патоген. Фагоцит сдавливает и окружает его, и в результате он попадает внутрь. Он окружен специальной мембраной. Эта мембрана носит название фагосома. Существуют различные типы фагоцитов - макрофаги, нейтрофилы или дендритные клетки. Суть в том, что роль макрофага на этом не заканчивается - они не просто съедают патогенов. Хотя это уже достаточно много само по себе. Он уничтожает бактерий на своем пути. Если это вирус, то он уничтожает и вирус. Но это еще не все. Он лизирует патоген - нарушает его целостность. Просто разрушает его. Различными путями он в итоге перерабатывает патоген. Давайте я это нарисую. Один момент... В первом видоролике о фагоцитах, мы видели, что у него есть лизосомы, которые связываются с патогеном, уничтожают любые виды фрагментов, разрушают и расчленяют бактерию на отдельные молекулы. Они разрушают содержимое патогена. И в результате остается набор фрагментов, полипептидные цепи - а мы помним что пептиды представляют собой цепи аминокислот. Полипетиды - это короткие цепи. Итак, короткие цепи аминокислот связываются со специальными белками. Это и есть основная тема видеоролика. Итак, они связываются с этими специальными белками. И затем эти белки транспортируются через мембрану клетки, где они представляются вместе с фрагментом патогена. Итак, конечный продукт фагоцитоза представляет собой следующее: фагоцит будет выглядеть вот так, и будет содержать антиген-представляющие белки, антиген-представляющие белки, которые связываются с участками оригинального патогена. Запишу это вот здесь. Здесь на них располагается небольшой фрагмент исходного патогена, который я обозначил зеленым цветом. А эти белки называются - это довольно сложное слово, они называются главным комплексом гистосовместимости, главным комплексом гистосовместимости, или сокращенно ГКГ. Главный комплекс гистосовместимости. И когда мы говорим о фагоцитах, макрофагах, дендритных клетках, которые являются частными случаями фагоцитов, их главные комплексы гистосовместимости, которые появляются после того, как они проглотили молекулу, относятся к ГКГ II класса. Белок ГКГ II класса. Может показаться, что я вдаюсь в ненужные подробности строения этих белков, однако вы скоро увидите, что это ключевой момент для активации других частей иммунной системы, в особенности, клеточного иммунитета. Все это невозможно без макрофагов или дендритных клеток. Они поглощают, пережевывают, и затем пережеванные фрагменты патогена прикрепляются к этим белкам ГКГ II типа, и направляются на поверхность клетки. Примерно то же самое, очень похожие события происходят и с B-клетками. Итак, если у нас имеются B-клетки - вот это подходящий цвет, будет синим. Но мы помним, что В происходит от бурсы, однако я предпочитаю версию с костным мозгом. Давайте представим, что у нас имеются B-клетки и они содержат мембранно-связанные антитела. Это специальное свойство B-клеток. Итак, все эти антитела: все 10 000 штук на поверхности экпрессируются с тем же вариабельным фрагментом. Вот такая B-клетка. Вы помните, что изначально она была неспецифической. Когда мы вели речь о фагоцитозе, эти клетки просто говорили: ты бактерия. А ты - вирус. Не знаю, кто ты конкретно. Просто съем тебя. Выглядишь подозрительно. И поэтому я тебя съем. Не знаю, кто ты конкретно и видел ли я тебя прежде. Когда мы говорим о B-клетках, мы подразумеваем адаптивную или специфическую иммунную систему. Вариабельные фрагменты мембранно-связанных антител являются специфическими к фрагментам определенных патогенов, то есть к определенным эпитопам. Эпитопы - это компоненты патогенов, которые эти специфические цепи могут распознать и связаться с ними. Мы имеем дело с вирусом в данной ситуации. Вирус просто связывается с этой B-клеткой. Помните, что существует огромное количество B-клеток вокруг, но вариабельные фрагменты всех этих B-клеток отличаются. Выделю их другим цветом. Итак, вариабельные фрагменты всех этих В-клеток отличаются. И этот момент кажется мне просто удивительным, ведь все они происходят от одной генетической линии, но их гены перемешиваются в процессе развития, и производят миллиарды комбинаций белков, или вариабельных концов этих антител. Давайте возьмем еще один патоген. Пусть это будет бактерия. В прошлом примере был вирус. Скажем, что это бактерия нового вида, и определенный участок на ее поверхности может связываться с единственной B-клеткой - обладающей нужной комбинацией генов. Какой-то участок поверхности связывается с этой B-клеткой вот так. Мы помним, что этот участок называется эпитопом. Это участок патогена, который связывается с нашим вариабельным участком. Он не будет связываться с другими клетками, поскольку у них другие последовательности. Он связывается с этой B-клеткой и начинается процесс активации. Иногда все это сразу приводит к активации B-клетки, но обычно требуется вмешательство Т-хелперов - и мы поговорим об этом подробнее. Нужно отметить, что когда запускается процесс активации, патоген поглощается. Я не упоминал об этом в предыдущем ролике, поскольку не хотел слишком углубляться в детали. Итак, вся бактерия целиком поглощается. Бактерия поглощается. И затем, когда она активизировалась, запускается ее пролиферация, обычно на этом этапе необходимо участие Т-клеток, и в результате часть их становится плазматическими B-клетками, и часть - B-клетками памяти. Вот это клетки памяти, это - плазматические. Плазматические B-клетки активизировались и готовы производить эти антитела в огромном количестве. И начинают производить антитела, выделять их в окружающую среду, чтобы те могли прикрепляться к еще большему числу патогенов, и вредить им разными способами: метить их, чтобы другие макрофаги или фагоциты могли их съесть, или соединять их попарно, чтобы они не могли адекватно функционировать. Любой вариант пригодится. Я не буду на этом останавливаться. Вот что происходит после активации. Интересно то, что B-клетка тоже выполняет функцию фагоцитов. Она может поглотить этот патоген. Она присоединяется к нему с помощью антител и разрушает его, присоединяется к нему с помощью антител и разрушает, берет частицы патогена, присоединяет их к белкам ГКГ II и выставляет их на своей поверхности. Итак, B-клетка также может представлять антиген. Антиген. Это также ГКГ II - главный комплекс гистосовместимости. Вы уже знаете, что «гисто-» означает «ткань». Сразу ясно, что это как-то связано с тканями нашего организма, и мы еще поговорим об этом, а также о том, как это связано с трансплантацией органов. Итак, это у нас ГКГ класса II. Когда мы говорим о B-клетках, мы знаем, что в этом случае распознают очень специфический патоген - это может быть вирус, белок или бактерия. Фагоциты же просто говорят: "Ты выглядишь подозрительно. Лучше я тебя съем. Я не знаю, к какому типу бактерии, вируса или белка ты относишься, неважно". Оба типа клеток поглощают патоген, берут его фрагменты, отрезают их и представляют их на своей поверхности в составе главного комплекса гистосовместимости. Эти клетки называются профессиональными антиген-представляющими клетками. Профессиональные. Именно это является их основным видом деятельности, хотя они выполняют и другие функции. Фагоциты занимаются поеданием. B-клетки производят антитела или становятся клетками памяти, благодаря чему могут активизироваться для производства антител. Но называются они профессиональными антиген-представляющими клетками. И этот антиген представляет собой небольшой фрагмент того, что вы хотите отследить, небольшой фрагмент настоящего патогена, вот что такое антиген - и эта клетка представляет данный антиген. Клетка эта называется профессиональной, поскольку она захватывает патогены в жидкостях нашего организма, и затем поглощает их, разрушает, а после чего представляет. Но, кроме того, существуют и непрофессиональные антиген-представляющие клетки. Они составляют большинство клеток. Даже эти клетки. Я хотел бы отложить эту тему для следующего видеоролика. Мои видеоролики становятся все длиннее. И вы можете подумать: хорошо, эти клетки в любом случае поглощают их, переваривают, представляют, но для чего это нужно? Вы видите, что эти ГКГ II, распознаются Т-хелперами. И все они участвуют в работе нашей иммунной системы. И в следующем видеоролике я расскажу о ГКГ I представляющих клетках, которыми являются практически все клетки организма.

