Электроэнцефалография: что это такое, показания, описание процедуры, расшифровка результатов. Принцип работы и применение электроэнцефалографии

Цель:

· Умение регистрации электроэнцефалограммы и принципы анализа.

· Изучении внешнего электрического поля мозга при помощи ЭЭГ.

· Значение для генеза ЭЭГ взаимосвязи электрической активности пирамидных нейронов.

Основные вопросы темы:

1.Какие методы используется для регистраций ЭЭГ?

2.Основные типы электрической активности пирамидных нейронов.

3.Какие современные модели используется в ЭЭГ?

4.Какое значение имеет взаимосвязь электрической активности пирамидных нейронов.

5.Какое важное условие генеза ЭЭГ?

Методы обучения и преподования: Работа группах

Краткое содержание по теме

Исследование рабочих свойств центральной нервной системы производится при помощи специальных нейрофизиологических методов. Одним из основных является электроэнцефалография , позволяющая регистрировать суммарную активность нейронов коры головного мозга, представляющую собой колебательный процесс в частотном диапазоне в основном от 1 до 30-40 колебаний в секунду и регулирующуюся глубинными мозговыми структурами. Таким образом, по картине активности коры головного мозга возможно оценить и ее самое, и степень подкорковых влияний на процесс ее формирования.

Электроэнцефалография (ЭЭГ) (электро- + др.-греч. ενκεφαλος - "головной мозг" + γραφω - "пишу", изображать) - раздел электрофизиологии, изучающий закономерности суммарной электрической активности мозга, отводимой с поверхности кожи головы, а также метод записи таких потенциалов. Электроэнцефалография дает возможность качественного и количественного анализа функционального состояния головного мозга и его реакций при действии раздражителей. Запись ЭЭГ широко применяется в диагностической и лечебной работе (особенно часто при эпилепсии), в анестезиологии, а также при изучении деятельности мозга, связанной с реализацией таких функций, как восприятие, память, адаптация и т. д. Регистрация ЭЭГ осуществляется с помощью новейшего 32-канального электроэнцефалографа «Нейрон-Спектр-5» (рис-1). Многоканальная запись ЭЭГ позволяет одновременно регистрировать электрическую активность всей поверхности мозга, что дает возможность проводить самые тонкие исследования.

Достоинствами метода электроэнцефалографии являются объективность, воз-можность непосредственной регистрации показателей функционального состояния мозга, количественной оценки получаемых результатов, наблюдения в динамике. Большое преимущество этого метода состоит в том, что он не связан с вмешатель-ством в организм обследуемого.

Метод ЭЭГ является наиболее адекватным для изучения нейрофизиологиче-ских основ психической деятельности, оценки зрелости центральной нервной системы и общего функционального состояния мозга. Когерентный анализ ЭЭГ позволяет оценить степень согласованности электрической активности в разных точках головного мозга, что даёт возможность исследования особенностей функционирования мозга как единого целого.

ЭЭГ является клиническим методом исследования, позволяющим диагности-ровать эпилепсию, выявить возможные дегенеративные, опухолевые поражения головного мозга, установить их локализацию (рис.2).

Начало изучению электрических процессов мозга было положено Д. Реймоном в 1849 году, который показал, что мозг, также как нерв и мышца, обладает электрогенными свойствами. Начало электроэнцефалографическим исследованиям положил В. В. Правдич-Неминский, опубликовав 1913 году первую электроэнцефалограмму записанную с мозга собаки. В своих исследованиях он использовал струнный гальванометр. Так же Правдич-Неминский вводит термин электроцереброграмма.

Рис. 1.

Первая запись ЭЭГ человека получена австрийским психиатром Гансом Бергером в 1928 году. Он же предложил запись биотоков мозга называть «электроэнцефалограмма». Работы Бергера, а также сам метод энцефалографии получили широкое признание лишь после того как в мае 1934 года Эдриан и Мэттьюс впервые убедительно продемонстрировали «ритм Бергера» на собрании Физиологического общества в Кембридже.

Регистрация ЭЭГ производится специальными электродами (наиболее распространенные мостиковые, чашечковые и игольчатые). В настоящее время чаще всего используется расположение электродов по международным системам «10-20 %» или «10-10 %». Каждый электрод подключен к усилителю. Для записи ЭЭГ может использоваться или бумажная лента или сигнал может преобразовываться с помощью АЦП и записываться в файл на компьютере. Наиболее распространена запись с частотой дискретизации 250 Гц. Запись потенциалов с каждого электрода осуществляется относительно нулевого потенциала референта, за который принимается мочка уха, или кончик носа. В настоящее время получают все большее распространение перерасчет потенциала относительно взвешенного среднего референта, за который принимается все каналы с определенными весовыми коэффициентами. При таком расчете возможные артефакты локализуются, а влияние соседних отведений друг на друга уменьшается.

Рис. 2.

Показания для ЭЭГ:

  • черепно-мозговые травмы - для оценки функционального состояния мозга и судорожной готовности;
  • проведение ЭЭГ в динамике для оценки эффективности противосудорожной терапии;
  • синдром вегетативной дисфункции с паническими вегетативными пароксизмами;
  • дифференциальная диагностика тсинкопальных состояний с целью исключения эпилептической активности.

В зависимости от частоты колебаний выделяется несколько ритмических рисунков электрической активности мозга – ритмов. Так, альфа–ритм, в большинстве случаев наиболее широко представленный в электроэнцефалограмме взрослого человека, имеет частотный диапазон от 8 до 13 колебаний в секунду и тесно связан в своем происхождении с системой зрительного восприятия. Поэтому он наиболее отчетлив он при закрытых глазах, то есть в состоянии ее максимального покоя, и лучше всего выражен в затылочных отделах, то есть там, где располагается высший отдел анализа зрительной информации. Наиболее высокочастотная часть электрической активности мозга, превышающая рамки альфа–ритма по частоте, именуется бета-активностью. Амплитуда ее, как правило, невысока и выражена она в противовес альфа-ритму, больше лобной и височной проекциях. Эта высокочастотная активность чаще всего рассматривается как признак активной работы многочисленных ансамблей нервных клеток. Альфа и бета активностью оканчивается ряд ритмических рисунков, характерных для взрослого человека в состоянии покоя, однако выделяются еще два варианта мозговой активности – тета и дельта. Тета-диапазон – более медленный в сравнении с альфа, от 7 до 5 колебаний в секунду. Дельта-волна еще медленнее, в секундном отрезке записи она может уместиться лишь 1-4 раза. Для такого рода медленной активности в состоянии бодрствования имеется в медицинской практике синоним – патологическая, то есть связанная с патологией, или – заболеванием, мозга. Ритмический рисунок мозговой активности существенно меняется с возрастом. Так, со второго полугодия сначала появляется, а затем постепенно начинает преобладать в картине активности альфа-ритм. Интересные метаморфозы происходят с медленной активностью. Патологической она считается только для взрослых в состоянии бодрствования. У детей наличие медленных волн в электроэнцефалограмме является нормальным, а вот представленность их отчетливо уменьшается с возрастомю. Большинство имеющихся экспериментальных данных говорит о том, что генез ЭЭГ определяется в основном электрической активностью коры больших полушарий головного мозга, а на уровне клеток – активностью ее пирамидных нейронов. У пирамидных нейронов выделяют два типа электрической активности. Импульсный разряд (потенциал действия) с длительностью около 1 мс и более медленное (градуальное ) колебание мембранного потенциала – тормозные и возбуждающие постсинаптические потенциалы (ПСП). Тормозные ПСП пирамидных клеток генерируются в основном в теле нейрона, а возбуждающие ПСП – преимущественно в дендритах. Правда, на теле нейрона имеется определенное количество возбуждающих синапсов, и соответственно этому тело пирамидных нейронов(сома) способно генерировать также и возбуждающие ПСП. Длительность ПСП пирамидных клеток по крайней мере на порядок больше продолжительности импульсного разряда.

Изменение мембранного потенциала обусловливают возникновение в пирамидных клетках двух токовых диполей, отличающихся по цитологической локализации (рис3).

Один из них – соматический диполь с дипольным моментом . Он формируется при изменении мембранного потенциала тела нейрона; ток в диполе и во внешней среде протекает между сомой и дендритным стволом. Вектор дипольного момента при импульсном разряде или генерации в теле нейрона возбуждающего ПСП направлен от сомы вдоль дендритного ствола, а тормозной ПСП создает соматический диполь с противоположным направлением дипольного момента. Другой диполь, называемый дендритным, возникает в результате генерации возбуждающих ПСП на ветвлении апикальных дендритов в первом, плексиморным слое коры; ток в этом дипооле течет между дендритным стволом и указанным ветвлением. Вектор дипольного момента дендритного диполя имеет направление в сторону сомы вдоль дендритного ствола.

Генерация возбуждающего ПСП в районе дендритного ствола без ветвления приводит к появлению квадруполя, поскольку при этом от частично деполяризованного участка ток внутри клетки распространяется в двух противоположных направлениях, в результате чего формируются два диполя с противоположным напрвлением дипольных моментов . Так как диполи малы по сравнению с расстояниями до точек отведения ЭЭГ, внешним полем квадрупольного генератора пирамидных клеток можно пренебречь.

На (рис 4) изображена полученная пространственная структура электрического поля вдоль дендритного ствола и вокруг на расстоянии около 0,01 мм от продольной оси этого ствола. Оказалось, что внешнее поле пирамидного нейрона при импульсном разряде очень резко уменьшается вдоль дендритного ствола: уже на расстоянии около 0,3 мм потенциал падает практически до нуля. В противоположность этому внеклеточное ПСП характеризуется гораздо большей протяженностью (примерно на порядок), и, следовательно, при этой активности пирамидные клетки имеют гораздо более высокий дипольный момент. Это различие находит обьяснение при рассмотрении пассивных электрических свойств дендритного ствола.

По отношению к потенциалу действия ввиду его кратковременности

Рис.3. мембрана дендрита ведет себя как емкость, обладающая низким сопротивлением току высокой частоты. Поэтому ток, обусловленный импульсной активностью, циркулирует на небольшом расстоянии от тела клетки; емкость мембраны шунтирует отдаленные участки ствола. Действительно, по данным микроэлектродных исследований, внешнее электрическое поле пирамидных нейронов, генерируемое потенциалом действия, не обнаруживается рис.4.

уже на расстояниях выше 0,1 мм. таким образом, ЭЭГ должна в основном создаваться «медленным» соматическим и дендритным диполями, возникающими при генерации тормозных и возбуждающих постсинаптических потенциалов.

При изучении внешнего электрического поля мозга регистрируют и интерпретируют переменный сигнал ЭЭГ, а постоянную составляющую, как правило, не принимают во внимание. Как видно на(рис. 5), ЭЭГ фоновой активности мозга представляет собой весьма сложную зависимость разнсти потенциалов от времени и выглядит как совокупность случайных колебаний разности потенциалов. Для характеристики таких хаотических колебаний («шумов») используют параметры, известные из теории вероятности: среднюю величину и стандартное отклонение от средней величины. Чтобы наити , выделяют

участок на ЭЭГ, который разбивают на небольшие равные интервалы времени, и в конце каждого интервала (t i , t j , t m на рис. 74) определяют напряжение U (U i , U j , U m на рис. 74). Стандартное отклонение рассчитывают по обычной формуле: , (1.1)

в которой - среднеарифметическое значение разности потенциалов; - число отсчетов . При отведении ЭЭГ от твердой мозговой оболочки величина для фоновой активности составляет 50-100 мкВ.