Классификация

В зависимости от происхождения, антигены классифицируют на экзо генные, эндо генные и ауто антигены.

Экзогенные антигены

Экзогенные антигены попадают в организм из окружающей среды, путём вдыхания, проглатывания или инъекции. Такие антигены попадают в антиген-представляющие клетки путём эндоцитоза или фагоцитоза и затем процессируются на фрагменты. Антиген-представляющие клетки затем на своей поверхности презентируют фрагменты Т-хелперам (CD4 +) через молекулы главного комплекса гистосовместимости второго типа (MHC II).

Эндогенные антигены

Эндогенные антигены образуются клетками организма в ходе естественного метаболизма или в результате вирусной или внутриклеточной бактериальной инфекции. Фрагменты далее презентируются на поверхности клетки в комплексе с белками главного комплекса гистосовместимости первого типа MHC I . В случае, если презентированные антигены распознаются цитотоксическими лимфоцитами (CTL, CD8 +), Т-клетки секретируют различные токсины , которые вызывают апоптоз или лизис инфицированной клетки. Для того, чтобы цитотоксические лимфоциты не убивали здоровые клетки, аутореактивные Т-лимфоциты исключаются из репертуара в ходе отбора по толерантности .

Аутоантигены

Аутоантигены - это как правило нормальные белки или белковые комплексы (а также комплексы белков с ДНК или РНК), которые распознаются иммунной системой у пациентов с аутоиммунными заболеваниями . Такие антигены в норме не должны узнаваться иммунной системой, но, ввиду генетических факторов или условий окружающей среды, иммунологическая толерантность к таким антигенам у таких пациентов может быть утеряна.