Аналогичная характеристика (стандартное

Рис.5. отклонение) используется и для описания градуальной активности отдельных нейронов . При изучении ритмических ЭЭГ, характеризующихся определенной амплитудой и частотой изменение разности потенциала, показателем величины ЭЭГ может служить амплитуда этих колебаний.

В настоящее время в исследованиях ЭЭГ для моделирования электрической активности коры головного мозга рассматривают поведение совокупности токовых электрических диполей отделных нейронов. Предложено несколько таких моделей, позволяющих объяснить отделные особенности ЭЭГ. Рассмотрим модель М. Н. Жадина, которая на примере генеза ЭЭГ при отведении с твердой мозговой оболочки позволяет выявить общие закономерности возникновения суммарного внешнего электрического поля коры.

Основные полежения модели: 1) внешнее поле головного мозга в некоторой точке регистрации – интегрированное поле, генерируемое токовыми диполями нейронов коры; 2) генез ЭЭГ обусловен градуальной электрической активностью пирамидных нейронов; 3) активность разных пирамидных нейронов в определенной степени взаимосвязана (скорелирована); 4) нейроны распределены по коре равномерно и их дипольные моменты перпендикулярны к поверхности коры; 5) кора плоская, имеет конечную толчину , а ее остальные размеры бесконечны; со стороны черепа мозг ограничен плоской бесконечной токонепроводящей средой. Обоснование первых двух положений расмотрено выше. Остановимся на друних положениях модели.

Очень большое значение для генеза ЭЭГ имеет взаимосвязь электрической активности пирамидных нейронов. Если бы градуальное изменение мембранного потенциала во времени происходило в каждом нейроне совершенно независимо от остальных клеток, переменная составляющая потенциала их суммарного внешнего электрического поля была бы неболшой, так как увеличение потенциала за счет усиления активности одного нейрона в значительной мере скомпенсировалось бы хаотическим снижением активности других нейронов. Сравнительно высокая величина регистрируемой в опыте ЭЭГ заставляет предположить, что между активностями пирамидных нейронов существует положительная кореляция . Количественно это явление характеризуют коэффициентом корреляции . Этот коэффициент равен нулю при отсутствии связи между активностями индвидуальных нейронов и был бы равен единице, если бы изменение мембранного потенциала (дипольных моментов) клеток происходили совершенно синхронно. Наблюдаемое в действительности промежуточное значение свидетельствует о том, что деятельность нейронов синхронизована лишь частично.

Интегрированное поле множества диполей-нейронов было бы очень слабым при высоком уровне синхронизации, если бы векторы дипольных моментов элементарных источников тока были ориентированы в коре хаотически. В этом случае наблюдалась бы значительная взаимная компенсация полей индивидуальных нейронов. В действительности же, согласно цитологическим данным, дендритные стволы пирамидных клеток в новой коре (эти клетки составляют 75% от всех клеток коры) ориентированы практически одинакова, перпендикулярно поверхности коры. Поля, создаваемые диполями таких одинакова ориентированных клеток, не компенсируются, а складываются. Расчеты, произведенные на оснований всех этих положений, показали, что для ЭЭГ, отводимой от твердой мозговой оболочки,

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Электроэнцефалография (ЭЭГ - диагностика) - метод исследования функциональной активности мозга, заключается в измерении электропотенциалов клеток головного мозга, которые впоследствии подвергаются компьютерному анализу.

Электроэнцефалография дает возможность качественного и количественного анализа функционального состояния головного мозга и его реакций при действии раздражителей, также существенно помогает в диагностике эпилепсии, опухолевых, ишемических, дегенеративных и воспалительных заболеваний головного мозга. Электроэнцефалография позволяет оценить эффективность проводимого лечения при уже установленном диагнозе.

Метод ЭЭГ перспективен и показателен, что позволяет рассматривать его в области диагностики психических расстройств. Применение математических методов анализа ЭЭГ и внедрение их в практику позволяет автоматизировать и упростить работу врачей. ЭЭГ является составной частью объективных критериев течения исследуемой болезни в общей системе оценок, разработанных для персонального компьютера.

1. Метод электроэнцефалографии

Использование электроэнцефалограммы для изучения функций мозга и целей диагностики основано на знаниях, накопленных при наблюдениях за пациентами с различными поражениями мозга, а также на результатах экспериментальных исследованиях на животных. Весь опыт развития электроэнцефалографии, начиная с первых исследований Ханса Бергера в 1933 г., свидетельствует о том, что определенным электроэнцефалографическим феноменам или паттернам соответствуют определенные состояния мозга и его отдельных систем. Суммарная биоэлектрическая активность, регистрируемая с поверхности головы, характеризует состояние коры головного мозга, как в целом, так и ее отдельных областей, а также функциональное состояние глубинных структур разного уровня.

В основе колебаний потенциалов, регистрируемых с поверхности головы в виде ЭЭГ, лежат изменения внутриклеточных мембранных потенциалов (МП) корковых пирамидных нейронов. При изменении внутриклеточного МП нейрона во внеклеточном пространстве, где расположены глиальные клетки, возникает разность потенциалов - фокальный потенциал. Потенциалы, возникающие во внеклеточном пространстве в популяции нейронов, представляют собой сумму таких отдельных фокальных потенциалов. Суммарные фокальные потенциалы могут быть зарегистрированы с помощью электропроводных датчиков от разных структур мозга, от поверхности коры или с поверхности черепа. Напряжение токов головного мозга составляет порядка 10-5 Вольта. ЭЭГ представляет собой запись суммарной электрической активности клеток полушарий мозга.

1.1 Отведение и запись электроэнцефалограммы

Регистрирующие электроды располагают так, чтобы на многоканальной записи были представлены все основные отделы мозга, обозначаемые начальными буквами их латинских названий. В клинической практике используют две основные системы отведений ЭЭГ: международную систему "10-20" (рис. 1) и модифицированную схему с уменьшенным количеством электродов (рис. 2). При необходимости получения более детальной картины ЭЭГ предпочтительна схема "10-20".

Рис. 1. Международная схема расположения электродов "10-20". Буквенные индексы означают: О - затылочное отведение; Р - теменное отведение; С - центральное отведение; F - лобное отведение; т - височное отведение. Цифровые индексы уточняют положение электрода внутри соответствующей области.

Рис. 2. Схема регистрации ЭЭГ при монополярном отведении (1) с референтным электродом (R) на мочке уха и при биполярных отведениях (2). В системе с уменьшенным количеством отведений буквенные индексы означают: О - затылочное отведение; Р - теменное отведение; С - центральное отведение; F - лобное отведение; Та - переднее височное отведение, Тр - заднее височное отведение. 1: R - напряжение под референтным ушным электродом; О - напряжение под активным электродом, R-O - запись, получаемая при монополярном отведении от правой затылочной области. 2: Тр - напряжение под электродом в области патологического очага; Та - напряжение под электродом, стоящим над нормальной мозговой тканью; Та-Тр, Тр-О и Ta-F - записи, получаемые при биполярном отведении от соответствующих пар электродов

Референтным называют такое отведение, когда на "вход 1" усилителя подаётся потенциал от электрода, стоящего над мозгом, а на "вход 2" - от электрода на удалении от мозга. Электрод, расположенный над мозгом, чаще всего называют активным. Электрод, удалённый от мозговой ткани, носит название референтного.

В качестве такового используют левую (A1) и правую (А2) мочки уха. Активный электрод подсоединяют к "входу 1" усилителя, подача на который отрицательного сдвига потенциала вызывает отклонение регистрирующего пера вверх.

Референтный электрод подключают к "входу 2" . В некоторых случаях в качестве референтного электрода используют отведение от двух закороченных между собой электродов (АА), расположенных на мочках ушей. Поскольку на ЭЭГ регистрируется разность потенциалов между двумя электродами, на положение точки на кривой будут в равной мере, но в противоположном направлении влиять изменения потенциала под каждым из пары электродов. В референтном отведении под активным электродом генерируется переменный потенциал мозга. Под референтным электродом, находящимся вдали от мозга, имеется постоянный потенциал, который не проходит в усилитель переменного тока и не влияет на картину записи.

Разность потенциалов отражает без искажения колебания электрического потенциала, генерируемого мозгом под активным электродом. Однако область головы между активным и референтным электродами составляет часть электрической цепи "усилитель-объект", и наличие на этом участке достаточно интенсивного источника потенциала, расположенного асимметрично относительно электродов, будет существенно отражаться на показаниях. Следовательно, при референтном отведении суждение о локализации источника потенциала не вполне надёжно.

Биполярным называют отведение, при котором на "вход 1" и "вход 2" усилителя подсоединяют электроды, стоящие над мозгом. На положение точки записи ЭЭГ на мониторе в одинаковой мере влияют потенциалы под каждым из пары электродов, и регистрируемая кривая отражает разность потенциалов каждого из электродов.

Поэтому суждение о форме колебания под каждым из них на основе одного биполярного отведения оказывается невозможным. В то же время анализ ЭЭГ, зарегистрированных от нескольких пар электродов в различных комбинациях, позволяет выяснить локализацию источников потенциалов, составляющих компоненты сложной суммарной кривой, получаемой при биполярном отведении.

Например, если в задней височной области присутствует локальный источник медленных колебаний (Тр на рис. 2) , при подсоединении к клеммам усилителя переднего и заднего височных электродов (Та, Тр) получается запись, содержащая медленную составляющую, соответствующую медленной активности в задней височной области (Тр) , с наложенными на неё более быстрыми колебаниями, генерируемыми нормальным мозговым веществом передней височной области (Та).

Для выяснения вопроса о том, какой же электрод регистрирует эту медленную составляющую, на двух дополнительных каналах коммутированы пары электродов, в каждой из которых один представлен электродом из первоначальной пары, то есть Та или Тр, а второй соответствует какому-либо не височному отведению, например F и О.

Понятно, что во вновь образуемой паре (Тр-О), включающей задний височный электрод Тр, находящийся над патологически изменённым мозговым веществом, опять будет присутствовать медленная составляющая. В паре, на входы которой подана активность от двух электродов, стоящих над относительно интактным мозгом (Та-F), будет регистрироваться нормальная ЭЭГ. Таким образом, в случае локального патологического коркового фокуса подключение электрода, стоящего над этим фокусом, в паре с любым другим приводит к появлению патологической составляющей на соответствующих каналах ЭЭГ. Это и позволяет определить локализацию источника патологических колебаний.

Дополнительный критерий определения локализации источника интересующего потенциала на ЭЭГ - феномен извращения фазы колебаний.

Рис. 3. Фазовое соотношение записей при различной локализации источника потенциала: 1, 2, 3 - электроды; А, Б - каналы электроэнцефалографа; 1 - источник регистрируемой разности потенциалов находится под электродом 2 (записи по каналам А и Б в противофазе); II - источник регистрируемой разности потенциалов находится под электродом I (записи синфазны)

Стрелки указывают направление тока в цепях каналов, определяющее соответствующие направления отклонения кривой на мониторе.

Если подсоединить на входы двух каналов электроэнцефалографа три электрода следующим образом (рис. 3): электрод 1 - к "входу 1 " , электрод 3 - к "входу 2" усилителя Б, а электрод 2 - одновременно к "входу 2" усилителя А и "входу 1" усилителя Б; предположить, что под электродом 2 происходит положительное смещение электрического потенциала по отношению к потенциалу остальных отделов мозга (обозначено знаком "+") , то очевидно, что электрический ток, обусловленный этим смещением потенциала, будет иметь противоположное направление в цепях усилителей А и Б, что отразится в противоположно направленных смещениях разности потенциалов - противофазах - на соответствующих записях ЭЭГ. Таким образом, электрические колебания под электродом 2 в записях по каналам А и Б будут представлены кривыми, имеющими одинаковые частоты, амплитуды и форму, но противоположными по фазе. При коммутации электродов по нескольким каналам электроэнцефалографа в виде цепочки противофазные колебания исследуемого потенциала будут регистрироваться по тем двум каналам, к разноимённым входам которых подключён один общий электрод, стоящий над источником этого потенциала.

1.2 Электроэнцефалограмма. Ритмы

Характер ЭЭГ определяется функциональным состоянием нервной ткани, а также протекающими в ней обменными процессами. Нарушение кровоснабжения приводит к подавлению биоэлектрической активности коры больших полушарий. Важной особенностью ЭЭГ является ее спонтанный характер и автономность. Электрическая активность мозга может быть зафиксирована не только в период бодрствования, но и во время сна. Даже при глубокой коме и наркозе наблюдается особая характерная картина ритмических процессов (волн ЭЭГ). В электроэнцефалографии различают четыре основных диапазона: альфа-, бета-, гамма - и тета - волны (рис. 4).

Рис. 4. Волновые процессы ЭЭГ

Существование характерных ритмических процессов определяется спонтанной электрической активностью мозга, которая обусловлена суммарной активностью отдельных нейронов. Ритмы электроэнцефалограммы отличаются друг от друга по длительности, амплитуде и форме. Основные компоненты ЭЭГ здорового человека приведены в таблице 1. Разбиение на группы является более или менее произвольным, оно не соответствует каким-либо физиологическим категориям.

Таблица 1 - Основные компоненты электроэнцефалограммы

· Альфа(б) -ритм: частота 8-13 Гц, амплитуда до 100 мкВ. Регистрируется у 85-95% здоровых взрослых. Лучше всего выражен в затылочных отделах. Наибольшую амплитуду б-ритм имеет в состоянии спокойного расслабленного бодрствования при закрытых глазах. Помимо изменений, связанных с функциональным состоянием мозга, в большинстве случаев наблюдают спонтанные изменения амплитуды б-ритма, выражающиеся в чередующемся нарастании и снижении с образованием характерных "Веретён", продолжительностью 2-8 с. При повышении уровня функциональной активности мозга (напряжённое внимание, страх) амплитуда б-ритма уменьшается. На ЭЭГ появляется высокочастотная низко амплитудная нерегулярная активность, отражающая десинхронизацию активности нейронов. При кратковременном, внезапном внешнем раздражении (особенно вспышке света) эта десинхронизация возникает резко, и в случае если раздражение не носит эмоциогенного характера, достаточно быстро (через 0,5-2 с) восстанавливается б-ритм. Этот феномен называется "реакция активации", "ориентировочная реакция", "реакция угасания б-ритма", "реакция десинхронизации".

· Бета(в)-ритм: частота 14-40 Гц, амплитуда до 25 мкВ. Лучше всего в-ритм регистрируется в области центральных извилин, однако распространяется и на задние центральные и лобные извилины. В норме он выражен весьма слабо и в большинстве случаев имеет амплитуду 5-15 мкВ. в-Ритм связан с соматическими сенсорными и двигательными корковыми механизмами и даёт реакцию угасания на двигательную активацию или тактильную стимуляцию. Активность с частотой 40-70 Гц и амплитудой 5-7 мкВ иногда называют г-ритмом, клинического значения он не имеет.

· Мю(м) -ритм: частота 8-13 Гц, амплитуда до 50 мкВ. Параметры м-ритма аналогичны таковым нормального б-ритма, но м-ритм отличается от последнего физиологическими свойствами и топографией. Визуально м-ритм наблюдают только у 5-15% испытуемых в роландической области. Амплитуда м-ритма (в редких случаях) нарастает при двигательной активации или соматосенсорной стимуляции. При рутинном анализе м-ритм клинического значения не имеет.

· Тета(И) -активность: частота 4-7 Гц, амплитуда патологической И-активности?40 мкВ и чаще всего превышает амплитуду нормальных ритмов мозга, достигая при некоторых патологических состояниях 300 мкВ и более.

· Дельта (д) -активность: частота 0,5-3 Гц, амплитуда такая же, как у И-активности. И- и д-колебания могут в небольшом количестве присутствовать на ЭЭГ взрослого бодрствующего человека и в норме, но их амплитуда при этом не превышает таковую б-ритма. Патологической считают ЭЭГ, содержащую и- и д-колебания амплитудой?40 мкВ и занимающие более 15% общего времени регистрации.

Эпилептиформная активность - феномены, типично наблюдаемые на ЭЭГ больных эпилепсией. Они возникают в результате высокосинхронизованных пароксизмальных деполяризационных сдвигов в больших популяциях нейронов, сопровождающихся генерацией потенциалов действия. В результате этого возникают высокоамплитудные острой формы потенциалы, имеющие соответствующие названия.

· Спайк (англ. spike - остриё, пик) - негативный потенциал острой формы, длительностью менее 70 мс, амплитудой?50 мкВ (иногда до сотен или даже тысяч мкВ).

· Острая волна отличается от спайка растянутостью во времени: её длительность 70-200 мс.

· Острые волны и спайки могут комбинироваться с медленными волнами, образуя стереотипные комплексы. Спайк-медленная волна - комплекс из спайка и медленной волны. Частота комплексов спайк-медленная волна составляет 2,5-6 Гц, а период, соответственно, - 160-250 мс. Острая-медленная волна комплекс из острой волны и следующей за ней медленной волны, период комплекса 500-1300 мс (рис. 5).

Важная характеристика спайков и острых волн - их внезапное появление и исчезновение, и чёткое отличие от фоновой активности, которую они превышают по амплитуде. Острые феномены с соответствующими параметрами, нечётко отличающиеся от фоновой активности, не обозначаются как острые волны или спайки.

Рис. 5 . Основные типы эпилептиформной активности: 1- спайки; 2 - острые волны; 3 - острые волны в Р-диапазоне; 4 - спайк-медленная волна; 5 - полиспайк-медленная волна; 6 - острая-медленная волна. Значение калибровочного сигнала для "4" - 100 мкВ, для остальных записей - 50 мкВ.

Вспышка - термин, обозначающий группу волн с внезапным возникновением и исчезновением, чётко отличающихся от фоновой активности частотой, формой и/или амплитудой (рис. 6).

Рис. 6. Вспышки и разряды: 1 - вспышки б-волн высокой амплитуды; 2 - вспышки в-волн высокой амплитуды; 3 - вспышки (разряды) острых волн; 4 - вспышки полифазных колебаний; 5 - вспышки д-волн; 6 - вспышки и-волн; 7 - вспышки (разряды) комплексов спайк-медленная волна

· Разряд - вспышка эпилептиформной активности.

· Паттерн эпилептического припадка - разряд эпилептиформной активности, типично совпадающей с клиническим эпилептическим приступом.

2. Электроэнцефалография при эпилепсии

Эпилепсия - заболевание, проявляющееся двумя и более эпилептическими приступами (припадками). Эпилептический приступ - короткое, обычно не спровоцированное стереотипное нарушение сознания, поведения, эмоций, моторных или сенсорных функций, которое даже по клиническим проявлениям можно связать с разрядом избыточного количества нейронов в коре мозга. Определение эпилептического припадка через понятие разряда нейронов определяет важнейшее значение ЭЭГ в эпилептологии.

Уточнение формы эпилепсии (более 50 вариантов) включает обязательным компонентом описание характерной для данной формы картины ЭЭГ. Ценность ЭЭГ определяется тем, что эпилептические разряды, а, следовательно, и эпилептиформную активность, на ЭЭГ наблюдают и вне эпилептического приступа.

Надёжными признаками эпилепсии являются разряды эпилептиформной активности и паттерны эпилептического припадка. Кроме того, характерны высокоамплитудные (более 100-150 мкВ) вспышки б-, И-, и д-активности, однако сами по себе они не могут считаться доказательством наличия эпилепсии и оцениваются в контексте клинической картины. Помимо диагноза эпилепсии, ЭЭГ играет важную роль в определении формы эпилептического заболевания, от чего зависит прогноз и выбор препарата. ЭЭГ позволяет подобрать дозу препарата по оценке уменьшения эпилептиформной активности и предсказать побочные эффекты по появлению дополнительной патологической активности.

Для выявления эпилептиформной активности на ЭЭГ используют световую ритмическую стимуляцию (в основном при фото генных припадках), гипервентиляцию или другие воздействия, исходя из сведений о провоцирующих приступы факторах. Долгосрочная регистрация, особенно во время сна, способствует выявлению эпилептиформных разрядов и паттернов эпилептического припадка.

Провокации эпилептиформных разрядов на ЭЭГ или самого припадка способствует депривация сна. Эпилептиформная активность подтверждает диагноз эпилепсии, однако возможна и при других состояниях, в то же время у части больных эпилепсией зарегистрировать её не удаётся.

Долгосрочная регистрация электроэнцефалограммы и ЭЭГ-видеомониторинг, как и эпилептические припадки, эпилептиформная активность на ЭЭГ регистрируется не постоянно. При некоторых формах эпилептических расстройств она наблюдается только во время сна, иногда провоцируется определёнными жизненными ситуациями или формами активности пациента. Следовательно, надёжность диагностики эпилепсии прямо зависит от возможности длительной регистрации ЭЭГ в условиях достаточно свободного поведения обследуемого. Для этой цели разработаны специальные портативные системы долгосрочной (12-24 ч и более) записи ЭЭГ в условиях, приближенных к обычной жизнедеятельности.

Регистрирующая система состоит из эластичной шапочки с вмонтированными в неё электродами специальной конструкции, позволяющими долговременно получать качественное отведение ЭЭГ. Отводимая электрическая активность мозга усиливается, оцифровывается и регистрируется на флеш-картах рекордером размером с портсигар, помещающимся в удобной сумке на пациенте. Пациент может выполнять обычные домашние действия. По завершении записи информация с флеш-карты в лаборатории переводится в компьютерную систему регистрации, просмотра, анализа, хранения и распечатки электроэнцефалографических данных и обрабатывается как обычная ЭЭГ. Наиболее надёжную информацию даёт ЭЭГ -видеомониторинг одновременная регистрация ЭЭГ и видеозаписи пациента во время при ступа. Использование этих методов требуется при диагностике эпилепсии, когда рутинная ЭЭГ не выявляет эпилептиформной активности, а также при определении формы эпилепсии и типа эпилептического припадка, для дифференциальной диагностики эпилептических и неэпилептических приступов, уточнения целей операции при хирургическом лечении, диагноза эпилептических непароксизмальных расстройств, связанных с эпилептиформной активностью во сне, контроля правильности выбора и дозы препарата, побочных эффектов терапии, надёжности ремиссии.

2.1. Характеристики электроэнцефалограммы при наиболее распространённых формах эпилепсии и эпилептических синдромов

· Доброкачественная эпилепсия детского возраста с центро-темпоральными спайками (доброкачественная роландическая эпилепсия).