Т-зависимые и Т-независимые антигены

По способности вызывать продукцию антител В-клетками без дополнительной стимуляции со стороны Т-клеток, антигены делят на Т-зависимые и Т-независимые . Т-зависимые антигены не способны сами вызывать продукцию антител без помощи со стороны Т-клеток. Эти антигены не содержат большого количества повторяющихся эпитопов, к ним относятся белки. После того как В-клетка узнаёт Т-зависимый антиген с помощью уникального B-клеточного рецептора , она перемещается в герминативный центр лимфоидного фолликула . Здесь при участии Т-лимфоцитов происходит активная пролиферация активированной клетки, соматический гипермутагенез её генов, кодирующих вариабельные участки иммуноглобулинов, и последующая селекция .

Т-независимые антигены могут активировать В-клетки без помощи Т-клеток. Антигены этого типа характеризуются многократным повторением антигенной детерминанты в их структуре, к ним относятся полисахариды. По способности Т-независимых антигенов активировать В-клетки, специфичные к другим антигенам (поликлональная активация), их делят на I (вызывают поликлональную активацию) и II тип (не вызывают поликлональную активацию). В-клетки, активированные Т-независимыми антигенами, перемещаются в краевые зоны лимфоидных фолликулов, где они пролиферируют без участия Т-клеток. Также они могут подвергаться соматическому мутагенезу, но, в отличие от Т-зависимой активации, это не обязательно на поверхности опухолевых клеток. Такие антигены могут быть презентированы опухолевыми клетками, и никогда - нормальными клетками. В таком случае они называются опухоль-специфичными антигенами (tumor-specific antigen, TSA) и, в общем случае, являются следствием опухоль-специфичной мутации. Более распространенными являются антигены, которые презентируются и на поверхности здоровых, и на поверхности опухолевых клеток, их называют опухоль-ассоциированными антигенами (tumor-associated antigen, TAA). Цитотоксические Т-лимфоциты , которые распознают такие антигены, могут уничтожить такие клетки до того, как они начнут пролиферировать или метастазировать.

Нативные антигены

Нативный антиген это антиген, который не был еще процессирован антигенпредставляющей клеткой на малые части. Т-лимфоциты не могут связываться с нативными антигенами и поэтому требуют процессинг АПК, в то время как В-лимфоциты могут быть активированы непроцессированными антигенами.

Антигены – это вещества, которые несут признаки генетически чужеродной информации и при введении в организм вызывают развитие специфических иммунологических реакций.

Антигенные вещества представляют собой высокомолекулярные соединения, обладающие определенными свойствами: чужеродностью, антигенностью, иммуногенностью, специфичностью и определенной молекулярной массой. Антигенами могут быть разнообразные вещества белковой природы, а также белки в соединении с липидами и полисахаридами. Антигенными свойствами обладают клетки животного и растительного происхождения, яды животного и растительного происхождения. Антигенными свойствами обладают вирусы, бактерии, микроскопические грибы, простейшие, экзо - и эндотоксины микроорганизмов. Все антигенные вещества имеют ряд общих свойств:

Антигенность – это способность антигена вызывать иммунный ответ . Степень иммунного ответа организма на различные антигены неодинакова, т. е. на каждый антиген вырабатывается неодинаковое количество антител.

Специфичность – это особенность строения веществ, по которой антигены отличаются друг от друга. Ее определяет антигенная детерминанта, т. е. небольшой участок молекулы антигена, который соединяется с выработанным на него антителом.

Иммуногенность - это способность создавать иммунитет. Это понятие относится, главным образом, к микробным антигенам, обеспечивающим создание иммунитета к инфекционным болезням. Антиген, чтобы быть иммуногенным, должен быть чужеродным и иметь достаточно большую молекулярную массу. С увеличением молекулярной массы иммуногенность нарастает. Корпускулярные антигены (бактерии, грибы, эритроциты) более иммуногены, чем растворимые. Среди растворимых антигенов наибольшей иммуногенность обладают высокомолекулярные соединения.

Антигены подразделяют на полноценные и неполноценные. Полноценные антигены вызывают в организме синтез антител или сенсибилизацию лимфоцитов и вступают с ними в реакцию как in vivo, так и in vitro. Для полноценных антигенов характерна строгая специфичность, т. е. они вызывают в организме выработку только специфических антител, вступающих в реакцию только с данным антигеном.

Неполноценные антигены (гаптены) представляют собой сложные углеводы, липиды и другие вещества, не способные вызвать образование антител в организме, но вступающие с ними в специфическую реакцию. Добавление к гаптенам небольшого количества белка придает им свойства полноценного антигена.

Аутоантигены – антигены, образованные из белков собственных тканей, изменивших свои физико-химические свойства под воздействием различных факторов (токсины и ферменты бактерий, лекарственные вещества, ожоги, обморожения, облучение). Такие, измененные белки становятся чужеродными для организма, и организм отвечает выработкой антител, т. е. возникают аутоиммунные заболевания.