Рис. 7. ЭЭГ пациента 6 лет с идиопатической детской эпилепсией с центро-темпоральными спайками

Видны регулярные комплексы острая-медленная волна амплитудой до 240 мкВ в правой центральной (С4) и передневисочной области (Т4), формирующие извращение фазы в соответствующих отведениях, свидетельствующее о генерации их диполем в нижних отделах прецентральной извилины на границе с верхней височной.

Вне приступа: фокальные спайки, острые волны и/или комплексы спайк-медленная волна в одном полушарии (40-50%) или в двух с односторонним преобладанием в центральных и средневисочных отведениях, формирующие противофазы над роландической и височной областью (рис. 7).

Иногда эпилептиформная активность во время бодрствования отсутствует, но появляется во время сна.

Во время приступа: фокальный эпилептический разряд в центральных и средневисочных отведениях в виде высокоамплитудных спай ков и острых волн, комбинирующихся с медленными волнами, с возможным распространением за пределы начальной локализации.

· Доброкачественная затылочная эпилепсия детского возраста с ранним началом (форма Панайотопулоса).

Вне приступа: у 90% пациентов наблюдают в основном мультифокальные высоко или низкоамплитудные комплексы острая-медленная волна, нередко билатерально-синхронные генерализованные разряды. В двух третях случаев наблюдают затылочные спайки, в трети случаев - экстраокципитальные.

Комплексы возникают сериями при закрывании глаз.

Отмечают блокирование эпилептиформной активности открыванием глаз. Эпилептиформная активность на ЭЭГ и иногда приступы провоцируются фото стимуляцией.

Во время приступа: эпилептический разряд в виде высокоамплитудных спайков и острых волн, комбинирующихся с медленными волнами, в одном или обоих затылочных и заднетеменных отведениях, обычно с распространением за пределы начальной локализации.

Идиапатические генерализованные эпилепсии. Паттерны ЭЭГ, характерные для детской и юношеской идиопатических эпилепсий с

· абсансами, а также для идиопатической юношеской миоклонической эпилепсии, приведены выше.

Характеристики ЭЭГ при первично генерализованной идиопатической эпилепсии с генерализованными тонико-клоническими приступами следующие.

Вне приступа: иногда в пределах нормы, но обычно с умеренными или выраженными изменениями с И-, д-волнами, вспышками билатеральносинхронных или асимметричных комплексов спайк-медленная волна, спайков, острых волн.

Во время приступа: генерализованный разряд в виде ритмической активности 10 Гц, постепенно нарастающей по амплитуде и уменьшающейся по частоте в клонической фазе, острые волны 8-16 Гц, комплексы спайк-медленная волна и полиспайк-медленная волна, группы высокоамплитудных И- и д-волн, нерегулярных, асимметричных, в тонической фазе И- и д-активность, завершающаяся иногда периодами отсутствия активности или низкоамплитудной медленной активности.

· Симптоматические фокальные эпилепсии: характерные эпилептиформные фокальные разряды наблюдают менее регулярно, чем при идиопатических. Даже припадки могут проявляться не типичной эпилептиформной активностью, а вспышками медленных волн или даже десинхронизацией и связанным с припадком уплощением ЭЭГ.

При лимбических (гиппокампальных) височных эпилепсиях в межприступный период изменения могут отсутствовать. Обычно наблюдают фокальные комплексы острая-медленная волна в височных отведениях, иногда билатерально-синхронные с односторонним амплитудным преобладанием (рис. 8.). Во время приступа - вспышки высокоамплитудных ритмичных "крутых" медленных волн, или острых волн, или комплексов острая-медленная волна в височных отведениях с распространением на лобные и задние. В начале (иногда во время) припадка может наблюдаться одностороннее уплощение ЭЭГ. При латерально-височных эпилепсиях со слуховыми и реже зрительными иллюзиями, галлюцинациями и сноподобными состояниями, нарушениями речи и ориентации эпилептиформная активность на ЭЭГ наблюдается чаще. Разряды локализуются в средне- и задневисочных отведениях.

При бессудорожных височных приступах, протекающих по типу автоматизмов, возможна картина эпилептического разряда в виде ритмичной первично- или вторично-генерализованной высокоамплитудной И-активности без острых феноменов, и в редких случаях - в виде диффузной десинхронизации, проявляющейся полиморфной активностью амплитудой меньше 25 мкВ.

Рис. 8. Височно-долевая эпилепсия у больного 28 лет с комплексными парциальными приступами

Билатерально-синхронные комплексы острая-медленная волна в передних отделах височной области с амплитудным преобладанием справа (электроды F8 и Т4), свидетельствуют о локализации источника патологической активности в передних медиобазальных отделах правой височной доли.

ЭЭГ при лобнодолевых эпилепсиях в межприпадочном периоде в двух третях случаев фокальной патологии не выявляет. При наличии эпилептиформных колебаний они регистрируются в лобных отведениях с одной или с двух сторон, наблюдаются билатерально-синхронные комплексы спайк-медленная волна, часто с латеральным преобладанием в лобных отделах. Во время припадка могут наблюдаться билатерально-синхронные разряды спайк-медленная волна или высокоамплитудные регулярные И- или д-волны, преимущественно в лобных и/или височных отведениях, иногда внезапная диффузная десинхронизация. При орбитофронтальных фокусах трёхмерная локализация выявляет соответственное расположение источников начальных острых волн паттерна эпилептического припадка.

2.2 Интерпретация результатов

Анализ ЭЭГ проводят в ходе записи и окончательно по её завершении. Во время записи оценивают наличие артефактов (наводка полей сетевого тока, механические артефакты движения электродов, электромиограмма, электрокардиограмма и др.), принимают меры к их устранению. Проводят оценку частоты и амплитуды ЭЭГ, выделяют характерные графоэлементы, определяют их пространственное и временное распределение. Завершают анализ физиологической и патофизиологической интерпретацией результатов и формулированием диагностического заключения с клинико-электроэнцефалографической корреляцией.

Рис. 9. Фотопароксизмальный ответ на ЭЭГ при эпилепсии с генерализованными приступами

Фоновая ЭЭГ в пределах нормы. При нарастающей по частоте от 6 до 25 Гц световой ритмической стимуляции наблюдается увеличение амплитуды ответов на частоте 20 Гц с развитием генерализованных разрядов спайков, острых волн и комплексов спайк-медленная волна. d - правое полушарие; s - левое полушарие.

Основной медицинский документ по ЭЭГ - клинико-электроэнцефалографическое заключение, написанное специалистом на основе анализа "сырой" ЭЭГ.

Заключение по ЭЭГ должно быть сформулировано в соответствии с определёнными правилами и состоять из трёх частей:

1) описание основных типов активности и графоэлементов;

2) резюме описания и его патофизиологическая интерпретация;

3) корреляция результатов предыдущих двух частей с клиническими данными.

Базовый описательный термин в ЭЭГ - "активность", определяющая любую последовательность волн (б-активность, активность острых волн и др.).

· Частота определяется количеством колебаний в секунду; её записывают соответствующим числом и выражают в герцах (Гц). В описании приводят среднюю частоту оцениваемой активности. Обычно берут 4-5 отрезков ЭЭГ длительностью 1 с и высчитывают количество волн на каждом из них (рис. 10).

· Амплитуда - размах колебаний электрического потенциала на ЭЭГ; измеряют от пика предшествующей волны до пика последующей волны в противоположной фазе, выражают в микровольтах (мкВ). Для измерения амплитуды используют калибровочный сигнал. Так, если калибровочный сигнал, соответствующий напряжению 50 мкВ, имеет на записи высоту 10 мм, то, соответственно, 1 мм отклонения пера будет означать 5 мкВ. Для характеристики амплитуды активности в описании ЭЭГ принимают наиболее характерно встречающиеся максимальные её значения, исключая выскакивающие.

· Фаза определяет текущее состояние процесса и указывает направление вектора его изменений. Некоторые феномены на ЭЭГ оценивают количеством фаз, которые они содержат. Монофазным называется колебание в одном направлении от изоэлектрической линии с возвратом к исходному уровню, двухфазным - такое колебание, когда после завершения одной фазы кривая переходит исходный уровень, отклоняется в противоположном направлении и возвращается к изоэлектрической линии. Полифазными называют колебания, содержащие три фазы и более. в более узком смысле термином "полифазная волна" определяют последовательность б- и медленной (обычно д) волны.

Рис. 10. Измерение частоты (1) и амплитуды (II) на ЭЭГ

Частота измеряется как количество волн в единицу времени (1 с). А - амплитуда.

Заключение

электроэнцефалография эпилептиформный мозговой

С помощью ЭЭГ получают информацию о функциональном состоянии мозга при разных уровнях сознания пациента. Достоинством этого метода являются его безвредность, безболезненность, неинвазивность.

Электроэнцефалография нашла широкое применение в неврологической клинике. Особенно значимы данные ЭЭГ в диагностике эпилепсии, возможна их определенная роль в распознавании опухолей внутричерепной локализации, сосудистых, воспалительных, дегенеративных заболеваний головного мозга, коматозных состояний. ЭЭГ с применением фотостимуляции или стимуляции звуком может помочь отдифференцировать истинные и истерические расстройства зрения и слуха или симуляцию таких расстройств. ЭЭГ может быть использована при мониторном наблюдении за больным. Отсутствие на ЭЭГ признаков биоэлектрической активности головного мозга является одним из важнейших критериев его смерти.

ЭЭГ проста в использовании, дешева и не связана с воздействием на испытуемого, т.е. неинвазивна. ЭЭГ может быть зарегистрирована около кровати пациента и использоваться для контроля стадии эпилепсии, длительного мониторинга мозговой активности.

Но имеется еще одно, не такое очевидное, но очень ценное преимущество ЭЭГ. Фактически, ПЭТ и фМРТ основаны на измерении вторичных метаболических изменений в ткани мозга, а не первичных (то есть электрических процессов в нервных клетках). ЭЭГ может показать один из основных параметров работы нервной системы - свойство ритмичности, которое отражает согласованность работы разных структур мозга. Следовательно, при записи электрической (а также магнитной) энцефалограммы, нейрофизиолог имеет доступ к фактическим механизмам обработки информации мозга. Это помогает обнаружить схему процессов, задействованных мозгом, показывая не только «где», но и «как» информация обработана в мозге. Именно эта возможность делает ЭЭГ уникальным и, безусловно, ценным методом диагностики.

Электроэнцефалографические обследования позволяют раскрыть, как человеческий мозг использует свои функциональные резервы.

Список литературы

1. Зенков, Л.Р.Клиническая электроэнцефалография (с элементами эпилептологии). Руководство для врачей - 3-е изд. - М.: МЕДпресс-информ, 2004. - 368с.

2. Чебаненко А.П., Учебное пособие для студентов физического факультета отделения "Медицинская физика", Прикладная термо- и электродинамика в медицине - Одесса.- 2008. - 91с.

3. Кратин Ю.Г., Гусельников, В.Н. Техника и методы электроэнцефалографии. - Л.: Наука, 1971, с. 71.

Размещено на Allbest.ru

...

Подобные документы

    Начало изучения электрических процессов мозга Д. Реймоном, открывшим его электрогенные свойства. Электроэнцефалография как современный неинвазивный метод исследования функционального состояния головного мозга путем регистрации биоэлектрической активности.

    презентация , добавлен 05.09.2016

    Исследование функционального состояния центральной нервной системы методом электроэнцефалографии. Формирование протокола обследования. Картирование электрической активности мозга. Исследование мозгового и периферического кровообращения методом реографии.