Если рассматривать антигенные свойства микроорганизма, то можно отметить, что антигенный состав – это достаточно постоянная характеристика любого микроорганизма. В антигеном комплексе чаще всего встречаются общеродовые антигены (общие для представителей данного рода), группоспецифические (присущие определенной группе), видоспецифические (присущие всем особям данного вида), и штаммоспецифические.

По локализации антигены могут быть поверхностные (К-антигены – антигены клеточной стенки), соматические (О-антигены, локализованы во внутреннем слое клеточной стенки, термостабильны) и жгутиковые (Н-антигены, присутствуют у всех подвижных бактерий, термолабильны). Многие из них активно секретируются клеткой в окружающую среду. В тоже время, существуют гидрофобные антигены, прочно связанные с клеточной стенкой.

Кроме того, патогенные микроорганизмы способны выделять ряд экзотоксинов. Экзотоксины обладают свойствами полноценных антигенов с выраженной неоднородностью в пределах рода и вида. Споры бактериальной клетки также обладают антигенными свойствами: они содержат антиген, общий для вегетативной клетки и споры.

Патогенные микроорганизмы ведут постоянную борьбу с иммунной системой путем изменения структуры поверхностных антигенов. Изменения чаще всего появляются в результате точечных мутаций, в результате появляются варианты существующих антигенов.

Антитела

В процессе эволюции организмы выработали набор защитных приспособлений к патогенным микроорганизмам, включающие неспецифические механизмы, препятствующие проникновению патогенов, вещества неспецифически повреждающие их (лизоцим, комплемент), фагоцитоз и другие клеточные реакции. Вместе с тем, патогенные микроорганизмы тоже научились преодолевать неспецифические барьеры. Поэтому в процессе эволюции появились специфические гуморальные факторы защиты в виде антител и способность организма к выраженному специфическому иммунному ответу.

Антитела – белки, относящиеся к иммуноглобулинам, которые синтезируются лимфоидными и плазматическими клетками в ответ на попадание в организм антигена, обладающими способностью специфически связываться с ним. Антитела составляют более 30% белков сыворотки крови, обеспечивают специфичность гуморального иммунитета благодаря способности связываться только с тем антигеном, который стимулировал их синтез.

Первоначально антитела условно классифицировали по их функциональным свойствам на нейтрализующие, лизирующие и коагулирующие. К нейтрализующим были отнесены антитоксины, антиферменты и вируснейтрализующие лизины. К коагулирующим – агглютинины и преципитины; к лизирующим – гемолитические и комплементсвязывающие антитела. С учетом функциональной способности антител были даны названия серологическим реакциям: агглютинация, гемолиз, лизис, преципитация и др.

В соответствии с Международной классификацией сывороточные белки, несущие функцию антител, получили название иммуноглобулинов (Ig). В зависимости от физикохимических и биологических свойств различают иммуноглобулины классов IgM, IgG, IgA, IgE, IgD.

Иммуноглобулины – белки с четвертичной структурой, т. е. их молекулы построены из нескольких полипептидных цепей. Молекула каждого класса состоит из четырех полипептидных цепей – двух тяжелых и двух легких, связанных между собой дисульфидными мостиками. Легкие цепи – структура общая для всех классов иммуноглобулинов. Тяжелые цепи имеют характерные структурные особенности, присущие определенному классу, подклассу.

Антитела, входящие в определенные классы иммуноглобулинов, обладают различными физическими химическими, биологическими и антигенными свойствами.

Иммуноглобулины содержат три вида антигенных детерминант: изотипические (одинаковые для каждого представителя данного вида), аллотипические (детерминанты, различные у представителей данного вида) и идиотипические (детерминанты, определяющие индивидуальность данного иммуноглобулина и являющиеся различными у антител одного класса, подкласса). Все указанные антигенные различия определяются с помощью специфических сывороток.

Синтез и динамика образования антител

Антитела вырабатывают плазматические клетки селезенки, лимфатических узлов, костного мозга, пейеровых бляшек. Плазматические клетки (антителопродуценты) происходят из предшественников В-клеток после их контакта с антигеном. Механизм синтеза антител аналогичен синтезу любых белков и происходит на рибосомах. Легкие и тяжелые цепи синтезируются отдельно, затем соединяются на полирибосомах, а окончательная их сборка происходит в пластинчатом комплексе.

Динамика образования антител. При первичном иммунном ответе в антителообразовании различают две фазы: индуктивную (латентную) и продуктивную. Индуктивная фаза – это период от момента парентерального введения антигена до появления антигенреактивных клеток (продолжительность не более суток). В эту фазу происходит пролиферация и дифференцировка лимфоидных клеток в направлении синтеза IgM. Вслед за индуктивной фазой наступает продуктивная фаза антителообразования. В этот период, примерно до 10…15 суток уровень антител резко возрастает, при этом уменьшается число клеток, синтезирующих IgM, и нарастает продукция IgA.

Феномен взаимодействия антиген-антитело.

Знание механизмов взаимодействия антигенов и антител раскрывает сущность многообразных иммунологических процессов и реакций, возникающих в организме под влиянием патогенных и непатогенных факторов.