    курсовая работа , добавлен 12.02.2016

    Понятие и принципы электроэнцефалография (ЭЭГ). Возможности использования ЭЭГ в изучении адаптационных процессов человека. Индивидуально-типологические особенности регуляторных процессов ЦНС у лиц с начальными признаками нейроциркуляторной дистонии.

    презентация , добавлен 14.11.2016

    Оценка функционального состояния мозга новорожденных детей из групп риска. Графоэлементы неонатальной электроэнцефалографии, нормативный и патологический онтогенез. Развитие и исход паттернов: вспышка-подавление, тета, дельта-"щетки", пароксизмы.

    статья , добавлен 18.08.2017

    Общие представления об эпилепсии: описание болезни в медицине, особенности личности больного. Нейропсихология детского возраста. Когнитивные нарушения у детей, больных эпилепсией. Нарушение опосредствованной памяти и мотивационного компонента у больных.

    курсовая работа , добавлен 13.07.2012

    Сущностные характеристики нейрональной активности и исследование активности нейронов головного мозга. Анализ электроэнцефалографии, которая занимается оценкой биопотенциалов, возникающих при возбуждении мозговых клеток. Процесс магнитоэнцефалографии.

    контрольная работа , добавлен 25.09.2011

    Оценка активности киллерных лимфоцитов. Определение функциональной активности фагоцитов, концентрации иммуноглобулинов, компонентов комплемента. Иммунологические методы, основанные на реакции антиген-антитело. Области использования иммунодиагностики.

    учебное пособие , добавлен 12.04.2014

    Этиология, патогенез и лечение панкреонекроза. Нейтрофилы: жизненный цикл, морфология, функции, метаболизм. Биолюминесцентный метод определения активности НАД(Ф)-зависимых дегидрогеназ в нейтрофилах. Активность лактатдегидрогеназы нейтрофилов крови.

    курсовая работа , добавлен 08.06.2014

    Характеристика методов исследования механической активности сердца - апекскардиографии, баллистокардиографии, рентгенокимографии и эхокардиографии. Их основное значение, точность измерения и особенности применения. Принцип и режимы работы УЗ прибора.

    презентация , добавлен 13.12.2013

    Патофизиологические особенности, у нейрохирургических больных и больных с черепно-мозговой травмой. Нарушение кровообращения в головном мозге. Терапевтические аспекты в инфузионной терапии. Особенности питания больных с черепно-мозговой травмой.

Мозг человека - сложная структура. Именно здесь осуществляется централизация нервной деятельности, обрабатываются все поступающие от органов чувств импульсы и образуются ответные сигналы для совершения того или иного действия.

Иногда происходит так, что мозг начинает неправильно функционировать. Заподозрить наличие патологического очага в головном мозге непросто. Обычные методы диагностики, такие как УЗИ, МРТ, не всегда дают должное представление о его работе. В таких случаях необходимо провести снятие электроэнцефалограммы - снимка работы мозга. Изучением образования занимается электроэнцефалография. Что это такое?

Что представляет собой данный метод?

Под электроэнцефалографией в настоящее время понимают определенный раздел электрофизиологии, занимающийся изучением электрической активности головного мозга и отдельных его частей. Замер производится с помощью специальных электродов, накладываемых на кожу головы в различных местах. Электроэнцефалография головного мозга способна фиксировать малейшие изменения в активности нервных клеток, что ставит ее на порядок выше других методов диагностики неврологических заболеваний.

В результате регистрации деятельности мозга образуется “снимок” или кривая - электроэнцефалограмма. На ней можно определить все участки активности головного мозга, что проявляется определенными волнами и ритмом. Принято обозначать данные ритмы алфавита (выделяют не менее 10 таких ритмов). Каждый из них содержит определенные волны, характеризующие деятельность мозга или определенного его участка.

История создания исследования

Исследование электрической активности головного мозга было начато в 1849 году, когда было доказано, что он, как и мышца или нервное волокно, способен к образованию электрических импульсов.

В 1875 году два независимых друг от друга ученых (Данилевский в России и Кэтон в Англии) смогли предоставить данные измерения электрофизиологической активности головного мозга у животных (исследование проводилось на собаках, кроликах и обезьянах).

Основы электроэнцефалографии были заложены в 1913 году, когда Владимир Владимирович Правдич-Неминский смог записать первую электроэнцефалограмму с мозга собаки. Он же первый предложил термин “электроцереброграмма”.

Впервые у человека энцефалограмма была записана в 1928 году немецким ученым Гансом Бергером. Он предложил переименовать термин в электроэнцефалограмму, а сам метод получил широкое распространение с 1934 года, когда было подтверждено наличие ритма Бергера.

Как проводится процедура?

Регистрация биопотенциалов от головного мозга производится при помощи аппарата под названием электроэнцефалограф.

В норме биотоки, образующиеся мозгом, довольно слабые, и зафиксировать их сложно. И в данном случае на помощь приходит электроэнцефалография. Что это такое, было упомянуто выше. При помощи электроэнцефалографа происходит фиксация данных потенциалов и их усиление при прохождении через аппарат.

Потенциалы фиксируются за счет электродов, расположенных на поверхности головы.

Получаемый сигнал может либо записываться на бумаге, либо сохраняться в электронном виде (компьютерная электроэнцефалография) для последующего исследования.

Сама запись производится относительно так называемого нулевого потенциала. За него обычно принимается либо мочка уха, либо височной кости, которые не испускают биотоков.

Регистрация импульсов осуществляется электродами, размещенными на поверхности головы по специальным схемам. Наиболее широко распространена схема 10-20.

Схема 10-20

Данная схема является стандартной при размещении электродов. Они распределяются на коже головы в следующей последовательности:

  • В первую очередь определяется линия, соединяющая между собой переносицу и затылочный бугор. Она делится на 10 равных отрезков. Первый и последний электроды накладываются соответственно на первую и последнюю, десятую, части линии. Другие два электрода устанавливают относительно первых двух электродов на расстоянии, равном 1/5 от длины образованной в начале линии. Пятый ставится посередине между уже установленными.
  • Условно образуется еще одна линия между наружными слуховыми проходами. Датчики устанавливаются по два с каждой стороны (на каждое полушарие) и один - на макушку.
  • Параллельно срединной линии между затылком и переносицей проходят еще 4 линии - правая и левая парасагитальные и височные. Они проходят через электроды, установленные по “ушной” линии. По данным линиям устанавливаются еще электроды (5 - на парасаггитальную, и 3 - на височную).

В общей сложности на поверхность головы устанавливают 21 электрод.

Интерпретация полученных результатов

Обычно компьютерная электроэнцефалография предусматривает запись полученных результатов на компьютер для создания базы данных о каждом пациенте. В результате фиксации полученных данных образуются ритмические колебания двух типов. Условно их называют альфа и бета-волны.

Первые фиксируются обычно в состоянии покоя. Для них характерно напряжение на уровне 50 мкВ и определенный ритм - до 10 в секунду.

Электроэнцефалография сна основывается на определении бета-волн. В отличие от волн альфа-характера, они являются более мелкими по размеру и встречаются в состоянии бодрствования. Их частота составляет около 30 в секунду, а вольтаж - в районе 15-20 мкВ. Данные волны обычно указывают на нормальную активность мозга в состоянии бодрствования.

Клиническая электроэнцефалография основывается именно на фиксации данных волн. Любое их отклонение (например, появление альфа-волн в состоянии бодрствования) говорит о наличии какого-либо патологического процесса. Кроме того, на энцефалограмме возможно появление патологических волн - тета-волны, пик-волны - или изменение их характера - появление остроконечных комплексов.

Особенности проведения исследования

Обязательным условием проведения исследования является неподвижность пациента. При совершении какой-либо деятельности на электроэнцефалограмме возникают помехи, которые в дальнейшем препятствуют правильной расшифровке. У детей наличие таких помех неизбежно.

Кроме того, имеет свои трудности при проведении у детей и сама электроэнцефалография. Что это такое - объяснить ребенку достаточно сложно, и не всегда можно уговорить его надеть шлем с электродами. Он может вызвать у детей чувство паники, которое обязательно исказит полученные результаты. Именно поэтому следует предупредить родителей о том, что нужно каким-либо образом уговорить малыша надеть электроды.

Во время исследования обычно проводятся пробы с гипервентиляцией и фотостимуляцией. Они позволяют определить некоторые нарушения в работе мозга, не фиксируемые в покое.

Показания к проведению процедуры

Метод электроэнцефалографии показан в следующих случаях:

  • При наличии в анамнезе спонтанных обмороков.
  • Длительное время возникающие головные боли, не купируемые приемом медикаментов.
  • При нарушении памяти и внимания.
  • Нарушения сна и проблемы с засыпанием и пробуждением.
  • При подозрении на психическое отставание детей в развитии.
  • Головокружения и быстрая утомляемость.

Кроме вышеперечисленного, электроэнцефалография позволяет контролировать результаты проводимого лечения у пациентов, получающих тот или иной вид лекарственной или физиотерапевтической терапии.

Метод позволяет определить наличие таких заболеваний, как эпилепсия, инфекционные поражения мозговой ткани, нарушения трофики и кровоснабжения мозговой ткани.

Электроэнцефалография у детей проводится при диагностике синдрома Дауна, при ДЦП, задержке психического развития.

Противопоказания к проведению процедуры

Сама по себе процедура практически не имеет противопоказаний к применению. Единственным, что может ограничивать ее проведение, является наличие на поверхности головы обширных травм, острых инфекционных процессов или не заживших к моменту проведения исследования.

Электроэнцефалография головного мозга с осторожностью проводится у психически буйных пациентов, так как вид аппарата может привести их в ярость. Для усмирения таких больных необходимо введение транквилизаторов, которые значительно снижают информативность проведения процедуры и приводят к получению неправильных данных.

По возможности следует отказаться от проведения процедуры тяжелым пациентам с декомпенсированными расстройствами сердечно-сосудистой системы. Если в наличии имеется портативный электроэнцефалограф, то лучше воспользоваться им, а не везти самого пациента в диагностический кабинет.

Необходимость проведения исследования

К сожалению, не каждый человек знает о том, что существует такой метод диагностики, как электроэнцефалография. Что это такое - знает еще меньшее количество людей, из-за чего не все обращаются к врачу по поводу его проведения. А зря, ведь данный метод является довольно чувствительным при регистрации потенциалов головного мозга. При грамотно проведенном исследовании и соответствующей расшифровке полученных данных удается получить практически полноценное представление о функциональности структур мозга и о наличии возможного патологического процесса.

Именно данная методика позволяет определить наличие отставания в психическом развитии у детей раннего возраста (хотя обязательно стоит делать поправку на то, что потенциалы мозга у детей несколько отличаются от таковых у взрослых людей).

Даже если не имеется никаких нарушений со стороны нервной системы, иногда лучше провести диагностическое обследование с обязательным включением в него ЭЭГ, так как оно может позволить определить начинающиеся изменения в структуре головного мозга, а это обычно является залогом успешности излечения заболевания.

ВВЕДЕНИЕ В КЛИНИЧЕСКУЮ ЭЛЕКТРОЭНЦЕФАЛОГРАФИЮ

Лаборатория для ЭЭГ-исследований
должна состоять из звукоизолированной, экранированной от электромагнитных волн, светоизолированной комнаты для пациента (камеры) и аппаратной, где размещаются электроэнцефалограф, стимулирующая и анализирующая аппаратура
помещение для ЭЭГ-лаборатории необходимо выбрать в наиболее тихой части здания, подальше от проезжей части улиц, рентгеновских установок, физиотерапевтических аппаратов и других источников электромагнитных помех.