Реакция между антителом и антигеном протекает в две стадии:

Специфическая - непосредственное соединение активного центра антитела с антигенной детерминантой.

Неспецифическая – вторая стадия, когда, отличающийся плохой растворимостью иммунный комплекс выпадает в осадок. Эта стадия возможна в присутствии раствора электролита и визуально проявляется по разному, в зависимости от физического состояния антигена. Если антигены корпускулярные, то имеет место феномен агглютинации (склеивания различных частиц и клеток). Образующиеся конгломераты выпадают в осадок, при этом клетки морфологически не изменяются, теряя подвижность, они остаются живыми.

ГУМОРАЛЬНЫЕ ФАКТОРЫ АДАПТИВНОГО ИММУНИТЕТА

Гуморальный иммунитет – одна из форм приобретенного иммунитета. Играет важную роль в противоинфекционной защите организма и обусловливается специфическими антителами , выработанными в ответ на чужеродный антиген . Считают, что патогенные микроорганизмы, размножающиеся в организме внеклеточно, как правило, обусловливают гуморальный иммунитет.

Антигены. Классификация антигенов

Антигены – это высокомолекулярные соединения. При попадании в организм вызывают иммунную реакцию и взаимодействуют с продуктами этой реакции: антителами и активированными лимфоцитами.

Классификация антигенов.

1. По происхождению:

1) естественные (белки, углеводы, нуклеиновые кислоты, бактериальные экзо– и эндотоксины, антигены клеток тканей и крови);

2) искусственные (динитрофенилированные белки и углеводы);

3) синтетические (синтезированные полиаминокислоты, полипептиды).

2. По химической природе:

1) белки (гормоны, ферменты и др.);

2) углеводы (декстран);

3) нуклеиновые кислоты (ДНК, РНК);

4) конъюгированные антигены (динитрофенилированные белки);

5) полипептиды (полимеры a-аминокислот, кополимеры глутамина и аланина);

6) липиды (холестерин, лецитин, которые могут выступать в роли гаптена, но, соединившись с белками сыворотки крови, они приобретают антигенные свойства).

3. По генетическому отношению:

1) аутоантигены (происходят из тканей собственного организма);

2) изоантигены (происходят от генетически идентичного донора);

3) аллоантигены (происходят от неродственного донора того же вида);

4) ксеноантигены (происходят от донора другого вида).

4. По характеру иммунного ответа:

1) тимусзависимые антигены (иммунный ответ зависит от активного участия Т-лимфоцитов);

2) тимуснезависимые антигены (запускают иммунный ответ и синтез антител В-клетками без Т-лимфоцитов).

Выделяют также:

1) Внешние антигены; попадают в организм извне. Это микроорганизмы, трансплантированные клетки и чужеродные частицы, которые могут попадать в организм алиментарным, ингаляционным или парентральным путем;

2) Внутренние антигены; возникают из поврежденных молекул организма, которые распознаются как чужие;

3) Скрытые антигены – определенные антигены (например, нервная ткань, белки хрусталика и сперматозоиды); анатомически отделены от иммунной системы гистогематическими барьерами в процессе эмбриогенеза; толерантность к этим молекулам не возникает; их попадание в кровоток может приводить к иммунному ответу.

Иммунологическая реактивность против измененных или скрытых собственных антигенов возникает при некоторых аутоиммунных заболеваниях.

Свойства антигенов

Антигены разделены на:

1. Полные (иммуногенные), всегда проявляющие иммуногенные и антигенные свойства,

2. Неполные (гаптены), не способные самостоятельно вызывать иммунный ответ.

1. Специфичность – структуры особенно отличающие 1 антиген от другого. Специфический участок – антигенная детерминанта (или эпитоп) избирательно реагирует с рецепторами и специфично с антигенами. Чем больше эпитопов, тем больше вероятности иммунного ответа.

2. Антигенность – избирательное реагирование со специфическими антителами или анти-специфичными клетками, способность вызывать иммунный ответ в определенном организме.

3. Чужеродность – без нее нет антигенности.

4. Иммуногенность – способность создавать иммунитет; зависит: от генетических особенностей, от размера, от количества эпитопов.

5. Толерантность – альтернатива в создании иммунитета; отсутствие иммунного ответа; не отвечает иммунный ответ на антигены – аалергия на уровне организма – иммунологическая терпимость.

Виды антигенов

1. Антигены бактерий:

1) Группоспецифические (встречаются у разных видов одного рода или семейства);

2) Видоспецифические (встречаются у различных представителей одного вида);

3) Типоспецифические (определяют серологические варианты – серовары, антигеновары – внутри одного вида).

2. Антигены вирусов:

1) Суперкапсидные антигены – поверхностные оболочечные;

2) Белковые и гликопротеидные антигены;

3) Капсидные – оболочечные;

4) Нуклеопротеидные (сердцевинные) антигены.

3. Гетероантигены – общие для представителей разных видов антигенные комплексы или общие антигенные детерминанты на различающихся по другим свойствам комплексах. За счет гетероантигенов могут возникать перекрестные иммунологические реакции. У микробов различных видов и у человека встречаются общие, сходные по строению антигены. Эти явления называются антигенной мимикрией.