Общие правила проведения ЭЭГ-исследования
Исследования проводятся в утреннее время не ранее чем через два часа после приема пищи, курения.
В день исследования не рекомендуется принимать медикаменты, за три дня надо отменить барбитураты, транквилизаторы, бромиды и другие препараты, изменяющие функциональное состояние ЦНС.
При невозможности отмены лекарственной терапии должна быть сделана запись с названием лекарственного препарата, указаны его доза, время и способ применения.
В помещении, где находится обследуемый, необходимо поддерживать температуру 20-22 Со.
При исследовании обследуемый может лежать или сидеть.
Необходимо присутствие врача, так как применение функциональных нагрузок может в некоторых случаях вызывать развернутый эпилептический припадок, коллаптоидное состояние и т. п., и иметь соответственно набор медикаментов для купирования возникших нарушений.

Количество электродов , наложенных на конвекситальную поверхность черепа должно быть не менее 21. Кроме того, для монополярной регистрации необходимо накладывать щечный электрод, расположенный между круглой мышцей рта и жевательной мышцей. Накладывают также 2 электрода на края глазниц для регистрации движений глаз и электрод заземления. Расположение электродов на голове осуществляют по схеме "десять-двадцать" .

Применяют 6 видов электродов, которые различаются как по форме, так и по способу их фиксации на голове:
1) контактные накладные неприклеивающися электроды, которые прилегают к голове при помощи тяжей шлема-сетки;
2) приклеивающиеся электроды;
3) базальные электроды;
4) игольчатые электроды;
5) пиальные электроды;
6) многоэлектродные иглы.

Электроды не должны иметь собственного потенциала.

Электроэнцефалографическая установка состоит из электродов, соединительных проводов, электродной распределительной коробки с пронумерованными гнездами, коммутационного устройства и некоторого количества каналов регистрации, позволяющих определенное количество независимых друг от друга процессов. При этом необходимо иметь в виду, что
4-канальные электроэнцефалографы непригодны для диагностических целей, так как позволяют выявить только грубые изменения, генерализованные по всей конвекситальной поверхности,
8-12-канальные-пригодны только для общих диагностических целей - оценки общего функционального состояния и выявления грубой очаговой патологии.
Только наличие 16 и более каналов позволяет регистрировать биоэлектрическую активность всей конвекситальной поверхности мозга одновременно, что дает возможность проводить самые тонкие исследования.

Отведение биопотенциалов обязательно осуществляют двумя электродами, так как для их регистрации необходима замкнутая электрическая цепь: первый электрод-усилитель-регистрирующий прибор-усилитель-второй электрод. Источником колебаний потенциала является участок мозговой ткани, лежащий между этими двумя электродами. В зависимости от способа расположения этих двух электродов различают биполярное и монополярное отведения.

Для топической диагностики необходимо большое количество отведений, которые регистрируются в различных комбинациях. С целью экономии времени (так как набор этих комбинаций на селекторе является очень трудоемким процессом) в современных электроэнцефалографах используют заранее фиксированные схемы отведений (монтажные схемы, рутинные программы и т. п.).

Наиболее рациональным для осуществления топического анализа с использованием электроэнцефалографии являются следующие принципы построения монтажных схем:
первая монтажная схема - биполярные отведения с большими межэлектродными расстояниями, схема "десять-двадцать"), соединения электродов в пары по сагиттальным и фронтальным линиям;
вторая - биполярные отведения с малыми межэлектродными расстояниями с соединением электродов в пары по сагиттальным линиям;
третья - биполярные отведения с малыми межэлектродными расстояниями с соединением электродов в пары по фронтальным линиям;
четвертая - монополярные отведения с индифферентными электродами на щеке и по методу Гольдмана;
пятая - биполярные отведения с малыми межэлектродными расстояниями с соединением электродов в пары по сагиттальным линиям и регистрации движений глаз, ЭКГ или кожно-гальванической реакции при проведении нагрузок.

Канал электроэнцефалографа включает в себя усилитель биопотенциалов с большим коэффициентом усиления, позволяющим усиливать биоэлектрическую активность от единицы микровольт до десятков вольт, и большим коэффициентом дискриминации, позволяющим противодействовать электрическим помехам в виде электромагнитных наводок. Усилительный тракт электроэнцефалографа к регистрирующему устройству, имеющему различные варианты. В настоящее время чаще применяют электромагнитные вибраторы с различными методами регистрации (чернильная, штифтовая, струйная, игольчатая), которые позволяют регистрировать колебания в зависимости от параметров регистрирующего устройства до 300Гц.

Так как в ЭЭГ покоя не всегда выявляются признаки патологии, то, как и при других методах функциональной диагностики, в клинической электроэнцефалографии применяются физические нагрузки, некоторые из которых являются обязательными:
нагрузка для оценки ориентировочной реакции
нагрузка для оценки устойчивости к внешним ритмам (ритмическая фотостимуляция).
Обязательной также является нагрузка, эффективная для выявления латентной (компенсированной) патологии, триггерная фотостимуляция - стимуляция в ритмах биоэлектрической активности самого мозга с помощью триггера-преобразователя волновых компонентов электроэнцефалограммы во вспышке света. С целью возбуждения основных ритмов мозга дельта, тета и т. д. (используется метод "задержки" светового стимула.

При расшифровке ЭЭГ необходимо отличать артефакты, а при регистрации ЭЭГ устранять их причины.

Артефакт в электроэнцефолографии - это сигнал экстрацеребрального происхождения, искажающий запись биотоков мозга.

К артефактам физического происхождения относятся
наводка 50 Гц от сетевого тока
шумы ламп или транзисторов
неустойчивость нулевой линии
"микрофонный эффект"
помехи, возникающие из-за движений на голове испытуемого
резкие апериодические движения перьев (штрифов, игл и т. п.), возникающие при загрязнении или окислении контактов переключателей селекторов
появление амплитудной асимметрии, если при отведении от симметричных участков черепа межэлектродные расстояния неодинаковы
фазовые искажения и ошибки при отсутствии выведения перьев (штрифов и пр.) на одну линию

К артефактам биологического происхождения относятся:
мигание
нистагм
дрожание век
зажмуривание
мышечные потенциалы
электрокардиограмма
регистрация дыхания
регистрация медленной биоэлектрической активности у лиц с металлическими зубными протезами
кожно-гальваническая реакция, возникающая при обильном потоотделении на голове

Общие принципы электроэнцефалографии

Достоинствами клинической электроэнцефалографии являются
объективность
возможность непосредственной регистрации показателей функционального состояния мозга количественной оценки получаемых результатов
наблюдения в динамике, что необходимо для прогноза заболевания
большое преимущество этого метода состоит в том, что он не связан с вмешательством в организм обследуемого.

При назначении ЭЭГ-исследования врач-эксперт должен:

1) четко поставить диагностическую задачу с указанием предполагаемой локализации патологического очага и характера патологического процесса;

2) детально знать методику исследования, ее возможности и ограничения;

3) провести психотерапевтическую подготовку больного - разъяснить безвредность исследования, объяснить общий его ход;

4) отменить все препараты, которые изменяют функциональное состояние мозга (транквилизаторы, нейролептики и пр.), если позволяет функциональное состояние больного;

5) требовать максимально полного описания полученных результатов, а не только заключения по исследованию. Для этого врач-эксперт должен понимать терминологию клинической электроэнцефалографии. Описание полученных результатов должно быть стандартизировано;

6) врач, назначивший исследование, должен быть уверен, что исследование ЭЭГ проходило в соответствии со "Стандартным методом исследования в электроэнцефалографии для использования в клинической практике и врачебно-трудовой экспертизе".

Проведение ЭЭГ-исследований повторно, в динамике дает возможность следить за ходом лечения, осуществлять динамическое наблюдение за характером течения заболевания - прогрессированием или стабилизацией его, определить степень компенсации патологического процесса, определить прогноз и трудовые возможности инвалида.

Алгоритм описания электроэнцефалограммы

1. Паспортная часть: номер ЭЭГ, дата исследования, фамилия, имя, отчество, возраст, клинический диагноз.

2. Описание ЭЭГ покоя.
2.1. Описание альфа-ритма.
2.1.1. Выраженность альфа-ритма: отсутствует, выражена вспышками (указать длительность вспышки и длительность интервалов между вспышками), выражена регулярной компонентой.
2.1.2. Распределение альфа-ритма.
2.1.2.1. Для суждения о правильности распределения альфа-ритма используют только биполярные отведения с малыми межэлектродными расстояниями с отведениями по сагиттальным линиям. За правильное распределение альфа-ритма принимают его отсутствие при отведениях с лобно-полюсных-лобных электродов.
2.1.2.2. Область доминирования альфа-ритма указывают на основании сопоставления использованных методов отведения биоэлектрической активности. (Должны быть использованы следующие методы: биполярные отведения с осуществлением связи между электродами по сагиттальным и фронтальным линиям по методу обратных фаз по большим и малым межэлектродным расстояниям, монополярные отведения с усредненным электродом по Голдману и с распределением индифферентного электрода на щеке).
2.1.3. Симметрия альфа-ритма. Определяют симметрию альфа-ритма по амплитуде и частоте в симметричных участках мозга на монополярных монтажных схемах регистрации ЭЭГ с применением усредненного электрода по Голдману или с расположением индифферентного электрода на щеке.
2.1.4. Образ альфа-ритма веретенообразный с хорошо выраженными веретенами, т. е. модулированный по амплитуде (на стыках веретен альфа-ритма нет); веретенообразный с плохо выраженными веретенами, т. е. недостаточно модулированный по амплитуде (на стыках веретен наблюдаются волны с амплитудами более 30% от максимальной амплитуды альфа-ритма); машиноподобный или пилообразный, т. е. не модулированный по амплитуде; пароксизмальный - веретено альфа-ритма начинается с максимальной амплитуды; аркообразный - большая разница в полупериодах.
2.1.5. Форма альфа-ритма: не искажена, искажена медленной активностью, искажена электромиограммой.
2.1.6. Наличие гиперсинхронизации волн альфа-ритма (синфазных биений в различных областях мозга и их количество на единицу времени (за эпоху анализа принимают 10 с.))
2.1.7. Частота альфа-ритма, ее стабильность.
2.1.7.1. Частоту альфа-ритма определяют на случайных односекундных отрезках ЭЭГ на протяжении всего времени регистрации и выражают в виде средней величины (при наличии смены частоты при сохранении стабильности периодов указывают на смену частот доминирующего ритма).
2.1.7.2. Стабильность часто оценивают на основании крайних значений периодов и выражают в виде отклонений от основной средней частоты. Например, (10ё2) колеб./с. или (10ё0, 5)колеб./с.
2.1.8. Амплитуда альфа-ритма. Амплитуду ритма определяют на монополярных схемах записи ЭЭГ с использованием усредненного электрода по Голдману или при отведении с большими межэлектродными расстояниями в центрально-затылочных отведениях. Амплитуду волн измеряют от пика до пика без учета наличия изоэлектрической линии.2.1.9. Индекс альфа-ритма определяют в отведениях с наибольшей выраженностью этого ритма независимо от способа отведения биоэлектрической активности (эпохой анализа индекса ритма является 10 с.).
2.1.9.1. Если альфа-ритм выражен регулярной компонентой, то его индекс определяют на 10 полных кадрах ЭЭГ и вычисляют среднюю величину.
2.1.9.2. При неравномерном распределении альфа-ритма его индекс определяют за время всей записи ЭЭГ-покоя.
2.1.10. Отсутствие альфа-ритма отмечают всегда на первом месте (см. 2.1.1).
2.2. Описание доминирующих и субдоминмрующих ритмов.
2.2.1. Доминирующую активность описывают по правилам описания альфа-ритма (см. 2.1).
2.2.2. Если альфа-ритм имеется, но есть и другая частотная компонента, представленная в меньшей степени, то после описания альфа-ритма (см. 2.1.) ее описывают по тем же правилам как субдоминирующую.
При этом необходимо иметь в виду, что полоса регистрации ЭЭГ делится на ряд диапазонов: до 4 Гц (дельта-ритм), от 4 до 8 Гц (тета-ритм), от 8 до 13 Гц (альфа-ритм), от 13 до 25 Гц (низкочастотный бета-ритм или бета-1-ритм), от 25 до 35 Гц (высокочастотный бета-ритм или бета-2-ритм), от 35 до 50 Гц (гамма-ритм или бета-3-ритм). При наличии низкоамплитудной активности также необходимо указывать на наличие апериодичной (полиритмичной) активности. Для простоты словесного описания следует выделять плоскую ЭЭГ, низкоамплитудную медленную полиморфную активность (НПМА), полиритмичную активность и высокочастотную низкоамплитудную ("махристую") активность.
2.3. Описание бета-активности (бета-ритма).
2.3.1. При наличии бета-активности, только в лобных отделах мозга или на стыках веретен альфа-ритма, при условии симметричных амплитуд, асинхронного апериодического образа, при амплитуде не выше 2-5 мкВ бета-активность не описывают или характеризуют как норму.
2.3.2. При наличии следующих явлений: распределении бета-активности по всей конвекситальной поверхности, появлении очагового распределения бета-активности или бета-ритма, асимметрии более 50% амплитуды, появлении альфа-подобного образа бета-ритма, увеличении амплитуды более 5 мкВ - бета-ритм или бета-активность описывают по соответствующим правилам (см. 2.1, 2.4, 2.5).
2.4. Описание генерализованной (диффузной) активности.
2.4.1. Частотная характеристика вспышек и пароксизмов.
2.4.2. Амплитуда.
2.4.3. Длительность вспышек и пароксизмов во времени и частота их следования.
2.4.4. Образ генерализованной активности.
2.4.5. Каким ритмом (активностью) вспышки или пароксизмы искажены.
2.4.6. Топическая диагностика фокуса или основного очага генерализованной активности.
2.5. Описание очаговых изменений ЭЭГ.
2.5.1. Топическая диагностика очага поражения.
2.5.2. Ритм (активность) локальных изменений.
2.5.3. Образ локальных изменений: альфа-подобный образ, регулярная компонента, пароксизмы.
2.5.4. Чем искажены локальные изменения ЭЭГ.
2.5.5. Количественная характеристика изменений: частота, амплитуда, индекс.