4. Суперантигены – это особая группа антигенов, которые в очень малых дозах вызывают поликлональную активацию и пролиферацию большого числа Т-лимфоцитов. Суперантигенами являются бактериальные энтеротоксины, стафилококковые, холерные токсины, некоторые вирусы (ротавирусы).

Понятие об антигенах

Антигенами называются вещества или тела, несущие на себе отпечаток чужеродной генетической информации, те самые ве­щества, то «чужое», против которого «работает» иммунная сис­тема. Любые клетки (ткани, органы) не собственного организма (не свои) являются для иммунной системы комплексом анти­генов, даже некоторые собственные ткани (хрусталик глаза) - так называемые забарьерные ткани: в норме они не контакти­руют с внутренней средой организма.

Антигены обладают 2 свойствами:

  • антигенностью, или антигенным действием, - они способны индуцировать развитие иммунного ответа;
  • специфичностью, или антигенной функцией, - взаимодейство­вать с продуктами иммунного ответа, индуцированного анало­гичным антигеном.

Химическая природа антигенов различна. Это могут быть белки:

  • полипептиды;
  • нуклеопротеиды;
  • липопротеиды;
  • гликопротеиды;
  • полисахариды;
  • липиды высокой плотности;
  • нуклеиновые кислоты.

Классификация антигенов

Антигены делят на следующие:

  • сильные, которые вызывают выраженный иммунный ответ;
  • слабые, при введении которых интенсивность иммунного ответа невелика.

Сильные антигены, как правило, имеют белковую структуру.

Некоторые (обычно небелковые) антигены не способны инду­цировать развитие иммунного ответа (не обладают антигенно­стью), но могут вступать во взаимодействие с продуктами им­мунного ответа. Их называют неполноценными антигенами, или гаптенами. Многие простые вещества и лекарственные средст­ва являются гаптенами, при попадании в организм они могут конъюгировать с белками организма хозяина или другими но­сителями и приобретать свойства полноценных антигенов.

Для того чтобы какое-либо вещество проявляло свойства ан­тигена, кроме главного - чужеродное™, оно должно обладать еше иелым рядом признаков:

  • макромолекулярностью (молекулярная масса более 10 тыс. дальтон);
  • сложностью строения;
  • жесткостью структуры;
  • растворимостью;
  • способностью переходить в коллоидное состояние.

Молекула любого антигена состоит из 2 функиионально различ­ных частей:

  • 1-я часть - детерминантная группа, на долю которой прихо­дится 2-3% поверхности молекулы антигена. Она определяет чужеродность антигена, делая его именно этим антигеном, от­личающимся от других;
  • 2-я часть молекулы антигена называется проводниковой, при ее отделении от детерминантной группы она не проявляет анти­генного действия, но сохраняет способность реагировать с го­мологичными антителами, т. е. превращается в гаптен.

проводниковой частью связаны все остальные признаки ангенности, кроме чужеродноти.

Любой микроорганизм (бактерии, грибы, вирусы) представляет

собой комплекс антигенов.

По специфичности микробные антигены делятся:

  • на перекрестно-реагирующие (гетероантигены) - это антигены, общие с антигенами тканей и органов человека. Они имеются у многих микроорганизмов и рассматриваются как важный фактор вирулентности и пусковой механизм развития аутоим­мунных процессов;
  • группоспецифические - общие у микроорганизмов одного рода или семейства;
  • видоспецифические — общие у разных штаммов одного вида микроорганизмов;
  • вариантспецифические (типоспецифические) - встречаются у отдельных штаммов внутри вида микроорганизмов. По нали­чию тех или иных вариантспецифических антигенов микроор­ганизмы внутри вида делят на варианты по антигенному строе­нию - серовары.

По локализации антигены бактерий делятся:

  • на целлюлярные (связанные с клеткой);
  • экстрацеллюлярные (не связанные с клеткой). Основные иеллюлярные антигены:
  • соматический — О-антиген (глюцидо-липоидо-полипепдидный комплекс);
  • жгутиковый — Н-антиген (белок);
  • поверхностные - капсульные — К-антиген, fi-антиген, Vi-антиген.

Экстрацеллюлярные антигены - это продукты, секретируемые бактериями во внешнюю среду, в том числе антигены экзоток­синов, ферментов агрессии и защиты и др.

Антитела и их свойства

Антителами называются сывороточные белки, образующиеся в ответ на действие антигена. Они относятся к сывороточным глобулинам, поэтому называются иммуноглобулинами (Ig). Че­рез них реализуется гуморальный тип иммунного ответа. Антитела обладают 2 свойствами:

  • специфичностью, т. е. способностью вступать во взаимодейст­вие с антигеном, аналогичным тому, который индуцировал (вызвал) их образование;
  • гетерогенностью по физико-химическому строению, специфич­ности, генетической детерминированности образования (по происхождению).

Все иммуноглобулины являются иммунными, т. е. образуются в результате иммунизации, контакта с антигенами. Тем не менее по происхождению они делятся:

  • на нормальные (анамнестические) антитела, которые обнару­живаются в любом организме как результат бытовой иммуни­зации;
  • инфекционные антитела, которые накапливаются в организме в период инфекционной болезни;
  • постинфекционные антитела, которые обнаруживаются в организме после перенесенного инфекционного заболевания;
  • поствакцинальные антитела, которые возникают после искус­ственной иммунизации.

Антитела (иммуноглобулины) всегда специфичны антигену, индуцировавшему их образование. Тем не менее противомик-робные иммуноглобулины по специфичности делятся на те же группы, что и соответствующие микробные антигены:

  • группоспецифические;
  • видоспецифические;
  • вариантспецифические;
  • перекрестнореагирующие.

В настоящее время довольно часто методами биотехнологии и/или генной инженерии получают иммуноглобулины, продуци­руемые одним клоном кЛеток. Они называются моноклональными антителами. Их продуценты - клетки-гибридомы, являющиеся потомками, полученными при скрещивании В-лимфоцита (плазматической клетки) с опухолевой клеткой. От плазмати­ческой клетки-гибридома наследуется способность к синтезу антител, а от опухолевой клетки - способность длительно культивироваться вне организма.

Помимо специфичности одним из основных свойств иммуно­глобулинов является их гетерогенность, т. е. неоднородность популяции иммуноглобулинов по генетической детерминиро­ванности их образования и по физико-химическому строению.

Антигенами называют чужеродные для организма вещества коллоидной структуры, которые при попадании в его внутреннюю среду способны вызывать ответную специфическую иммунологическую реакцию, проявляющуюся, в частности, в образовании специфических антител, появлении сенсибилизированных лимфоцитов или в возникновении состояния толерантности к этому веществу.

Таблица 12

Показатели основных гуморальных факторов здоровых людей

Вещества, являющиеся антигенами, должны быть чужеродны для организма, макромолекулярны, находиться в коллоидном состоянии, поступать в организм парентерально, т.е. минуя желудочно-кишечный тракт, в котором обычно происходит расщепление вещества и потеря его чужеродности. Под чужеродностью антигенов следует понимать определенную степень химического различия между антигеном и макромолекулами организма, во внутреннюю среду которого, но попадает.

Простые элементы (железо, медь, сера и др.), простые и сложные неорганические соединения (кислоты, соли и др.), а также простые органические молекулы, такие как моносахара, дисахара, аминокислоты не являются антигенами. Биосинтез этих молекул заканчивается построением химически однотипных молекул независимо от того, в животной, растительной или микробной клетке он осуществляется, т.е. эти вещества специфичностью не обладают, специфичность проявляется на более высоком уровне организации биологических макромолекул. Так, аминокислоты, соединенные в полимерную цепь, приобретают антигенность, если в эту цепь входит более 8 аминокислот. Термином «антигенность» обычно обозначают не только способность чужеродного вещества индуцировать образование антител в организме, но и вступать с ними в специфическую связь.

Антигенные свойства связаны с величиной молекулярной массы макромолекулы – она должна быть не менее 10 тыс. дальтон. Чем выше молекулярная масса вещества, тем выше его антигенность. Вместе с тем неверно считать, что высокая молекулярная масса является обязательным свойством антигена. Так, глюкогон (гормон поджелудочной железы, мм 3800) вазопрессин – ангиотензин (мм 1000) также обладают антигенными свойствами.

Принято различать полноценные антигены, неполноценные антигены (гаптены) и полугаптены. Полноценными антигенами называют такие, которые вызывают образование антител или сенсибилизацию лимфоцитов и способны реагировать с ними как в организме, так и в лабораторных реакциях. Свойствами полноценных антигенов обладают белки, полисахариды, высокомолекулярные нуклеиновые кислоты и комплексные соединения этих веществ.

Неполноценные антигены, или гаптены, сами по себе не способны вызывать образование антител или сенсибилизацию лимфоцитов. Это свойство появляется лишь при добавлении к ним полноценных антигенов («проводников»), а среди образующихся антител или сенсибилизированных лимфоцитов часть специфична к «проводнику», а часть – к гаптену, с которым они и могут реагировать как in vivo, так и in vitro.

Полугаптенами называют сравнительно простые вещества, которые при поступлении во внутреннюю среду организма могут химически соединяться с белками этого организма и придавать им свойства антигенов. К этим веществам могут принадлежать и некоторые лекарственные препараты (йод, бром, антипирин и др.).