3. Описание реактивной (активационной) ЭЭГ. 3.1. Одиночная вспышка света (ориентировочная нагрузка).
3.1.1. Характер изменений биоэлектрической активности: депрессия альфа-ритма, экзальтация альфа-ритма, другие изменения частоты и амплитуды (см. раздел Учебного пособия).
3.1.2. Топическое распределение изменений биоэлектрической активности.
3.1.3. Длительность изменений биоэлектрической активности.
3.1.4. Скорость угашения ориентировочной реакции при применении повторных раздражителей.
3.1.5. Наличие и характер вызванных ответов: отрицательные медленные волны, появление бета-ритма.
3.2. Ритмическая фотостимуляция (РФС).
3.2.1. Диапазон усвоения ритма.
3.2.2. Характер реакции усвоения ритма (РУР).
3.2.3. Амплитуда усвоенного ритма по отношению к фоновой активности: выше фона (отчетливая), ниже фона (неотчетливая).
3.2.2.2. Длительность РУР по отношению ко времени стимуляции: кратковременная, длительная, длительная с последствием.
3.2.2.3. Симметричность по полушариям.
3.2.3. Топическое распределение РУР.
3.2.4. Возникновение гармоник и их частная характеристика.
3.2.5. Возникновение субгармоник и их частотная характеристика.
3.2.6. Возникновение ритмов, некратных частоте световых мельканий.
3.3. Триггерная фотостимуляция (ТФС).
3.3.1. Частотный диапазон, возбуждаемый ТФС.
3.3.2. Топика появившихся изменений.
3.3.3. Количественная характеристика изменений: частота, амплитуда.
3.3.4. Характер возбуждаемой активности: спонтанные волны, вызванные ответы.
3.4. Гипервентиляция (ГВ).
3.4.1. Время от начала нагрузки до появления изменений биоэлектрической активности.
3.4.2. Топика изменений.
3.4.3. Количественная характеристика изменений биоэлектрической активности: частота, амплитуда.
3.4.4. Время возврата к фоновой активности.
3.5. Фармакологические нагрузки.
3.5.1. Концентрация воздействия (в мг на 1 кг массы тела больного).
3.5.2. Время от начала воздействия до появления изменений биоэлектрической активности.
3.5.3. Характер изменений биоэлектрической активности.
3.5.4. Количественная характеристика изменений: частота, амплитуда, длительность.

4. Заключение.
4.1. Оценка тяжести изменений ЭЭГ. Изменения ЭЭГ в пределах нормы, умеренные, средней тяжести, значительные изменения, тяжелые изменения ЭЭГ.
4.2. Локализация изменений.
4.3. Клиническая интерпретация.
4.4. Оценка общего функционального состояния мозга.

Методы изучения работы головного мозга

ТЕМА 2. МЕТОДЫ ПСИХОФИЗИОЛОГИИ

  • 2.1. Методы изучения работы головного мозга
  • 2.2. Электрическая активность кожи
  • 2.3. Показатели работы сердечно-сосудистой системы
  • 2.4. Показатели активности мышечной системы
  • 2.5. Показатели активности дыхательной системы
  • 2.6. Реакции глаз
  • 2.7. Детектор лжи
  • 2.8. Выбор методик и показателей

В этом разделе будут представлены систематика, способы регистрации и значение физиологических показателей, связанных с психической деятельностью человека. Психофизиология - экспериментальная дисциплина, поэтому интерпретационные возможности психофизиологических исследований в значительной степени определяются совершенством и разнообразием применяемых методов. Правильный выбор методики, адекватное использование ее показателей и соответствующее разрешающим возможностям методики истолкование полученных результатов являются условиями, необходимыми для проведения успешного психофизиологического исследования.

  • 2.1.1. Электроэнцефалография
  • 2.1.2. Вызванные потенциалы головного мозга
  • 2.1.3. Топографическое картирование электрической активности мозга (ТКЭАМ)
  • 2.1.4. Компьютерная томография (КТ)
  • 2.1.5. Нейрональная активность
  • 2.1.6. Методы воздействия на мозг

Центральное место в ряду методов психофизиологического исследования занимают различные способы регистрации электрической активности центральной нервной системы, и в первую очередь головного мозга.

Электроэнцефалография - метод регистрации и анализа электроэнцефалограммы (ЭЭГ), т.е. суммарной биоэлектрической активности, отводимой как со скальпа, так и из глубоких структур мозга . Последнее у человека возможно лишь в клинических условиях.
В 1929 г. австрийский психиатр Х. Бергер обнаружил, что с поверхности черепа можно регистрировать "мозговые волны". Он установил, что электрические характеристики этих сигналов зависят от состояния испытуемого. Наиболее заметными были синхронные волны относительно большой амплитуды с характерной частотой около 10 циклов в секунду. Бергер назвал их альфа-волнами и противопоставил их высокочастотным "бета-волнам", которые проявляются тогда, когда человек переходит в более активное состояние. Открытие Бергера привело к созданию электроэнцефалографического метода изучения мозга, состоящего в регистрации, анализе и интерпретации биотоков мозга животных и человека.
Одна из самых поразительных особенностей ЭЭГ - ее спонтанный, автономный характер. Регулярная электрическая активность мозга может быть зафиксирована уже у плода (т.е. до рождения организма) и прекращается только с наступлением смерти. Даже при глубокой коме и наркозе наблюдается особая характерная картина мозговых волн.
Сегодня ЭЭГ является наиболее перспективным, но пока еще наименее расшифрованным источником данных для психофизиолога.



Условия регистрации и способы анализа ЭЭГ. В стационарный комплекс для регистрации ЭЭГ и ряда других физиологических показателей входит звукоизолирующая экранированная камера, оборудованное место для испытуемого, моногоканальные усилители, регистрирующая аппаратура (чернилопишущий энцефалограф, многоканальный магнитофон). Обычно используется от 8 до 16 каналов регистрации ЭЭГ от различных участков поверхности черепа одновременно. Анализ ЭЭГ осуществляется как визуально, так и с помощью ЭВМ. В последнем случае необходимо специальное программное обеспечение.

  • По частоте в ЭЭГ различают следующие типы ритмических составляющих:
    • дельта-ритм (0,5-4 Гц);
    • тэта-ритм (5-7 Гц);
    • альфа-ритм (8-13 Гц) - основной ритм ЭЭГ, преобладающий в состоянии покоя;
    • мю-ритм - по частотно-амплитудным характеристикам сходен с альфа-ритмом, но преобладает в передних отделах коры больших полушарий;
    • бета-ритм (15-35 Гц);
    • гамма-ритм (выше 35 Гц).

Следует подчеркнуть, что подобное разбиение на группы более или менее произвольно, оно не соответствует никаким физиологическим категориям. Зарегистрированы и более медленные частоты электрических потенциалов головного мозга вплоть до периодов порядка нескольких часов и суток. Запись по этим частотам выполняется с помощью ЭВМ.

Основные ритмы и параметры энцефалограммы. 1. Альфа-волна - одиночное двухфазовое колебание разности потенциалов длительностью 75-125 мс., по форме приближается к синусоидальной. 2. Альфа-ритм - ритмическое колебание потенциалов с частотой 8-13 Гц, выражен чаще в задних отделах мозга при закрытых глазах в состоянии относительного покоя, средняя амплитуда 30-40 мкВ, обычно модулирован в веретена. 3. Бета-волна - одиночное двухфазовое колебание потенциалов длительностью менее 75 мс. и амплитудой 10-15 мкВ (не более 30). 4. Бета-ритм - ритмическое колебание потенциалов с частотой 14-35 Гц. Лучше выражен в лобно-центральных областях мозга. 5. Дельта-волна - одиночное двухфазовое колебание разности потенциалов длительностью более 250 мс. 6. Дельта-ритм - ритмическое колебание потенциалов с частотой 1-3 Гц и амплитудой от 10 до 250 мкВ и более. 7. Тета-волна - одиночное, чаще двухфазовое колебание разности потенциалов длительностью 130-250 мс. 8. Тета-ритм - ритмическое колебание потенциалов с частотой 4-7 Гц, чаще двухсторонние синхронные, с амплитудой 100-200 мкВ, иногда с веретенообразной модуляцией, особенно в лобной области мозга.