Молекула антигена состоит из двух неравных частей. Активная (малая часть) с молекулярной массой около 350-1000 дальтон носит название антигенной детерминанты (эпитоп) и определяет антигенную специфичность. Антигенные детерминанты расположены в тех местах молекулы антигена, которые находятся в наибольшей связи с микроокружением. В белковой молекуле, например, они могут располагаться не только на концах полипептидной цепи, но и в других ее частях. Антигенные детерминанты содержат в своем составе по крайней мере три аминокислоты с жесткой структурой (тирозин, триптофан, фенилаланин). Специфичность антигена связана также с порядком чередования аминокислот полипептидной цепи и комбинацией их положений по отношению друг к другу. Примерно на каждые 5000 дальтон относительной молекулярной массы молекулы антигена приходится одна антигенная детерминанта (эпитоп). Количество антигенных детерминант у молекулы антигена определяет его валентность. Она тем выше, чем больше относительная молекулярная масса молекулы антигена. Так, у дифтерийного токсина 8 валентностей, гемоцианина – 231 и т.д.

Остальная (неактивная) часть молекулы антигена, как полагают, играет роль носителя детерминанты и способствует проникновению антигена во внутреннюю среду организма, его пиноцитозу или фагоцитозу, клеточной реакции на проникновение антигена, образование медиаторов межклеточного взаимодействия в иммунном ответе (Т-лимфоциты имеют рецепторы к носителю, В- к антигенной детерминанте). Антигенные детерминанты некоторых антигенов получены искусственным путем. Их введение в организм животных без носителя, против ожидания, приводит к низкому иммунному ответу. В настоящее время ведутся разработки по созданию синтетических носителей для синтетических антигенных детерминант.

Для проявления антигенности большое значение имеет путь введения антигена в организм и его доза. Для большинства антигенов бактерий и вирусов наиболее результативно внутрикожное и подкожное введение их. Оба пути значительно эффективнее внутримышечного или внутривенного. Энтеральный путь поступления для многих антигенов малоэффективен. Передозировка медленно выводящихся антигенов может вызвать иммунологический паралич. Введение антигена в эмбрион приводит к возникновению толерантности после рождения животного. В зависимости от пути поступления наблюдается преимущественное накопление антигена в том или ином органе: при внутривенном – в селезенке, костном мозге, печени; при подкожном – в регионарных лимфатических узлах. В клетке организма антигены поступают в результате фаго- или пиноцитоза. Сохранение антигена в организме зависит при прочих равных условиях от размеров и химической структуры его молекул. Наиболее длительное пребывание его в организме (несколько сот дней) наблюдается при соединении антигена с веществом, имеющим длительный период полураспада. Выделяется антиген из организма, в основном, с мочой и (меньше) с фекалиями.

Белки и углеводы крови и внутренних органов обычно не антигенны для организма, в котором они синтезируются, и в то же время антигенны для других особей того же вида (изоантигены). Эта закономерность не распространяется на так называемые забарьерные органы, т.е. органы, отделенные от кровотока особым барьером (гематоэнцефалический, гематотестикулярный и др.), белки которых в норме не поступают в кровь и являются антигенами для собственного организма. В число таких органов входят мозг, хрусталик глаза, паращитовидные железы, семенник.

Различные микробы в связи со сложностью их структуры и химического состава содержат различные антигены: белки (полноценные антигены), углеводы, липоидные соединения (гаптены) и их комплексы.

Соответственно анатомическим структурам бактериальной клетки различают Н-антигены (жгутиковые, если бактерия их имеет), К-антигены (поверхностные, антигены клеточной стенки – полисахариды, липополисахариды, белки), О-антигены (соматический, внутриклеточные – белки, нуклеопротеины, ферменты бактерий), антигены экскретируемые бактериями в окружающую их среду (белки-экзотоксины, полисахариды капсул).

Среди многочисленных антигенов микробной клетки различают такие, которые присущи только данному типу микробов (типовые антигены), данному виду (видовые антигены), а также общие для группы (семейства) микроорганизмов (групповые антигены). Такие антигены извлекают из дезинтегрированных микробов, иммунизируют ими животных и получают, соответственно типовые, видовые, групповые антисыворотки. Такие сыворотки применяют с целью идентификации выделенных из организма больного (или окружающей среды) неизвестных бактерий, определяя не только вид, но и серотип внутри вида.

Таким образом, бактериальная клетка (как и микроорганизмы других царств микробов – вирусы, простейшие, грибки) представляют собой сложный комплекс многочисленных антигенов. При ее попадании во внутреннюю среду макроорганизма на многие из этих антигенов будут образовываться свои специфические антитела. Одни антигены индуцируют образование едва заметного количества антител (титр), другие – быстрое и значительное антителообразование. Соответственно этому различают «слабые» и «сильные» антигены.

Не все антигены бактериальной клетки в равной степени участвуют в индукции невосприимчивости (иммунитета) к повторному попаданию в макроорганизм патогенных микробов того же вида. Способность антигена индуцировать иммунитет называют иммуногенностью, а такой антиген – иммуногеном. Установлено также, что определенные антигены некоторых микроорганизмов могут вызывать развитие различных типов гиперчувствительности (аллергии). Такие антигены называют аллергенами.

Антигены бактериальных клеток получают двумя путями: препаративным – выделением клеточных структур после дезинтеграции микробов (физический метод) или извлечением антигенных фракций химическими веществами (химический метод).