Другая важная характеристика электрических потенциалов мозга - амплитуда, т.е. величина колебаний. Амплитуда и частота колебаний связаны друг с другом. Амплитуда высокочастотных бета-волн у одного и того человека может быть почти в 10 раз ниже амплитуды более медленных альфа-волн.
Важное значение при регистрации ЭЭГ имеет расположение электродов, при этом электрическая активность одновременно регистрируемая с различных точек головы может сильно различаться. При записи ЭЭГ используют два основных метода: биполярный и монополярный. В первом случае оба электрода помещаются в электрически активные точки скальпа, во втором один из электродов располагается в точке, которая условно считается электрически нейтральной (мочка уха, переносица). При биполярной записи регистрируется ЭЭГ, представляющая результат взаимодействия двух электрически активных точек (например, лобного и затылочного отведений), при монополярной записи - активность какого-то одного отведения относительно электрически нейтральной точки (например, лобного или затылочного отведения относительно мочки уха). Выбор того или иного варианта записи зависит от целей исследования. В исследовательской практике шире используется монополярный вариант регистрации, поскольку он позволяет изучать изолированный вклад той или иной зоны мозга в изучаемый процесс.
Международная федерация обществ электроэнцефалографии приняла так называемую систему "10-20", позволяющую точно указывать расположение электродов. В соответствии с этой системой у каждого испытуемого точно измеряют расстояние между серединой переносицы (назионом) и твердым костным бугорком на затылке (инионом), а также между левой и правой ушными ямками. Возможные точки расположения электродов разделены интервалами, составляющими 10% или 20% этих расстояний на черепе. При этом для удобства регистрации весь череп разбит на области, обозначенные буквами: F - лобная, О - затылочная область, Р - теменная, Т - височная, С - область центральной борозды. Нечетные номера мест отведения относятся к левому, а четные - к правому полушарию. Буквой Z - обозначается отведение от верхушки черепа. Это место называется вертексом и его используют особенно часто (см. Хрестомат. 2.2).

Клинический и статический методы изучения ЭЭГ. С момента возникновения выделились и продолжают существовать как относительно самостоятельные два подхода к анализу ЭЭГ: визуальный (клинический) и статистический.
Визуальной (клинический) анализ ЭЭГ используется, как правило, в диагностических целях. Электрофизиолог, опираясь на определенные способы такого анализа ЭЭГ, решает следуюшие вопросы: соответствует ли ЭЭГ общепринятым стандартам нормы; если нет, то какова степень отклонения от нормы, обнаруживаются ли у пациента признаки очагового поражения мозга и какова локализация очага поражения. Клинический анализ ЭЭГ всегда строго индивидуален и носит преимущественно качественный характер. Несмотря на то, что существуют общепринятые в клинике приемы описания ЭЭГ, клиническая интерпретация ЭЭГ в большей степени зависит от опыта электрофизиолога, его умения "читать" электроэнцефалограмму, выделяя в ней скрытые и нередко очень вариативные патологические признаки.
Следует, однако, подчеркнуть, что в широкой клинической практике грубые макроочаговые нарушения или другие отчетливо выраженные формы патологии ЭЭГ встречаются редко. Чаще всего (70-80% случаев) наблюдаются диффузные изменения биоэлектрической активности мозга с симптоматикой, трудно поддающейся формальному описанию. Между тем именно эта симптоматика может представлять особый интерес для анализа того контингента испытуемых, которые входят в группу так называемой "малой" психиатрии - состояний, граничащих между "хорошей" нормой и явной патологией. Именно по этой причине сейчас предпринимаются особые усилия по формализации и даже разработки компьютерных программ для анализа клинической ЭЭГ.
Статистические методы исследования электроэнцефалограммы исходят из того, что фоновая ЭЭГ стационарна и стабильна. Дальнейшая обработка в подавляющем большинстве случаев опирается на преобразование Фурье, смысл которого состоит в том, что волна любой сложной формы математически идентична сумме синусоидальных волн разной амплитуды и частоты.
Преобразование Фурье позволяет преобразовать волновой паттерн фоновой ЭЭГ в частотный и установить распределение мощности по каждой частотной составляющей. С помощью преобразования Фурье самые сложные по форме колебания ЭЭГ можно свести к ряду синусоидальных волн с разными амплитудами и частотами. На этой основе выделяются новые показатели, расширяющие содержательную интерпретацию ритмической организации биоэлектрических процессов.
Например, специальную задачу составляет анализ вклада, или относительной мощности, разных частот, которая зависит от амплитуд синусоидальных составляющих. Она решается с помощью построения спектров мощности. Последний представляет собой совокупность всех значений мощности ритмических составляющих ЭЭГ, вычисляемых с определенным шагом дискретизации (в размере десятых долей герца). Спектры могут характеризовать абсолютную мощность каждой ритмической составляющей или относительную, т.е. выраженность мощности каждой составляющей (в процентах) по отношению к общей мощности ЭЭГ в анализируемом отрезке записи.

Спектры мощности ЭЭГ можно подвергать дальнейшей обработке, например, корреляционному анализу, при этом вычисляют авто- и кросскорреляционные функции, а также когерентность , которая характеризует меру синхронности частотных диапазонов ЭЭГ в двух различных отведениях . Когерентность изменяется в диапазоне от +1 (полностью совпадающие формы волны) до 0 (абсолютно различные формы волн). Такая оценка проводится в каждой точке непрерывного частотного спектра или как средняя в пределах частотных поддиапазонов.
При помощи вычисления когерентности можно определить характер внутри- и межполушарных отношений показателей ЭЭГ в покое и при разных видах деятельности. В частности, с помощью этого метода можно установить ведущее полушарие для конкретной деятельности испытуемого, наличие устойчивой межполушарной асимметрии и др. Благодаря этому спектрально-корреляционный метод оценки спектральной мощности (плотности) ритмических составляющих ЭЭГ и их когерентности является в настоящее время одним из наиболее распространенных.

Источники генерации ЭЭГ. Парадоксально, но собственно импульсная активность нейронов не находит отражения в колебаниях электрического потенциала, регистрируемого с поверхности черепа человека. Причина в том, что импульсная активность нейронов не сопоставима с ЭЭГ по временным параметрам. Длительность импульса (потенциала действия) нейрона составляет не более 2 мс. Временные параметры ритмических составляющих ЭЭГ исчисляются десятками и сотнями милисекунд.
Принято считать, что в электрических процессах, регистрируемых с поверхности открытого мозга или скальпа, находит отражение синаптическая активность нейронов. Речь идет о потенциалах, которые возникают в постсинаптической мембране нейрона, принимающего импульс. Возбуждающие постсинаптические потенциалы имеют длительность более 30 мс, а тормозные постсинаптические потенциалы коры могут достигать 70 мс и более. Эти потенциалы (в отличие от потенциала действия нейрона, который возникает по приниципу "все или ничего") имеют градуальный характер и могут суммироваться.
Несколько упрощая картину, можно сказать, что положительные колебания потенциала на поверхности коры связаны либо с возбуждающими постсинаптическими потенциалами в ее глубинных слоях, либо с тормозными постсинаптическими потенциалами в поверхностных слоях. Отрицательные колебания потенциала на поверности коры предположительно отражают противоположное этому соотношение источников электрической активности.
Ритмический характер биоэлектрической активности коры, и в частности альфа-ритма, обусловлен в основном влиянием подкорковых структур, в первую очередь таламуса (промежуточный мозг). Именно в таламусе находятся главные, но не единственные пейсмекеры или водители ритма. Одностороннее удаление таламуса или его хирургическая изоляция от неокортекса приводит к полному исчезновению альфа-ритма в зонах коры прооперированного полушария. При этом в ритмической активности самого таламуса ничто не меняется. Нейроны неспецифического таламуса обладают свойством авторитмичности. Эти нейроны через соответствующие возбуждающие и тормозные связи способны генерировать и поддерживать ритмическую активность в коре больших полушарий. Большую роль в динамике электрической активности таламуса и коры играет ретикулярная формация ствола мозга. Она может оказывать синхронизирующее влияние, т.е. способствующее генерации устойчивого ритмического паттерна , и дезинхронизирующее, нарушающее согласованную ритмическую активность (см. Хрестомат. 2.3).


Синаптическая активность нейронов

Функциональное значение ЭЗГ и её составляющих. Существенное значение имеет вопрос о функциональном значении отдельных составляющих ЭЭГ. Наибольшее внимание исследователей здесь всегда привлекал альфа-ритм - доминирующий ритм ЭЭГ покоя у человека.
Существует немало предположений, касающихся функциональной роли альфа-ритма. Основоположник кибернетики Н. Винер и вслед за ним ряд других исследователей считали, что этот ритм выполняет функцию временного сканирования ("считывания") информации и тесно связан с механизмами восприятия и памяти. Предполагается, что альфа-ритм отражает реверберацию возбуждений, кодирующих внутримозговую информацию и создающих оптимальный фон для процесса приема и переработки афферентных сигналов. Его роль состоит в своеобразной функциональной стабилизации состояний мозга и обеспечении готовности реагирования. Предполагается также, что альфа-ритм связан с действием селектирующих механизмов мозга, выполняющих функцию резонансного фильтра, и таким образом регулирующих поток сенсорных импульсов.
В покое в ЭЭГ могут присутствовать и другие ритмические составляющие, но их значение лучше всего выясняется при изменениии функциональных состояний организма (Данилова , 1992). Так, дельта-ритм у здорового взрослого человека в покое практически отсутствует, но он доминирует в ЭЭГ на четвертой стадии сна, которая получила свое название по этому ритму (медленноволновой сон или дельта-сон). Напротив, тэта-ритм тесно связан с эмоциональным и умственным напряжением. Его иногда так и называют стресс-ритм или ритм напряжения. У человека одним из ЭЭГ симптомов эмоционального возбуждения служит усиление тэта-ритма с частотой колебаний 4-7 Гц, сопровождающее переживание как положительных, так и отрицательных эмоций. При выполнении мыслительных заданий может усиливаться и дельта-, и тета-активность. Причем усиление последней составляющей положительно соотносится с успешностью решения задач. По своему происхождению тэта-ритм связан с кортико-лимбическим взаимодействием. Предполагается, что усиление тэта-ритма при эмоциях отражает активацию коры больших полушарий со стороны лимбической системы.
Переход от состояния покоя к напряжению всегда сопровождается реакцией десинхронизации, главным компонентом которой служит высокочастотная бета-активность. Умственная деятельность у взрослых сопровождается повышением мощности бета-ритма, причем значимое усиление высокочастотной активности наблюдается при умственной деятельности, включающей элементы новизны, в то время как стереотипные, повторяющиеся умственные операции сопровождаются ее снижением. Установлено также, что успешность выполнения вербальных заданий и тестов на зрительно-пространственные отношения оказывается положительно связанной с высокой активностью бета-диапазона ЭЭГ левого полушария. По некоторым предположениям, эта активность связана с отражением деятельности механизмов сканирования структуры стимула, осуществляемой нейронными сетями, продуцирующими высокочастотную активность ЭЭГ (см. Хрестомат. 2.1; Хрестомат. 2.5).

Магнитоэнцефалография - регистрация параметров магнитного поля, обусловленных биоэлектрической активностью головного мозга . Запись этих параметров осуществляется с помощью сверхпроводящих квантовых интерференционных датчиков и специальной камеры, изолирующей магнитные поля мозга от более сильных внешних полей. Метод обладает рядом преимуществ перед регистрацией традиционной электроэнцефалограммы. В частности, радиальные составляющие магнитных полей, регистрируемые со скальпа, не претерпевают таких сильных искажений, как ЭЭГ. Это позволяет более точно рассчитывать положение генераторов ЭЭГ-активности, регистрируемой со скальпа.